
Gauss’ Theorem Egregium, Gauss-Bonnet etc.
We know that for a simple closed curve in the plane

∫
kds = 2π.

Now we want to consider a simple closed curve C in a surface S ⊂ R3. We
suppose C is the boundary of a set Y ⊂ S homeomorphic to a disc. The local
Gauss-Bonnet formula is:

∫

C

kgds = 2π −
∫

Y

K dA,

where K is the Gauss curvature.
Set-up: we use standard polar co-ordinates (r, θ) in the plane. We suppose

we have a local parametrisation f of S mapping the unit disc to Y and the unit
circle to C. Then we may regard r, θ as local co-ordinates on S, in the obvious
way. For r ≤ 1 we let Cr be the closed curve in S which is the image under f of
the circle of radius r.. We set

I(r) =

∫

Cr

kgds,

where kg is the geodesic curvature of Cr (with a suitable sign convention). We
let Yr ⊂ S be the image of the disc of radius r. We compute

d

dr
(I(r) +

∫

Yr

K dA).

We will use two simple algebraic lemmas in the proof. Let P ⊂ R3 be a
plane through the origin and N be a unit normal to P . For x, y ∈ P set

x ∧ y = (x× y).N

Then
Lemma 1 For any three vectors x, y, z in P :

(x ∧ y)z + (y ∧ z)x+ (z ∧ x)y = 0.

Lemma 2 If L : P → P is a linear map then

L(x) ∧ L(y) = det(L)(x ∧ y).

Proofs are exercises for the reader.
Let t be the tangent to the curves Cρ and n be the normal to S. Thus t,n

are vector-valued functions of r, θ with t.n = 0 everywhere. We use suffixes
tρ, tθ etc. to denote partial derivatives with respect to ρ, θ. Then

I(r) =

∫

Cr

kgds =

∫ 2π

0

(tθ × t).ndθ.
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Thus
dI

dr
=
∂

∂r
[tθ × t).n] dθ.

Now consider

S =
∂

∂r
[(tθ × t).n]−

∂

∂θ
[(tr × t).n] .

Then

S = [(tθ × tr).n+ (tθr × t).n+ (tθ × t).nr]−[(tr × tθ)bn+ (trθ × t).n+ (tr × t).nθ] .

Using the symmetry of second partial derivatives and the skew-symmetry of the
cross-product, this is

S = 2(tθ × tr).n+ (tθ × t).nr − (tr × t).nθ.

Now t is a unit vector, so the vectors tr, tθ are orthogonal to t, as is the normal
n. Thus these three vectors lie in a plane and the triple product (tθ × tr).n is
zero. So

S = (tθ × t).nr − (tr × t).nθ.

By the cyclic symmetry of the triple product this is

S = tθ.(t× nr)− tr.(t× nθ).

Since the three vectors t,nr,nθ are all orthogonal to n this can be written as

S = (tθ.n)n.(t× nr)− (tr.n)n.(t× nθ).

In the notation above this is

S = (tθ.n)(t ∧ nr)− (tr.n)(t ∧ nθ).

Then we can write
S = t. [(t ∧ nθ)nr − (t ∧ nr)nθ] .

By Lemma 1 this is
S = −t. [(nθ ∧ nr)t] ,

and hence
S = −(nθ ∧ nr).

Now let fr, fθ be the usual basis vectors for the tangent space to S corre-
sponding to the local co-ordinates r, θ. Then nr = L(fr),nθ = L(fθ) where
L : TS → TS is the linear map introduced in lectures (the derivative of the
Gauss map). Lemma 2 gives

S = − det(L)(fr ∧ fθ).
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But, by definition, det(L) is the Gauss curvature K. So we have

S = −Kfr ∧ fθ.

Now go back to the definition of S and integrate around the circle. The
integral of the ∂

∂θ
term vanishes, so we get

dI

dr
= −

∫ 2π

0

K(fr ∧ fθ)dθ.

Let E,F,G be the components of the first fundamental form in the r, θ co-
ordinates, as usual. Then

dI

dr
= −

∫ 2π

0

√
EG− F 2dθ.

But ∫

Yr

KdA =

∫ r

0

∫ 2π

0

K
√
EG− F 2dρdθ,

so
d

dr

∫

Yr

KdA =

∫ 2π

0

K
√
EG− F 2dθ.

Hence the two derivatives cancel and we conclude that

I(r) +

∫

Yr

KdA

is a constant, independent of r.
Finally, it is not hard to see that the limit of I(r) as r tends to zero is

2π; since the geometry of the surface approximates that of the plane over very
small regions. Thus the constant above must be 2π and we have proved the
local version of Gauss-Bonnet.

Consequences
1. Gauss’ Theorem Egregium: the Gauss curvature K depends only on the

first fundamental form of the surface. For we can write

K(p) = lim
1

Area(Yr)
(2π −

∫

Cr

kgds),

where Cr is any family of circles shrinking down to p, and the RHS depends only
on the first fundamental form (using our results on geodesic curvature). In fact
we could there are many formulae of a similar nature that we can use to give
an intrinsic characterisation of the Gauss curvature. For example let B(p, r) be
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the set of points of distance (measured in S) less than r from p. Then one can
show that the area of B(p, r) is

Area(B(p, r)) = πr2 −
K(p)

12
πr4 +O(r6).

The Gauss curvature is a measure of the deviation of the geometry in S from
that of the plane. One can also find an explicit formula for K in terms of the
co-efficients E,F,G in a local parametrisation

K =
1

2J

[
∂

∂u

(
EGu − FEv
JE

)

−
∂

∂v

(
2EFu − FEu − EEv

JE

)]

,

where J =
√
EG− F 2. The formula becomes much simpler in a co-ordinate

system chosen so that the first fundamental form has a convenient shape. For
example in “isothermal co-ordinates” where F = 0 and E = G = ef say,

K = −
e−f

2
(fuu + fvv).

2.Polygons. Now let Y ⊂ S be a polygonal region, homeomorphic to the
disc, whose boundary is made up of a number of smooth curve segments Γi
meeting at corners. We can approximate the boundary of Y by smooth curves
and arrive at the formula

∫

Y

KdA = 2π −
∑∫

Γi

kgds−
∑
(π − φj),

where φj is the internal angle at corner j. In particular we find that the sum of
the angles of a geodesic triangle T in S is

π +

∫

T

KdA.

Especially interesting cases are the sphere, withK = 1 and the pseudosphere/upper
half plane with K = −1.

3. The Global Gauss-Bonnet formula. Let S be a compact surface and
suppose that S has a triangulation. Applying the formula above to each triangle
and summing, using the fact that the sum of the angles at each vertex is 2π one
finds that ∫

S

KdA = χ(S),

where χ(S) is the Euler characteristic of the triangulation

χ(S) = V − E + F
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where V is the number of vertices, E the number of edges and F the number
of faces. This shows that the LHS does not depend on the particular way the
surface is embedded in R3 and the RHS does not depend on the triangulation:
it is a topological invariant of the surface.

4. Classification of flat surfaces Let S be a surface which is locally isometric
to the plane. Gauss’ theorem shows that K = 0. This means that the linear
map L has determinant zero at each point of S. Thus for each p in S there is a
non-trivial kernel of L. If this kernel is the whole tangent space, at each point of
S, the second fundamental form is zero and it is easy to show that S is contained
in a plane. Suppose on the other hand that this kernel has dimension 1 (that
is, the second fundamental from is not zero). We can choose local co-ordinates
(u, v) so that this kernel is spanned by fu. Then if n is the unit normal we have
nu = 0. By the symmetry of the second fundamental form nv.fu = nu.fv = 0.
So n,nv are vectors orthogonal to fu and

fu = λn× nv,

for some function λ. But now nvu = nuv = 0 so n and nv are both independent
of u. This means that the direction of fu does not vary with u. Thus the curves
v = constant are a family of straight line segments in S. Now choose some
curve σ(t) in S which meets each of these segments once (for example a curve
u = constant). Let X(t) be a vector pointing along the line segment through
σ(t). Then we have a new parametrisation

g(r, t) = σ(t) + rX(t)

of S. The condition that the normal be independent of r tells us that X ′ must
lie in the plane spanned by σ′ and X, so

X ′ = αX + βσ′,

for functions α(t), β(t). If β vanishes everywhere then the direction of X is
constant and S is a cylinder. Suppose on the other hand that β does not vanish
anywhere. Then put γ(t) = σ(t)− f(t)X where f = β−1. We have

γ′ = σ′ − f ′X − f(αX + βσ′) = −(f ′ + fα)X.

Suppose f ′ + fα vanishes everywhere. Then γ is constant and all the line
segments pass through a fixed point: the surface S is a cone. Suppose on the
other hand that f ′ + fα does not vanish anywhere. Then X is a multiple of
γ′ and the surface is the developable surface associated to the curve γ. Thus
we see that the three types of flat surfaces we studied essentially include all
the possibilities. (This is slightly imprecise because one ought to discuss what
happens when the various functions vanish at some points but not everywhere.)
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