Differential Geometry, Part 2.

February 28, 2024

Differential Geometry, Part 2.

> < 三 > < 三 >

3

Section 4: Special holonomy

For a point *p* in a connected Riemannian *n*-manifold *M* the holonomy group $G \subset SO(TM_p) = SO(n)$ is defined by parallel transport around contractible loops.

Special holonomy is the case $G \neq SO(n)$.

A metric with holonomy $G \subset SO(n)$ is essentially equivalent to a *torsion free G* structure. This means that the tangent bundle is associated to a principal *G*-bundle $P \rightarrow M$ and there is a torsion-free connection on *P*. In the language of Section 1 it is also equivalent to having a section of the bundle over *M* with fibre GL(n)/G which is flat to first order.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

A symmetric space H/K has holonomy K. There is a classification of which groups can appear as holonomy groups, for non-symmetric, irreducible, manifolds. There are five "classical" families associated with **R**, **C** and the quaternions.

- *SO*(*n*);
- U(n/2), SU(n/2);
- Sp(n/4).Sp(1), Sp(n/4);

and two exceptional cases $G_2 \subset SO(7)$, $Spin(7) \subset SO(8)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Some G_2 algebra.

Let *V* be an oriented 7-dimensional real vector space and $\phi \in \Lambda^3 V^*$. This defines a quadratic form q_{ϕ} on *V* with values in the oriented line $\Lambda^7 V^*$:

 $\boldsymbol{q}_{\phi}(\boldsymbol{v})=\boldsymbol{i}_{\boldsymbol{v}}(\phi)\wedge\boldsymbol{i}_{\boldsymbol{v}}(\phi)\wedge\phi.$

Say ϕ if this form is positive definite. So a positive ϕ defines a conformal structure on *V*. Fix a Euclidean structure in the conformal class by the normalisation $|\phi|^2 = 7$.

伺 とくほ とくほ とう

Basic fact: the positive forms make up a single orbit under the action of $GL^+(V)$ —-they are all equivalent. The stabiliser of any one is a model for the exceptional Lie group $G_2 \subset SO(7)$ which has dimension 49 - 35 = 14.

A positive 3-form ϕ and its associated Euclidean structure define a cross product $V \times V \rightarrow V$:

$$\phi(\mathbf{x},\mathbf{y},\mathbf{z})=\langle \mathbf{x}\times\mathbf{y},\mathbf{z}\rangle.$$

The group G_2 can also be obtained as the automorphisms of (V, \times) .

The cross-product can be viewed as the main part of octonion multiplication on $\mathbf{R}\mathbf{1} \oplus V$ (in the same way as the cross-product on \mathbf{R}^3 is related to quaternion multiplication.)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

A G_2 structure on and oriented 7-manifold M^7 is given by a 3-form ϕ which is positive at each point and this defines a Riemannian metric g_{ϕ} with Levi-Civita connection ∇_{ϕ} and a 4-form $*_{\phi}\phi$.

The structure is torsion free if $\nabla_{\phi}\phi = 0$.

Differential Geometry, Part 2.

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Theorem (Fernandez and Gray) The structure is torsion-free if and only if $d\phi = 0$ and $d(*_{\phi}\phi) = 0$. We have $d\phi = a(\nabla\phi)$ and $*d * \phi = b(\nabla\phi)$ where *a* is the wedge product map

$$a: \Lambda^1 \otimes \Lambda^3 \to \Lambda^4,$$

and b is the contraction map

$$b: \Lambda^1 \otimes \Lambda^3 \to \Lambda^2.$$

So we want to show that $a(\nabla \phi) = 0$, $b(\nabla \phi) = 0$ implies $\nabla \phi = 0$.

▲圖 > ▲ 臣 > ▲ 臣 > 二 臣

We consider the decomposition of Λ^3 as a representation of G_2 . There is a one dimensional piece Λ_0^3 spanned by ϕ . There is a copy of Λ^1 defined by the contraction $i_v(*\phi)$ for vectors v.

The orthogonal complement is an irreducible representation Λ^3_{27} .

So

$$\Lambda^3 = \Lambda^3_1 \oplus \Lambda^3_7 \oplus \Lambda^3_{27}.$$

An infinitesimal deformation of the 3-form defines a deformation of the metric.

So we have a linear map $\Lambda^3 \rightarrow s^2$.

This is projection onto $\Lambda_1^3 \oplus \Lambda_{27}^3 = s^2$.

Since ∇ is the Levi-Civita connection we have $\nabla g_{\phi} = 0$.

This implies that $\nabla \phi \in \Lambda_7^3 \otimes \Lambda^1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

To prove the Theorem, one has to check that $a\oplus b:\Lambda^3_7\otimes\Lambda^1\to\Lambda^4\oplus\Lambda^2$

is injective.

Differential Geometry, Part 2.

ヘロト 人間 とくほとくほとう

∃ <2 <</p>

Now we consider the case of a hyperkähler 4-manifold *X* i.e. holonomy $Sp(1) \subset SO(4)$. (Equivalently $SU(2) \subset SO(4)$.) This means that we have an action of the quaternions on *TX*, compatible with the Riemannian metric and preserved by parallel transport.

If I_1 , I_2 , I_3 is a standard basis for the imaginary quaternions we get 2-forms $\omega_1, \omega_2, \omega_3$:

$$\omega_a(\mathbf{v},\mathbf{w}) = \langle \mathbf{I}_a \mathbf{v}, \mathbf{w} \rangle.$$

with $\nabla \omega_i = 0$.

In a similar manner to the G_2 case, a hyperkähler structure can be defined by a triple of closed 2-forms $\omega_1, \omega_2, \omega_3$ with

$$\omega_i \wedge \omega_j = \delta_{ij}\mu,$$

where μ is a volume form on *X*.

(雪) (ヨ) (ヨ)

The metric is determined by the ω_i via the formula

$$|\mathbf{v}|^2 \mu = \sum_{\text{cyclic}} i_{\mathbf{v}}(\omega_i) \wedge i_{\mathbf{v}}(\omega_j) \wedge \omega_k.$$

Differential Geometry, Part 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

This can be regarded as a dimension reduction of the G_2 -theory.

Take $M^7 = X \times \mathbf{R}^3$ with co-ordinates t_i on \mathbf{R}^3 . Given such a triple we define

$$\phi = dt_1 dt_2 dt_3 - \sum \omega_i dt_i,$$

Then

$$*\phi = \mu + \sum_{\text{cyclic}} \omega_i \, dt_j dt_k$$

from which we see that $d\phi = 0$, $d * \phi = 0$. From the point of view of holonomy groups, this corresponds to an embedding $Sp(1) \subset G_2$.

個 とく ヨ とく ヨ とう

Digression

$\pm\text{-self-duality}$ and the curvature tensor of an oriented Riemannian 4-manifold.

Recall that the curvature tensor of a Riemannian manifold lies in the kernel of $s^2(\Lambda^2)\to\Lambda^4.$

On an oriented Riemannian 4-manifold we have $*:\Lambda^2\to\Lambda^2$ with $*^2=1$ so there is a decomposition

$$\Lambda^2 = \Lambda^+ \oplus \Lambda^-.$$

□ > 《注 > 《注 > …

3

So the curvature tensor has components in

$$s^{2}(\Lambda^{+}), \Lambda^{+} \otimes \Lambda^{-}, s^{2}(\Lambda^{-}).$$

The condition that it lies in the kernel of the map to Λ^4 is that the traces of the components in $s^2(\Lambda^{\pm})$ are the same: they are equal to 1/6 times the scalar curvature.

The component in $\Lambda^+ \otimes \Lambda^-$ can be identified with the trace-free part of the Ricci curvature.

The components in $s_0^2(\Lambda^{\pm})$ are the \pm self-dual parts W^{\pm} of the Weyl curvature.

直 とう ほう う ほうし

On a hyperkähler 4-manifold the bundle Λ^+ is flat.

It follows that Ricci = 0, $W^+ = 0$. The curvature tensor is just given by $W^- \in s_0^2(\Lambda^-)$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q ()

The Gibbons-Hawking construction

Let *X* be a hyperkähler 4-manifold with an action of S^1 , preserving the ω_i . Let *v* be the vector field generating the action. The ω_i are symplectic forms so at least locally there are Hamiltonian functions H_i defining a map $X \to \mathbf{R}^3$. Away from the fixed points of the action this is a fibration over $U \subset \mathbf{R}^3$, with fibres given by the S^1 -orbits.

The span of I_1v , I_2v , I_3v defines a connection on this S^1 -bundle, with a connection 1-form α on X.

Take standard co-ordinates x_i on \mathbb{R}^3 . By construction,

$$\omega_i = \alpha \wedge dx_i + \Omega_i,$$

where Ω_i is the lift of a 2-form on $U \subset \mathbf{R}^3$. The orthogonality condition means that

$$\Omega_i = \phi \, dx_j dx_k,$$

for a positive function ϕ on U.

Let *F* be the curvature of the connection, a closed 2-form on *U*. The lift of *F* is $d\alpha$.

The condition that the ω_i are closed is that $F = *d\phi$. So ϕ is a *harmonic function* on *U*.

Conversely, given a positive harmonic function on a domain $U \subset \mathbf{R}^3$ satisfying the integrality condition

$$\int_{\Sigma} * df \in 2\pi \mathbf{Z}$$

for all 2-cycles Σ in U, we can construct a hyperkähler 4-manifold with S^1 -action.

個 とく ヨ とく ヨ とう

The Riemannian metric is

$$g = \phi^{-1} \alpha^2 + \phi \sum dx_i^2.$$

In particular $|v|_g^2 = \phi^{-1}$.

Differential Geometry, Part 2.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Take $U = \mathbf{R}^3 \setminus \{0\}$ and $\phi(x) = \frac{1}{2|x|}$. Then you find the the 4-manifold is $\mathbf{C}^2 \setminus \{0\}$ with the flat metric and the circle action

$$\left(egin{array}{cc} e^{i heta} & 0 \ 0 & e^{-i heta} \end{array}
ight)$$

In standard complex co-ordinates z, w one can take

$$\omega_1 = \frac{i}{2}(dzd\overline{z} + dwd\overline{w}) \quad \omega_2 + i\omega_3 = dzdw.$$

If we take $\phi(x) = \frac{\mu}{2|x|}$ for a positive integer ν then the 4-manifold we construct is the quotient of $\mathbb{C}^2 \setminus \{0\}$ by the cyclic subgroup $C_{\nu} \subset S^1$.

個人 くほん くほん しほ

Now take $\nu > 1$ distinct points $p_a \in \mathbf{R}^3$ and the function

$$\phi(x) = \sum_{a} \frac{1}{2|x - p_a|}$$

The construction produces a complete hyperkähler 4-manifold X with an S^1 action having ν fixed points. We have a smooth map

$$\mu: X \to \mathbf{R}^3 = X/S^1.$$

The structure of *X* is asymptotic at infinity to that on the cone \mathbf{C}^2/C_{ν} .

(個) (日) (日) (日)

Suppose that the line segment I_{ab} from p_a to p_b does not contain any other of the ν points.

Then $\pi^{-1}(I_{ab}) = \Sigma_{ab}$ is a 2-sphere in *X* of self-intersection -2.

The complex structures on *X* are parametrised by the directions in \mathbf{R}^3 .

The sphere Σ_{ab} is holomorphic with respect to the complex structure defined by the the direction of I_{ab} .

< 回 > < 回 > < 回 > … 回

Fundamental example when $\nu = 2$. Then X is the Eguchi-Hanson manifold. It has two descriptions as a complex manifold (for different complex structures).

- The smooth affine quadric $z_1^2 + z_2^2 + z_3^2 = 1$ in **C**³. This does not contain any compact holomorphic curves.
- The blow-up at the origin of the singular quadric $z_1^2 + z_2^2 + z_3^2 = 0$. The exceptional divisor is a holomorphic sphere of self-intersection -2.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

When $\nu = 2$ there is another explicit description of the metric, exhibiting more symmetry.

Let $\beta_1, \beta_2, \beta_3$ be a standard basis of left-invariant 1-forms on SU(2) with $d\beta_i = 2\beta_j \wedge \beta_k$. Take a co-ordinate *t* on an interval $I \subset \mathbf{R}$ and functions $f_i(t)$ and define 2-forms on $I \times SU(2)$ by

$$\omega_i = d\left(f_i(t)\beta_i\right).$$

Fix the volume form $2dt\beta_1\beta_2\beta_3$. The orthonormality condition for the ω_i become $\frac{d}{dt}(f_i^2) = 1$ so $f_i(t) = \sqrt{t + \tau_i}$ for constants τ_i .

通 とく ヨ とく ヨ とう

If all τ_i are 0, if we take $r = t^{1/4}$ we find that the metric is

$$dr^2 + r^2(\beta_1^2 + \beta_2^2 + \beta_3^2).$$

This is the flat metric on \mathbf{R}^4 .

If $\tau_1 = 1$ and $\tau_2 = \tau_3 = 0$ one finds that the metric is

$$\frac{1}{16t\sqrt{t+1}}dt^2 + \frac{t}{\sqrt{t+1}}\beta_1^2 + \sqrt{t+1}(\beta_2^2 + \beta_3^2).$$

Differential Geometry, Part 2.

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Take the quotient by ± 1 . The metric extends to a smooth metric on the completion *X* in which the origin is replaced by a 2-sphere.

The manifold *X* can be regarded as T^*S^2 , with isometry group $S^1 \times SO(3)$.

御下 くまと くまとう

ъ

The hyperkahler manifolds X obtained from the Gibbons-Hawking construction are not compact but they are important in the study of singularity formation in families of compact manifolds of special holonomy.

 a sequence of quartic surfaces V_i ⊂ CP³ with limit V_∞, a surface with an ordinary double point.

• the Kummer surfaces K_i which are resolutions of $T^4/\pm 1$. The products $X \times \mathbf{R}^3$ also appear as models for singularity formation of metrics with holonomy G_2 .

伺 とく ヨ とく ヨ と

Section 5; Two topics

5.1 Minimal hypersurfaces and positive scalar curvature Does the n + 1-dimensional torus T^{n+1} admit a Riemannian metric of strictly positive scalar curvature? When n = 1: NO by the Gauss-Bonnet formula. One might guess that in general dimensions the integral of the scalar curvature is a topological invariant, but that is not correct.

Alternative proof when n = 1. **Proposition A**

Let M^2 be a compact oriented Riemannian surface with a metric of strictly positive scalar curvature. Then $H^1(M, \mathbf{Z}) = 0$. Suppose there is a non-trivial class in H^1 . This can be represented by a length-minimising closed geodesic γ . The normal bundle of γ is trivial, so a variation vector field can be written as *fN* where *N* is a unit normal. The second variation formula is

$$L'' = \int_{\gamma} |\nabla f|^2 - K(T, N) f^2,$$

where K(T, N) is the sectional curvature, which is half the scalar curvature in this case.

Taking f = 1 we get a variation with L'' < 0 which contradicts minimality.

Remark: another, related, argument uses Myers theorem.

通 とく ヨ とく ヨ とう

This variational approach can be extended to higher dimensions (Schoen and Yau, Manuscripta Math. 1979).

Theorem

For $n \le 6$ let M^{n+1} be a compact, oriented, manifold which admits a map $f : M \to T^{n+1}$ of non-zero degree. Then M does not admit a Riemannian metric of strictly positive scalar curvature.

★ E ► ★ E ►

The hypothesis is equivalent to the existence of classes $\alpha_1, \ldots, \alpha_{n+1} \in H^1(M, \mathbb{Z})$ such that $\alpha_1 \alpha_2 \alpha_{n+1} = \neq 0 \in H^{n+1}(M)$.

The restriction $\dim M \le 7$ is because in this range it is known that any class in H^1 is represented by an embedded, volume-minimising, hypersurface.

This is the difficult component of the proof, but we assume it.

More recent developments perhaps extend the results to all dimensions (taking account of singularities in the hypersurface).

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Recall that the Euler Lagrange equation for the volume functional on hypersurfaces is H = 0 where H = Tr B and B is the second fundamental form. Given such a minimal hypersurface $P \subset M$ with unit normal N we need the second variation formula for volume. For a variation fN it is

$$\delta^{2} \operatorname{Vol} = \int_{P} |\nabla f|^{2} - f^{2} \left(|B|^{2} + \operatorname{Ricci}_{M}(N) \right) \quad (**)$$

Remark The term $|B|^2$ in (**) does not appear in the case of geodesics. To see why it enters, consider a variation with f = 1. Then, as discussed in Section 2, the derivative of *B* expressed in terms of parallel transport along normal geodesics is

$$\frac{dB}{dt} = -B^2 + \text{curvature},$$

and Tr $(B^2) = |B|^2$

御 医 金属 医 金属 医

The obvious deduction from (**) is that if $\operatorname{Ricci}_M > 0$ then *P* cannot be volume minimising (taking f = 1). So we have

$$\operatorname{Ricci}_M > 0 \Rightarrow H^1(M) = 0;$$

but we already knew that, from Myers' Theorem. More to the point, we only have a hypothesis on the *scalar curvature* S_M not the Ricci curvature.

Differential Geometry, Part 2.

🗇 🕨 🖉 🖻 🖉 🖉 🖉

Suppose for the moment that $P \subset M$ is totally geodesic, so the curvature tensor of P is given by the restriction of the curvature tensor of M. In terms of an orthonormal frame e_i with $e_0 = N$ we have

$$S_M = \sum_{i,j\geq 0} R_{ijij} = \sum_{i,j\geq 1} R_{ijij} + 2\operatorname{Ricci}_M(N) = S_P + 2\operatorname{Ricci}_M(N).$$

In general one finds that

$$S_M = S_P + 2\operatorname{Ricci}_M(N) + |B|^2$$

(think of the case of a minimal surface in \mathbf{R}^3).

Consider a Euclidean vector bundle written as an orthogonal direct sum $V = V_1 \oplus V_2$. A connection ∇ on V has a decomposition

$$\left(\begin{array}{cc} \nabla_1 & B \\ -B^T & \nabla_2 \end{array}\right)$$

and the curvatures are related by

$$F|_{V_1} = F_1 - B \wedge B^T$$
 $F|_{V_2} = F_2 - B^T \wedge B.$

Differential Geometry, Part 2.

So we can the second variation formula as

$$\delta^2 \text{Vol} = \int_P |\nabla f|^2 - \frac{f^2}{2} \left(|B|^2 + S_M - S_P \right).$$
 (****)

It is now easy to prove the theorem in the case $n = \dim P = 2$. Recall we have three classes $\alpha_0, \alpha_1, \alpha_2 \in H^1(M)$ with non-vanishing product $\alpha_0 \alpha_1 \alpha_2$.

Let *P* be an volume-minimising hypersurface representing α_0 . Apply the second variation formula (****) with f = 1. Since $S_M > 0$ by hypothesis we get

$$\int_P S_P > 0.$$

But $\alpha_1 \cup \alpha_2$ is non-zero in $H^2(P)$, so α_1 is non-zero in $H^1(P)$, which gives a contradiction by Gauss-Bonnet (or you can avoid Gauss-Bonnet by using Proposition A and a variant of the conformal deformation argument below.) (or use Gauss-Bonnet). The proof of the Theorem for n > 2 involves an additional idea. We want to show:

Proposition B If $S_M > 0$ and $P \subset M$ is a volume-minimising hypersurface then *P* admits a metric of positive scalar curvature.

Given this, the proof of the Theorem goes by induction on *n*.

個 とく ヨ とく ヨ とう

1

The proof of Proposition B involves conformal deformation. In general, on an *n*-dimensional Riemannian manifold (P, g), let *u* be a positive function and consider the conformal metric $g' = u^{4/n-2}g$. Then one finds that

$$4(n-1)/(n-2)\Delta u + S_g u = S_{g'} u^{n+2/n-2} \quad (*****),$$

where $\Delta = \nabla^* \nabla$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Write L_g for the linear operator $4(n-1)/(n-2)\Delta + S_g$. Assume now P is compact. Then L_g is a self-adjoint linear operator with a discrete spectrum. In particular if $L_g > 0$ as an operator (i.e. $\langle L_g \phi, \phi \rangle > 0$ for all nonzero ϕ) then the first eigenvalue λ_0 is positive and there is an eigenfunction ϕ_0 with $L_g \phi_0 = \lambda_0 \phi_0$. A "rounding corners" argument shows that ϕ_0 cannot change sign so we can suppose $\phi_0 > 0$. Taking $u = \phi_0$ in (******) we see that $S_{g'} > 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Conclusion (Kazdan and Warner, 1975): *if P is a compact* manifold with a metric *g* such that $L_g > 0$ then there is a conformal metric with positive scalar curvature.

Differential Geometry, Part 2.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

To prove Proposition B go back to the second variation formula in the shape (for $S_M > 0$):

$$\delta^2 \mathrm{Vol} < \int_P |\nabla f|^2 + rac{f^2}{2} S_g, \quad (****)$$

where now we are writing g for the induced metric on P. The volume-minimising condition gives

$$\int_P 2|\nabla f|^2 + f^2 S_g > 0$$

for non-zero f. But

$$\frac{4(n-1)}{n-2}>2$$

so

$$\int_{P} \frac{4(n-1)}{n-2} |\nabla f|^2 + f^2 S_g > 0$$

which is the statement $L_g > 0$.

通 とうきょう うちょう

5.2: The Gauss-Bonnet formula, equivariant cohomology and the Mathai-Quillen form

There is a generalisation of the Gauss-Bonnet formula to compact manifolds of even dimension 2m but it involves an integrand which is a polynomial function of degree m in the curvature tensor.

This is easy to prove in the case of a hypersurface $M^{2m} \subset \mathbf{R}^{2m+1}$. Then, by topological arguments, the Euler characteristic $\chi(M)$ is twice the degree of the Gauss map $\gamma: M \to S^{2n}$. The second fundamental form *B* can be viewed as the derivative of the Gauss map so

Vol
$$(S^{2m}) \chi(M) = 2 \int_M \det B.$$
 (*****)

In this situation, the Riemann curvature tensor of *M* is just $-B \wedge B^{T}$: in index notation

$$R_{ijkl}=B_{ik}B_{jl}-B_{jk}B_{il}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

For skew-symmetric $2m \times 2m$ matrix *Z* the Pfaffian Pfaff(*Z*) is a polynomial of degree *m* in the entries of *Z* such that

 $\det(Z) = \operatorname{Pfaff}(Z)^2.$

In fact if we identify these matrices with $\Lambda^2 \mathbf{R}^{2m}$ then

 $Pfaff(Z)vol = Z^m/m!$,

where Z^m is computed in the exterior algebra $\Lambda^* \mathbf{R}^{2m}$ and vol is the standard volume form More invariantly, for an oriented Euclidean vector space *V* of dimension 2m the Pfaffian is well-defined on the Lie algebra $\mathfrak{so}(V)$ of SO(V).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

For any oriented Riemannian 2m-manifold M regard the curvature as a 2-form with values in the vector bundle $\mathfrak{so}(TM)$). Combining the Pfaffian polynomial with the wedge product on 2-forms we can define

Pfaff(Riem)
$$\in \Omega^{2m}$$
.

The generalised Gauss-Bonnet formula (Chern, 1948) , for compact M, is

$$(2\pi)^m \chi(M) = \int_M \text{Pfaff}(\text{Riem}).$$

It is an algebraic exercise to see that this reduces to (******) in the case of a hypersurface in \mathbf{R}^{2m+1} .

(雪) (ヨ) (ヨ)

Example For a compact oriented Riemannian 4-manifold *M*:

$$\chi(M) = \frac{1}{8\pi^2} \int_M \frac{1}{24} |S|^2 + |W_+|^2 + |W_-|^2 - \frac{1}{2} |\operatorname{Ricci}_0|^2.$$

Thus an Einstein 4-manifold has $\chi \ge 0$ with equality if and only if the metric is flat.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The Gauss-Bonnet formula can be developed as part of the general Chern-Weil theory of characteristic classes and invariant polynomials.

We will develop it from the point of view of the Thom class and equivariant de Rham theory.

(雪) (ヨ) (ヨ)

ъ

Let $V \rightarrow B$ be an oriented real vector bundle of rank 2*m*.

The Thom class is the unique class in $H_c^{2m}(V)$ which restricts to the standard generator on each fibre.

Suppose that dim(B) = 2m and we have a de Rham representative τ of the Thom class: a compactly supported closed 2m-form on the total space of *V*.

Let *s* be a section of $V \rightarrow B$. Then we can form

$$I = \int_{B} \boldsymbol{s}^{*}(\tau).$$

By homotopy invariance, this does not depend on the section *s*. Deforming *s* suitably we see that *I* is the *Euler number* of *V*, the signed count of zeros of a generic section. On the other hand taking s = 0 we see that *I* is equal to the integral of τ over the zero section $B \subset V$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thus our problem is to construct an explicit representative of the Thom class. Equivariant de Rham theory gives a machinery for doing that.

通 とくほ とくほ とう

æ

Let *X* be a manifold with an action of a compact Lie group *G*. For any principle *G*-bundle $P \rightarrow B$ we have an associated bundle $\mathcal{X} \rightarrow B$ with fibre *X*.

An equivariant cohomology class on X can be thought of as an ordinary cohomology class α together with a procedure for extending α over \mathcal{X} for any such bundle \mathcal{X} .

個 とくほとくほとう

Write s^{p} for the polynomials of degree p on the Lie algebra \mathfrak{g} . Then G acts on $s^{p} \otimes \Omega_{x}^{q}$. Define $C^{p,q}$ to be the G-invariant part:

$$\mathcal{C}^{p,q}(X) = \left(\Omega^q_X \otimes s^p
ight)^G.$$

Define a grading by saying that $C^{p,q}$ has degree q + 2p. We have $d : C^{p,q} \rightarrow C^{p,q+1}$ and an algebraic operator

$$I: C^{p,q} \rightarrow C^{p+1,q-1}$$

defined as follows. For each $x \in X$ the derivative of the action lies in $\mathfrak{g}^* \otimes TX_x$. Then *I* is the tensor product of the multiplication

$$\mathfrak{g}^*\otimes s^{p}
ightarrow s^{p+1}$$

and contraction $TX \otimes \Omega^q \to \Omega^{q-1}$.

BASIC FACT I. $(d + I)^2 = 0$ on $C^{*,*}$.

We define the *equivariant de Rham cohomology* $H^*_G(X)$ to be the cohomology of $(C^{**}, d + I)$.

Differential Geometry, Part 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Example Take $G = S^1$. Then $C^{**}(X)$ can be viewed as the invariant forms with coefficients in the polynomial ring $\mathbf{R}[t]$. The differential is $d + ti_v$ where v is the vector field generating the action.

$$(d + ti_v)^2 = d^2 + t^2 i_v^2 + t(i_v d + di_v).$$

We have $i_v d + di_v = L_v$, the Lie derivative along v, and this vanishes on the invariant forms. A class of degree q in equivariant cohomology is defined by some

$$\underline{\alpha} = \alpha_{q} + t\alpha_{q-2} + t^2\alpha_{q-4} + \dots$$

where α_q is a closed invariant q-form and

$$d\alpha_{q-2} = -i_{\nu}\alpha_{q}$$
 $d\alpha_{q-4} = -i_{\nu}\alpha_{q-2},$

etc..

通 とくほ とくほ とう

In particular, suppose that ω is an S^1 -invariant *symplectic form* on *X*. To promote it to a closed equivariant form we need a Hamiltonian function *h* with $dh = i_V \omega$.

More generally, for a symplectic form ω invariant under a group *G* the data required to promote it to an closed equivariant form is a *moment map*

$$m: X \to \mathfrak{g}^*.$$

Now let $\mathcal{X} = P \times_G X$ be a bundle over *B* with fibre *X*, as discussed above. Choose a connection on the principal *G*-bundle *P*. This has curvature which is a form on the total space *P*; $F \in \Lambda^2 T^* B \otimes \mathfrak{g}$. For any polynomial $\lambda \in s^p$ we can define $\lambda(F) \in \Lambda^{2p} T^* B$. This induces a map $\mu : C^{p,q} \to \Omega^{2p+q}(\mathcal{X})$.

BASIC FACT II.

 μ defines a map of cochain complexes, with respect to the differential (d + I) on C^{**} and the exterior derivative d on $\Omega^{*}(\mathcal{X})$.

< 回 > < 回 > < 回 > … 回

Example Take $G = S^1$. The curvature of the connection is a 2-form *F* on *B*. The connection defines a horizontal subbundle $H \subset T\mathcal{X}$ and $\Omega^*(\mathcal{X}) = \bigoplus \Omega^{p,q}$. The action defines a vertical field *v* on \mathcal{X} . With respect to this decomposition $d = d_X + d_H + \nu$ where

$$\nu: \Omega^{p,q} \to \Omega^{p+2,q-1}$$

is $F \wedge i_{v}$. Suppose we have a closed equivariant form $\underline{\alpha} = \alpha_{q} + t\alpha_{q-2} + t^{2}\alpha_{q-4} + \dots$ as above. Then

$$\mu(\underline{\alpha}) = \alpha_q + F \alpha_{q-2} + F^2 \alpha_{q-4} + \dots \in \Omega^{0,q} \oplus \Omega^{2,q-2} \oplus \Omega^{4,q-4} \oplus \dots$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Another description of C^{**} is as the *G*-equivariant polynomial maps

$$f:\mathfrak{g}\to\Omega^*_X$$

with the differential

$$(Df)(\xi) = d(f(\xi)) + i_{\rho(\xi)}f(\xi),$$

where $\rho : \mathfrak{g} \to TX$ is the Lie algebra action.

▲□ → ▲ 三 → ▲ 三 → つく(~

The Mathai-Quillen form

Now take G = SO(2m) and $X = \mathbb{R}^{2m}$. Identify the Lie algebra \mathfrak{g} with the 2-forms Λ^2 . The Mathai-Quillen equivariant form is the map $f : \mathfrak{g} \to X$ given by

$$f(\xi) = (2\pi)^{-m} * \exp(\xi) e^{-r^2/2},$$

where $* : \Lambda^{p} \to \Lambda^{2m-p}$ and *r* is the usual radius function on \mathbb{R}^{2m} . The proof that Df = 0 comes down to the identity

$$i_{\partial_r}(\exp(\xi)) = (i_{\partial_r}\xi) \wedge \exp(\xi),$$

where ∂_r is the radial vector field.

For example in the case m = 1 the statement is equivalent to saying that the function $e^{-r^2/2}$ is a Hamiltonian for the circle action with respect to the symplectic form $e^{-r^2/2}r dr d\theta$.

The component of the Mathai-Quillen form in $C^{0,2m}$ is $(2\pi)^{-m}e^{-r^2/2}$ vol where vol is the standard volume form on \mathbf{R}^{2m} . This is a (2m)-form on \mathbf{R}^{2m} of integral 1.

The component of the Mathai-Quillen form in $C^{m,0}$ is $(2\pi)^{-m}\lambda$ where λ is the polynomial of degree *m* on g defined by $\xi^m/m!$. This is just the Pfaffian polynomial.

個 とくほ とくほ とう

Let $V \rightarrow B$ be an oriented Euclidean vector bundle of rank 2m associated to a principal SO(2m) bundle. Choosing a connection, our general machinery defines a closed 2m-form τ on the total space of V with integral 1 over each fibre and which restricts to $(2\pi)^m$ times the Pfaffian of the curvature on the zero section. This form has very rapid decay but is not compactly supported so is not precisely a Thom form.

However

- Suppose dim B = 2m and that s is a generic section of V. Take a large parameter λ and consider s_λ = λs. Then one sees that as λ → ∞ the form s^{*}_λ(τ) becomes concentrated around the zeros of s and one can derive the relation with the Euler number.
- Alternatively, choose a suitable diffeomorphism $\chi: B^{2m} \to \mathbf{R}^{2m}$. Then $\chi^*(\text{Mathai} \text{Quillen}))$ is a form on B^{2m} and one sees that extending this by zero defines a smooth compactly supported form on \mathbf{R}^{2m} . Now the general machinery gives a compactly-supported Thom form on *V*.

(四) (日) (日)