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Abstract
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1 Review of basic material

1.1 Lie Groups and Lie algebras

1.1.1 Examples

Definition
A Lie group is a group with G which is a differentiable manifold and such

that multiplication and inversion are smooth maps. The subject is one which is
to a large extent “known”, from the theoretical point of view and one in which
the study of Examples is very important.
Examples

• R under addition.

• S1 ⊂ C under multiplication. This is isomorphic to R/Z.

• GL(n,K) where K = R,C,H.

(Recall that the quaternions H form a 4-dimensional real vector space
with basis 1, i, j, k and mupltiplication defined by i2 = j2 = k2 = −1, ij =
−ji = k. They form a non-commutative field.) We will use the notation
GL(V ) where V is an n-dimensional K-vector space interchangeably.

[A useful point of view is to take the complex case as the primary one.
Consider an n-dimensional complex vector space V and an antilinear map
J : V → V with J2 = ±1. The case J2 = 1 gives V a real structure so
it is written as V = U ⊗R C for a real vector space U and the complex
linear maps which commute with J give GL(U) = GL(n,R) ⊂ GL(V ) =
GL(n,C). The case J2 = −1 only happens when V is even dimensional
and gives V the structure of a quaternionic vector space. The complex
linear maps which commute with J give GL(n/2,H) ⊂ GL(n,C).]

• SL(n,R), SL(n,C), the kernels of the determinant homomorphisms to
K∗ = K\{0}.

• O(n) ⊂ GL(n,R), U(n) ⊂ GL(n,C), Sp(n) ⊂ GL(n,H), the subgroups of
matrices A such that AA∗ = 1, where A∗ is conjugate transpose. More
invariantly, these are the linear maps which preserve appropriate positive
forms. We also have O(p, q), U(p, q), Sp(p, q) which preserve indefinite
forms of signature (p, q).

• SO(n) ⊂ O(n), SU(n) ⊂ U(n); fixing determinant 1.

• O(n,C), SO(n,C) defined in the obvious ways.
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• Sp(n,R), Sp(n,C): maps which preserve non-degenerate skew symmetric
forms on R2n,C2n respectively. [Notation regarding n, 2n differs in the
literature.]

• The groups of upper triangular matrices, or upper triangular matrices
with 1’s on the diagonal.

If we ignored all abstraction and just said that we are interested in studying
familiar examples like these then we would retain most of the interesting ideas
in the subject.
Definition
A right action of a Lie group on a manifoldM is a smooth mapM×G→M

written (m, g)→ mg such that mgh = m(gh). Similarly for a left action.
Particularly important are linear actions on vector spaces, that is to say

representations of G or homomorphisms G→ GL(V ).

1.1.2 The Lie algebra of a Lie group

Let G be a Lie group and set g = TG1 the tangent space at the identity. Thus
an element of g is an equivalence class of paths gt through the identity.
Example: if G = GL(V ) then g = End(V ).
Now G acts on itself on the left by conjugation

Adgh = ghg
−1.

Then Adg maps 1 to 1 so acts on the tangent space giving the adjoint action

adg ∈ GL(g).

Thus we get a homomorphism ad : G → GL(g) which has a derivative at the
identity. This is a map, denoted by the same symbol

ad : g→ End(g).

There is a unique bilinear map [ ] : g× g→ g such that

ad(ξ)(η) = [ξ, η].

Example If G = GL(V ) so g = End(V ) then working from the definition
we find that

[A,B] = AB −BA.

Definition A Lie algebra (over a commutative field k) is a k-vector space
V and a bilinear map

[ , ] : V × V → V,

such that
[u, v] = −[v, u],
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[[u, v], w] + [[v, w], u] + [[w, u], v] = 0

for all u, v, w. This latter is called the Jacobi identity.

Proposition The bracket we have defined above makes g into a Lie algebra.
We have to verify skew-symmetry and the Jacobi identity. For the first

consider tangent vectors ξ, η ∈ g represented by paths gt, hs. Then, from the
definition, for fixed t

∂

∂s
gthsg

−1
t = adgtη.

(The derivative being evaluated at s = 0.) Since the derivative of the inverse
map g 7→ g−1 at the identity is −1 (Exercise!) we have

∂

∂s
gthsg

−1
t h−1s = adgtη − η.

Now differentiate with respect to t. From the definition we get

∂2

∂t∂s

(
gthsg

−1h−1s
)
= [ξ, η].

(Derivatives evaluated at s = t = 0.) From the fact that the derivative of
inversion is −1 we see that

∂2

∂t∂s

(
gthsg

−1
t h−1s

)−1
= −[ξ, η],

then interchanging the roles of ξ, η and using the symmetry of partial derivatives
we obtain [η, ξ] = −[ξ, η] as required.
Another way of expressing the above runs as follows. In general if F :

M → N is a smooth map between manifolds then for each m ∈ M there ie an
intrinsic first derivative dF : TMm → TNF (m) but not, in a straightforward
sense, a second derivative. However if dF vanishes at m there is an intrinsic
second derivative which is a linear map

d2F : s2TMm → TNF (m),

(where s2 denotes the second symmetric power). Define K : G × G → G to
be the commutator K(g, h) = ghg−1h−1. The first derivative of K at (1, 1) ∈
G × Gvanishes since K(g, 1) = K(1, h) = 1. The second derivative is a linear
map s2(g ⊕ g) = s2(g) ⊕ g ⊗ g ⊕ s2(g) → g and the same identity implies that
it vanishes on the first and third summands so it can be viewed as a linear
map g ⊗ g → g. From the definition this map is the bracket, and the identity
K(g, h)−1 = K(h, g) gives the skew-symmetry.
For the Jacobi identity we invoke the naturality of the definition. Let α :

G→ H be a Lie group homomorphism. This has a derivative at the identity

dα : g→ h,
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and it follows from the definitions that

[dα(ξ), dα(η)]h = dα ([ξ, eta]g) . (∗)

Now apply this to the adjoint representation, viewed as a homomorphism α :
G→ GL(g). We know the bracket in the Lie algebra of GL(g) and the identity
becomes

[ξ, [η, θ]]− [η, [ξ, θ]] = [[ξ, η], θ],

for all ξ, η, θ ∈ g. Re-arranging, using the skew-symmetry, this is the Jacobi
identity.
There are other approaches to the definition of the the bracket on g. If M is

any manifold we write Vect(M) for the set of vector fields onM . Then there is a
Lie bracket making Vect(M) an infinite-dimensional Lie algebra. Suppose that
a Lie group G acts onM on the right. The derivative of the action M×G→M
at a point (m, 1) yields a map from g to TMm. Fix ξ ∈ g and let m vary: this
gives a vector field on M so we have a linear map

ρ : g→ Vect(M)

the “infinitesimal action”.

Proposition This is a Lie algebra homomorphism.

Now G acts on itself by right-multiplication and the image of this map is
the set of left-invariant vector fields. So we can identify g with the set of left
invariant vector fields. It is clear that the Lie bracket of left invariant vector
fields is left invariant so we can use this as an alternative definition of the
bracket on g, that is we make the Proposition above a definition in the case of
this action.

If one takes this route one needs to know the definition of the Lie bracket
on vector fields. Again there are different approaches. One is in terms of the
Lie derivative. For any space of tensor fields on which the diffeomorphism
group Diff(M) acts we define the Lie derivative Lv(τ) = d

dt
ft(τ) where ft is a 1-

parameter family of diffeomorphisms with derivative v (all derivatives evaluated
at t = 0). Then on vector fields

Lv(w) = [v, w]. (∗∗)

For the other approach one thinks of a vector field v as defining a differential
operator ∇v : C∞(M)→ C∞(M). Then the bracket can be defined by

∇[v,w] = ∇v∇w −∇w∇v. (∗ ∗ ∗)

To understand the relation between all these different points of view it is
often useful to think of the diffeomorphism group Diff(M) as an infinite dimen-
sional Lie group. There are rigorous theories of such things but we only want
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to use the idea in an informal way. Then Vect(M) is interpreted as the tangent
space at the identity of Diff(M) and the action of Diff(M) on vector fields is
just the adjoint action. Then the definition (**) is the exact analogue of our
definition of the bracket on g. The second definition (***) amounts to saying
that Diff(M) has a representation on the vector space C∞(M) and then us-
ing the commutator formula for the bracket on the endomorphisms of a vector
space. From this viewpoint the identities relating the various constructions all
amount to instances of (*).

Definition
A one-parameter subgroup in a Lie group G is a smooth homomorphism

λ : R→ G.
A one-parameter subgroup λ has a derivative λ′(0) ∈ g.
Proposition For each ξ ∈ g there is a unique one-parameter subgroup λξ

with derivative ξ.

Given ξ ∈ g let vξ be the corresponding left invriant vector field on G. The
definitions imply that a 1 PS with derivative ξ is the same as an integral curve
of this vector field which passes through the identity. By the existence theorem
for ODE’s there is an integral curve for a short time interval λ : (−ε, ε)→ G and
the multiplication law can be used to extend this to R. Similarly for uniqueness.
Define the exponential map

exp : g→ G,

by exp(ξ) = λξ(1). The definitions imply that the derivative at 0 is the identity
from g to g and the inverse function theorem shows that exp gives a diffeom-
morphism from a neighbourhood of 0 in g to a neighbourhood of 1 in G. We
also have

λξ(t) = exp(tξ).

When G = GL(n,R) one finds

exp(A) = 1 + A+
1

2!
A2 +

1

3!
A3 + . . . .

The discussion amounts to the same thing as the solution of a linear system of
ODE’s with constant co-efficients

dG

dt
= AG,

for a n × n matrix G(t). The columns of G(t) give n linearly independent
solutions of the vector equation

dx

dt
= Ax.

The exponential map can be used to prove a somewhat harder theorem than
any we have mentioned so far.
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Proposition 1 Any closed subgroup of a Lie group is a Lie subgroup (i.e. a
submanifold).

We refer to textbooks for the proof. In particular we immediately see that
the well-known matrix groups metioned above such as O(n), U(n) are indeed Lie
groups. Of course this is not hard to see without invoking the general theorem.
It is also easy to identify the Lie algebras. For example the condition that 1+A
is in O(n) is (1 + A)(1 +AT ) = 1 which is

(A+AT ) +AAT = 0.

When A is small the leading term is A+AT = 0 and this is the equation defining
the Lie algebra. So the Lie algebra of O(n) is the space of skew-symmetric
matrices. Similarly for he other examples.
When n = 3 we can write a skew-symmetric matrix as




0 x3 −x2
−x3 0 x1
x2 −x1 0





and the bracket AB −BA becomes the cross-product on R3.
There is a fundamental relation between Lie groups and Lie algebras.

Theorem 1 Given a finite dimensional real Lie algebra g there is a Lie group
G = Gg with Lie algebra g and the universal property that for any Lie group H
with Lie algebra h and Lie algebra homomorphism ρ : g → h there is a unique
group homomorphism G→ H with derivative ρ.

We will discuss the proof of this a bit later
In factGg is the unique (up to isomorphism) connected and simply connected

Lie group with Lie algebra g. Any other connected group with Lie algebra g is
a quotient of Gg by a discrete normal subgroup.
Two Lie groups with isomorphic Lie algebras are called locally isomorphic..

Two other things we want to mention here.
Invariant quadratic forms
Given a representation ρ : G → GL(V ) inducing ρ : g → End(V ) the map

ξ 7→ −Tr(ρ(ξ)2) is a quadratic form on g, invariant under the adjoint action of
G. The Killing form is the quadratic form defined in this way by the adjoint
representation. In general these forms could be indefinite or even identically
zero. If ρ is an orthogonal representation (preserving a Euclidean structure on
V ) then the quadratic form is ≥ 0 and if ρ is also faithful it is positive definite.

Complex Lie groups
We can define a complex Lie group in two ways which are easily shown to be

equivalent

• A complex manifold with a group structure defined by holomorphic maps.
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• A Lie group whose Lie bracket is complex bilinear with respect to a com-
plex structure on the Lie algebra.

Any real Lie algebra g has a complexification g ⊗R C. It follows from the
theorem above that, up to some complications with coverings, Lie groups can
be complexified.

G ∼=local G
′ ⊂ GC.

If K is a real Lie subgroup of a complex Lie group G such that the Lie
algebra of G is the complexification of the Lie algebra of K then K is called a
real form of G.
Examples

• SO(n) and SO(p, n− p) are real forms of SO(n,C).

• Sp(n,R) and Sp(n) are real forms of Sp(n,C).

• SU(n) and SL(n,R) are real forms of SL(n,C).

• GL(n,H) is a real form of GL(2n,C).

Study of the basic example, SU(2)

It is important to be familiar with the following facts. First examining the
definitions one sees that SU(2) ∼= Sp(1). The Lie algebra of SU(2) is three
dimensional and its Killing form is positive definite so the adjoint action gives
a homomorphism SU(2)→ SO(3). it is easy to check that this is a 2:1 covering
map with kernel {±1}. So SU(2), SO(3) are locally isomophic. We have seen
that SU(2) is the 3-sphere so it is simply connected and π1(SO(3)) = Z/2. This
is demonstrated by the soup plate trick.

SU(2) acts on C2 by construction and so on the projective space CP1 =
C ∪ {∞} = S2. SO(3) acts on R3 by construction and obviously acts on the
2-sphere seen as the unit sphere in 3-space. These actions are compatible with
the covering map we have defined above. The action of SU(2) is one way to
define the Hopf map h : S3 → S2. The 1-parameter subgroups in SU(2) are all
conjugate to (

eiθ 0
0 e−iθ

)

.

Thinking of SU(2) as the 3-sphere these are the “great circles” through 1 and
its antipodal point −1.
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Some motivation for later theory
Sp(2) acts on H2 and hence on the quaternionic projective line HP1. This

is topologically the 4-sphere S4 = H ∪ {∞}. SO(5) acts on S4 ⊂ R5 and one
can check that there is a 2-1 homomorphism Sp(2)→ SO(5) under which these
actions are compatible. In particular Sp(2) and SO(5) are locally isomorphic.
In general dimSO(2n + 1) = 1

2 (2n + 1)(2n) = n(2n + 1) and dimSp(n) =
3n+ 124n(n− 1) = 2n

2+n. So SO(2n+1) and Sp(n) have the same dimension
and when n = 1, 2 they are locally isomorphic. Surprisingly, perhaps, they are
not locally isomorphic when n ≥ 3. Later in the course we will develop tools
for proving and understanding this kind of thing.

1.2 Frobenius, connections and curvature

We have discussed vector fields on a manifoldM , sections of the tangent bundle,
and the Lie bracket. There is a dual approach using section of the cotangent
bundle or more generally p forms Ωp(M) and the exterior derivative d : Ωp →
Ωp+1. When p = 1 we have

dθ(X,Y ) = ∇X(θ(Y ))−∇Y (θ(X))− θ([X,Y ]),

so knowing d on 1-forms is the same as knowing the Lie bracket on vector fields.
There is a simple formula for the Lie derivative on forms

Lvφ = (div + ivd)φ,

where iv : Ω
p → Ωp−1 is the algebraic contraction operator.

If U is a fixed vector space we can consider forms with values in U : written
Ωp ⊗ U , the sections of ΛpT ∗M ⊗ U . In particular we can do this when U is
a Lie algebra g. The tensor product of the bracket g ⊗ g → g and the wedge
product Λ1⊗Λ1 → Λ2 gives a quadratic map from g-valued 1-forms to g-valued
2-forms, written [α, α].
Now let G be the Lie algebra of a Lie group G. There is a canonical g-valued

left-invariant 1-form θ on G which satisfies the Maurer-Cartan equation

dθ +
1

2
[θ, θ] = 0.

More explicitly,let ei be a basis for g and [ei, ej ] =
∑
k cijkek. Let θi be the

left-invariant 1-forms on G, equal to the dual basis of g∗ at the identity. Then
one finds from (*) that

dθk = −
1

2

∑

ij

cijkθi ∧ θj .

and the right hand side is − 12 [θ, θ].
For a matrix group we can write θ = g−1dg.
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1.2.1 Frobenius

Suppose we have a manifold N and a sub-bundle H ⊂ TN , a field of subspaces
in the tangent spaces. Write π for the projection TN → TN/H . Let X1, X2 be
two sections of H the basic fact is that π([X1, X2]) at a point p depends only
on the values of X1, X2 at p. Thus we get a tensor

τ ∈ Λ2H∗ ⊗ TN/H.

Example Let N ⊂ Cn be a real hypersurface (n > 2). Then H = TN ∩
(ITN) is a subbundle of TN . In this context the tensor above is called the Levi
form and is important in several complex variables. For example suppose N ′ is
another such submanifold and we have points p ∈ N and p′ ∈ N ′. If the Levi
form of N at p vanishes and that of N ′ at p′ does not then there can be no
holomorphic diffeomorphism from a neighbourhood of p to a neighbourhood of
p′ mapping N to N ′.

The Frobenius theorem states that τ vanishes throughout N if and only if the
fieldH is integrable. That is, through each point p ∈ N there is a submanifold Q
such that the tangent space at each point q ∈ Q is the corresponding Hq ⊂ TNq.
The condition that τ = 0 is the same as saying that the sections Γ(H) are closed
under Lie bracket. There is a dual formulation in terms of differential forms: if
ψ is a form on N which vanishes when restricted to H then so does dψ.
A basic example of the Frobenius theorem is given by considering a system

of equations on Rn

∂f

∂xi
= Ai(x, f),

where Ai are given functions. The equations can be regarded as defining a field
H in Rn × R such that an integral submanifold is precisely the graph of a
solution (at least locally). Suppose for simplicity that the Ai are just functions
of x. Then the integrability condition is just the obvious one

∂Ai

∂xj
−
∂Aj

∂xi
= 0.

Now consider a matrix version of this. So Ai(x) are given k×k matrix-valued
functions and we seek a solution of

∂G

∂xi
= GAi.

For 1×1 matrices we can reduce to the previous case, at least locally, by taking
logarithms. In general the integrability condition can be seem by computing

∂2G

∂xj∂xi

imposing symmetry in i, j. Using

∂G−1

∂xj
= −G−1

∂G

∂xj
G−1,
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one finds the condition is

∂Ai

∂xj
−
∂Aj

∂xi
+ [Ai, Aj ] = 0.

This is just the equation dA+ 12 [A,A] = 0 if we define the 1-form A =
∑
Aidxi

with values in the Lie algebra of GL(k,R).

1.2.2 Bundles

Now consider a differentiable fibre bundle p : X → M with fibre X. An Ehres-
mann connection is a field of subspaces as above which is complementary to the
fibres. It can be thought of as an “infinitesimal trivialisation” of the bundle at
each point of M . Given a path γ in M and a point y ∈ p−1(γ(0)) we get a
horizontal lift to a path γ̃ in X with γ̃(0) = y. (At least, this will be defined for
a short time. If X is compact, say, it will be defined for all time.) In particular
we get the notion of holonomy or parallel transport around loops in M .
In such a situation the quotient space TX/H at a point y ∈ TX can be iden-

tified with the tangent space Vy to the fibre (the vertical space). The horizontal
space at y is identified with TMp(y). So we have τ(y) ∈ Vy ⊗ Λ2T ∗Mp(y).
We will be interested in principal bundles.
Definition A principal bundle over M with structure group G consists of a

space P with a free right G action, an identification of the orbit space P/G with
M such that p : P → M is a locally trivial fibre bundle, in a way compatible
with the action.
This means that each point of M is contained in a neighbourhood U such

that there is a diffeomorphism from p−1(U) to U × G taking the G action on
p−1(U) to the obvious action on U ×G.

Example S1 ⊂ SU(2) acts by right multiplication on SU(2) and the quo-
tient space is S2. This gives the Hopf map S3 → S2 as a principal S1 bundle.

Fundamental construction
Suppose that the Lie group G acts on the left on some manifold X. Then

we can form
X = P ×G X

which is the quotient of P ×X by identifying (pg, x) with (p, gx). Then X →M
is a fibre bundle with fibre X.

[Remark We can think of any fibre bundle as arising in this way if we are
willing to take G to be the diffeomorphism group of the fibre.]

In particular we can apply this construction when we have a representation
of G on a vector space and then we get a vector bundle over M .
Example
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Let P be the frame bundle of M , so a point of P is a choice of a point of
M and a basis for TM at this point. This is a principal GL(n,R) bundle. Now
GL(n,R) has a representation on Λp(Rn)∗ and the associated vector bundle is
the bundle of p-forms.

Definition
A connection on a principal bundle P consists of a field of subspaces H ⊂ TP

(as before) invariant under the action of G.

In this context, the tensor τ is called the curvature of the connection.
Example
We can use this notion to analyse the well-known problem of the falling cat:

a cat dropped upside down is able to turn itself over to land on its legs. For this
we consider an abstract model K of the cat, so a position of the cat in space is
a map f : K → R3. Take the quotient of this space of maps by the translations.
Then we get a space P on which the rotation group SO(3) acts. The relevant
maps do not have image in a line so the action is free and we get a principal
SO(3) bundle P →M = P/SO(3). (We could model K by a finite set, in which
case P is an open subset of a product of a finite number of copies of R3 and so
is a bona fide manifold.) The law of conservation of angular momentum defines
a connection on P . By altering its geometry, the cat is able to impose a certain
motion γ(t) in M and the physical motion is the horizontal lift γ̃(t) in P . By
exploiting fact that the curvature of this connection does not vanish, the cat is
able to find a path whose holonomy gives a rotation turning it the right way up.
If we have a connection on the principal bundle P →M we get an Ehresmann

connection on any associated bundle X . To see this consider the quotient map
TX ⊕ TP → TX and take the image of H ⊂ TP .
Formalism
Write Hp as the kernel of the projection Ãp : TPp → Vp where Vp denotes

the tangent space to the fibre. Now use the derivative of the action to identify
Vp with g. Then Ã is a g-valued 1-form on P . We have

1. Ã is preserved by G, acting on P and by the adjoint action on g;

2. on each fibre, after any identification with G, Ã is the Maurer-Cartan form
θ

Set

F = dA+
1

2
[A,A].

This is a g-valued 2-form on P and is just the tensor τ in this context. It
vanishes if and only if the field of subspaces H is integrable.
The direct sum decomposition

TPp = Hp ⊕ Vp
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gives a decomposition

Λ2TP ∗ = Λ2TV ∗p ⊕
(
TH∗p ⊗ TV

∗
p

)
⊕ Λ2TH∗p .

By the second item above and the Maurer-Cartan equation the first com-
ponent of F vanishes. One can also show that then invriance implies that the
second component vanishes. This means that F can be viewed as a section of
the bundle π∗Λ2TM∗⊗g over P . The transformation property (1) above means
that F can also be viewed as a section of the bundle Λ2TM∗ ⊗ adP over M
where adP is the vector bundle over M with fibre g associated to the adjoint
action of G on g.

In particular, if G = S1 and we fix an identification Lie(S1) = R then the
curvature is a 2-form on M . In fact it is a closed 2-form.

Choose a local trivialisation over U ⊂ M by a section s of P and let A =
s∗(Ã). This is a g-valued 1-form on U . Using this trivialisation to identify P |U
with U ×G we have

Ã = θ + adg−1(A). (∗ ∗ ∗∗)

For a matrix group we can write this as

Ã = g−1dg + g−1Ag.

The same formula (****) can be read as saying that if we change the triviali-
sation by a map g : U → G then the connection 1-form, in the new trivialisation,
is

g∗(θ) + g−1Ag.

In particular the statement that we can trivialise the connection locally if
and only if the curvature vanishes is the same as:

Proposition
Let A be a g-valued 1-form on a ball U . We can write A = g∗(θ) for a map

g : U → G if and only if dA+ 12 [A,A] = 0.
Relation to the notion of a connection as a covariant derivative.
Let ρ : G→ GL(n,R) be a representation and E the vector bundle associ-

ated to P and ρ. A section of E is the same as an equivariant map from P to
Rn. The covariant derivative of the section is defined by differentiating this map
along the horizontal lifts of tangent vectors. In terms of a local trivialisation
and local co-ordinates on M this boils down to defining

∇is =
∂s

∂xi
+ ρ(Ai)s,

where A =
∑
Aidxi. From this point of view the curvature appears as the

commutator
[∇i,∇j ]s = ρ(F )s.
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The construction of a Lie group from a Lie algebra
There is an attractive approach as follows. Suppose that G is a 1-connected

Lie group with Lie algebra g. Then any group element can be joined to the
identity by a path and any two such paths are homotopic. On the other a path
g : I → G can be recovered from its derivative g∗(θ) which is a map I → g.
(This is the usual technique in mechanics.)
So, not having G a priori we consider maps γ : [0, 1] → g and the relation

γ0 ∼ γ1 if there are Γ1,Γ2 : I × I → g with

Γ1(t, 0) = γ0(t)

Γ1(t, 1) = γ1(t)

Γ2(0, s) = Γ2(1, s) = 0

∂Γ1
∂s
−
∂Γ2
∂t
= [Γ1,Γ2].

The last is just the statement that dΓ+ 12 [Γ,Γ] = 0 where Γ = Γ1dt+Γ2ds.
It is an interesting exercise to show that this is an equivalence relation, that

there is a natural group structure on the space of equivalence classes and that
the universal property holds. However it seems not so easy to show that what
we have is a Lie group.
For another approach we work locally. There is a useful concept of a “Lie

group germ”, but having mentioned this we will just talk about groups with the
understanding that we are ignoring global questions. Once we have constructed
the Lie group germ we can use the approach above, or other global arguments,
to obtain the group Gg.
If cijk are the structure constants of the Lie algebra then to construct the

corresponding Lie group germ it is enough to construct a local frame of vector
fields Xi on a neighbourhood of 0 in g with [Xi, Xj ] = cijkXk. But this is also
not so easy to do directly.
We can break the problem up by using the adjoint action. In general if H is

a Lie group and k ⊂ h a Lie subalgebra then a simple application of Frobenius
constructs a Lie subgroup K ⊂ H. Now the adjoint action defines a Lie algebra
homomorphism from g to End(g) with image is a Lie subalgebra g0 and we know
that this corresponds to a Lie group G0 by the above. The kernel of g → g0
is the centre z of g. What we have to discuss is the constructions of central
extensions of Lie groups.
Note: the treatment in lectures went a little wrong here so what

follows is a corrected version
Choose a direct sum decomposition as vector spaces g = g0 ⊕ z. There

is a component of the bracket in g which is a skew-symmetric bilinear map
φ : g0 × g0 → z. The Jacobi identity implies that

φ(a, [b, c]) + φ(b, [c, a]) + φ(c, [a, b]) = 0.
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For simplicity, suppose that z = R so φ ∈ Λ2g∗0. Left translation gives a left-
invriant 2-form φ̃ on G0 and the identity above is equivalent to saying that
dφ̃ = 0.
Now suppose we have any manifold M with an action of a Lie group H.

Suppose that F is a closed 2-form on M preserved by the action. By the
Poincaré lemma we can write F = dA (we emphasise again that this whole
discussion is supposed to be local, in terms of germs etc.). We can regard A
as a connection on the trivial R-bundle P over M . (It is just as good to work
with an S1-bundle.) Now define a group H̃ of pairs (h, h̃) where h is in H and
H̃ : p → P is a lift of the action of h which preserves the connection. It is
straightforward to show that we have an exact sequence

1→ R→ H̃ → H → 1.

Putting these ideas together we take M = G0 with the action of H = G0 by
left multiplication and we take the 2-form ˜phi on G0. the construction gives a
Lie group with the Lie algebra g.

Example
The Heisenberg group is S1 ×R2n with multiplication

(λ, v)(λ′, v′) = (eiΩ(v,v
′)λλ′, v + v′)

where Ω is the standard skew-symmetric form on R2n. The Lie algebra gives
the Heisenberg commutation relations.

2 Homogeneous spaces

If G is a Lie group and H is a Lie subgroup the set of cosets G/H is a manifold
with a transitive action of G. Conversely, if M is a manifold with a transitive
G action then M = G/H where H is the stabiliser of some base point m0 ∈M .
The tangent space of M at m0 is naturally identified with g/h.
We will discuss two special classes: symmetric spaces and co-adjoint orbits.

2.1 Riemannian symmetric spaces

In general suppose H ⊂ G as above and we have a positive definite quadratic
form on g/h invariant under the restriction of the adjoint action of Gto H.
This induces a Riemannian metric on G/H such that G acts by isometries.
Symmetric spaces are a class of examples of this kind where the group structure
and Riemannian structure interact in a specially simple way.

First, consider a Lie group G itself. Suppose we have an ad − G-invariant
positive definite quadratic form on g.

Proposition 2 If G is compact these always exist.
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Then we get a bi-invariant Riemannian metric on G, preserved by left and
right translations. (In the framework above, we can think of G = (G×G)/G.
Exercise A bi-invariant metric is preserved by the map g 7→ g−1

Recall that the Levi-Civita connection of a Riemannian manifold is charac-
terised by the conditions:

∇XY −∇YX = [X,Y ],

∇X(Y,Z) = (∇XY,Z) + (Y,∇XX),

for vector fields X,Y, Z. Then the Riemann curvature tensor is

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

and the sectional curvature in a plane spanned by orthogonal vectors X,Y is

K(X,Y ) = −(R(X,Y )X,Y ).

In our case we restrict to left-invariant vector fields and we find that

∇XY =
1

2
[X,Y ].

Corollary 1 The geodesics through 1 ∈ G are the 1-parameter subgroups.

Corollary 2 The exponential map of a compact Lie group is surjective.

The curvature tensor is

R(X,Y )Z =
1

4
([X, [Y,Z]− [[Y, [X,Z]− [[X,Y ], Z] + [Z, [X,Y ]]) ,

which reduces to

R(X,Y )Z = −
1

4
[[X,Y ], Z].

Hence

K(X,Y ) =
1

4
|[X,Y ]|2.

In particular K(X,Y ) ≥ 0.

Now suppose we have a compact, connected Lie group G with a bi-invariant
metric and an involution σ : G → G: an automorphism with σ2 = 1. Suppose
that σ preserves the metric.
Set

K = Fixσ = {g ∈ G : σ(g) = g}.

Then K is a Lie subgroup of G.
Also let τ : G→ G be defined by τ(g) = σ(g−1). The map τ is not a group

homomorphism but we do have τ2 = 1. Set

M = Fix(τ) = {g ∈ G : τ(g) = g}.
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Then M is a submanifold of G. We define an action of G on M by

g(m) = gmσ(g)−1.

Then the stabiliser of the point 1 ∈ M is K, so we can identify the G-orbit
of 1 in M with G/K.
Now σ induces an involution of the Lie algebra g, which we also denote by

σ. Since σ2 = 1 we have a decomposition

g = k⊕ p

into the ±1 eigenspaces of σ. The −1 eigenspace p is the tangent space of M
at 1 and the derivative of the G action at the identity is twice the projection of
g onto p. So the G- orbit of 1 is an open subset of M . Since G is compact this
orbit is also closed, so we see that the orbit is a whole connected component,
M0 say, of M . Such a manifold M0 is a compact Riemannian symmetric space.

In general, suppose X is any Riemannian manifold and f : X → X is an
isometry with f2 = 1. Let F be a connected component of the fixed-point set
of f . Then F is a totally geodesic submanifold of X; which is to say that any
geodesic which starts in F with velocity vector tangent to F remains in F for
all time. In this case the Riemann curvature tensor of the induced metric on
F is simply given by the restriction of the curvature tensor of X. In particular
if x, y are two tangent vectors to F at a point p ∈ F the sectional curvature
K(x, y) is the same whether computed in F or in X.

We apply this to the isometry τ and we see that M0 = G/K is represented
as a totally geodesic submanifold of G and the curvature is given by the same
formula K(x, y) = 1

4 |[x, y]|
2, where now we restrict to x, y ∈ p. Up to a factor

of 4, we get the same metric on G/K by regarding it as a submanifold of G as
we do by using the general procedure and the identification g/k = p.
The conclusion is that we have a simple formula for the curvature of these

compact symmetric spaces.
Examples

• G = SO(n) , K = S(O(p) × O(q)) then G/K is the Grassmannian of
p-dimensional subspaces of Rn.

• the same but using complex or quaternionic co-efficients.

• G = U(n) , K = O(n) then G/K is the manifold of Lagrangian subspaces
of R2n.

• G = SO(2n) ,K = U(n) then G/K is the manifold of compatible complex
structures J : R2n → R2n J2 = −1.

Now consider the Lie algebra situation. If g = k ⊕ p and the map given by
1 on k and −1 on p is a Lie algebra automorphism then the component of the
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bracket mapping p× p→ p must vanish. We have

k× k→ k, k× p→ p, p× p→ k.

(In fact the third component is the adjoint of the second defined by the metrics,
so everything is determined by the Lie algebra k and its orthogonal action on
p.)

For example, if G = SO(n),K = SO(n− 1) then p = Rn−1 is the standard
representation of SO(n− 1).
We define a new bracket [ , ]∗ on k⊕p by reversing the sign of the component

p × p → k. It is easy to check that [ , ]∗ satisfies the Jacobi identity. This is
clearest if one works with k⊕ ip inside the complexified Lie algebra. We define
a new quadratic form Q∗ by reversing the sign on the factor k. Then we get
a new group, G∗ say, containing K and the same discussion as before applies
to the homogeneous space G∗/K. The difference is that G∗ and G∗/K will
not be compact. We have a bi-invariant pseudo-Riemannian metric on G∗ but
this induces a genuine Riemannian metric on G∗/K. When we compute the
curvature K(x, y) for x, y ∈ p we get Q∗([x, y]). But [x, y] lies in k so

K(x, y) = −
1

4
|[x, y]|2,

in terms of the positive definite form on k.
Conclusion: for any symmetric space of compact type, with (weakly) positive

sectional curvature there is a dual space, of non-compact type, with (weakly)
negative sectional curvature. The procedure can be reversed, so these symmetric
spaces come in “dual pairs”.
All this is a little imprecise since we could take products of compact and

non-compact types, and products with Euclidean spaces or tori: it would be
better to talk about irreducible symmetric spaces.

Examples

• The dual of the sphere Sn−1 = SO(n)/SO(n− 1) is the hyperbolic space
SO+(n− 1, 1)/SO(n− 1).

• The dual of the complex projective space CPn−1 = SU(n)/U(n − 1) is
the complex hyperbolic space CHn−1 = SU(n− 1, 1)/U(n− 1).

• The dual of SU(n)/SO(n) is SL(n,R)/SO(n), the space of positive defi-
nite symmetric matrices with determinant 1.

• The dual of SU(n), regarded as (SU(n) × SU(n))/SU(n), is the space
SL(n,C)/SU(n) of positive definite Hermitian matrices of determinant 1.
More generally the dual of a compact group G is Gc/G where Gc is the
complexified group.

19



• The dual of Sp(n)/U(n) is Sp(n,R)/U(n), the space of compatible com-
plex structures on R2n with its standard symplectic form.

Precise definitions are:

Definition 1 A Riemannian symmetric pair (G,K) consists of

• a Lie group G and a compact subgroup K,

• an involution σ of G such that K is contained in the fixed set Fix(σ) and
contains the identity component of Fix(σ)

• an adG-invariant, σ-invariant, quadratic form on g which is positive def-
inite on the −1 eigenspace p of σ.

A Riemannian globally symmetric space is a manifold of the form G/K, where
(G,K) is a Riemannian symmetric pair as above, with the Riemannian metric
induced from the the adG-invariant form on g.
These Riemannian manifolds can essentially be characterised by local differ-

ential geometric properties.

Proposition 3 Let (M, g) be a Riemannian manifold. The following two con-
ditions are equivalent

• For each point x ∈M there is a neighbourhood U of x and an isometry of
U which fixes x and acts as −1 on TMx.

• The covariant derivative ∇ Riem of the Riemann curvature tensor van-
ishes throughout M .

In the above situation we call (M, g) a Riemannian locally symmetric space.

Proposition 4 • A globally symmetric space is locally symmetric.

• If (M, g) is a locally symmetric space which is a complete Riemannian
manifold then its universal cover is a Riemannian globally symmetric
space.

• In any case if (M, g) is locally symmetric and x is any point in M then
there is a neighbourhood U of x inM which is isometric to a neighbourhood
in a Riemannian globally symmetric space.

There is yet another point of view on these symmetric spaces. Suppose we
have any homogeneous spaceM = G/K. Then G can be regarded as a principal
K-bundle over M . The tangent bundle of M can be identified with the vector
bundle associated to the action of K on g/k. Suppose we have an invariant
form on g giving a decomposition g = k ⊕ p. Then the translates of p give
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a connection on this principal K- bundle, hence a connection on the tangent
bundle ofM . In general this will not be the same as the Levi-Civita connection,
but for symmetric spaces it is. (In fact the two are equal precisely when the
component p× p→ p of the bracket vanishes.) This can be expressed by saying
that the Riemannian holonomy group of a symmetric space G/K is contained
in K.
The comprehensive reference for all this is the book of Helgason Differential

Geometry, Lie groups and symmetric spaces. But most books on Riemannian
geometry discuss parts of the theory (for example Cheeger and Ebin Comparison
Theorems in Riemannian geometry).

2.2 Co-adjoint orbits

2.2.1 The symplectic picture

A Lie group G acts on its Lie algebra g by the adjoint action. Thus it acts on
the dual space g∗: the co-adjoint action. We consider the orbit M ⊂ g∗ of some
ξ ∈ g∗. So M = G/H where H is the stabiliser of ξ.

Example. Let Ω be the standard nondegenerate skew-symmetric form on
R2n. The Heisenberg group is the set R2n × S1 with the multiplication

(x, λ).(y, μ) = (x+ y, λμeiΩ(x,y)).

The adjoint orbits are either points or lines. The co-adjoint orbits are either
points or copies of R2n.
Example. Take the group U(n). We use the standard invariant form (and

multiplication by i) to identify the Lie algebra and its dual with the space
of Hermitian n × n-matrices. Any such matrix is conjugate by an element of
U(n) to a diagonal matrix. A maximal flag in Cn is a chain of subspaces
V1 ⊂ V2 . . . ⊂ Vn−1 ⊂ Vn = C

n with dimVi = i. Let F denote the set of
maximal flags. Clearly U(n) acts on F and F = U(n)/T where T is the n-
dimensional torus consisting of diagonal unitary matrices. Fix real λ1, . . . , λn
with λ1 > λ2 . . . > λn. Given a maximal flag {Vi} let Ui be the orthogonal
complement of Vi−1 in Vi. So C

n =
⊕
Ui and there is a unique hermitian

matrix with eigenspaces Ui and corresponding eigenvalues λi. This gives a map

fλ : F→ g
∗,

whose image is a coadjoint orbit. Moreover the generic co-adjoint orbit has this
form. The other co-adjoint orbits correspond, in a straightforward way, to flag
manifolds with different sequences of dimensions; including Grassmannians and
the projective space CPn−1.
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Write rξ : g→ g∗ for the derivative of the co-adjoint action at ξ. Thus

〈rξ(x), y〉 = −〈ξ, [x, y]〉,

for x, y ∈ g. So the tangent space of the orbit M at ξ is the image of rξ and the
Lie algebra of H is the kernel of rξ.

Proposition 5 • The linear map ξ : g → R restricts to a Lie algebra
homomorphism h→ R.

• The recipe
ω(rξ(x), rξ(y)) = 〈ξ, [x, y]〉,

defines a nondegenerate skew-symmetric form on TMξ.

The proofs are rather trivial linear algebra exercises using the definitions.
By applying this at each point of the orbit we see that we have a G-invariant,

nondegenerate, exterior 2-form ω on M . Clearly it is preserved by the action of
G on M .

Proposition 6 The form ω is closed, thus (M,ω) is a symplectic manifold.

One way to see this is to use the formula

Lvω = divω + ivdω,

for any vector field v, where Lv is the Lie derivative and iv is the algebraic
operation of contraction with v. Take v to be a vector field induced by the
action of G on M , corresponding to some x in g. Then Lvω = 0 since G
preserves ω. At the point ξ we have v = rξ(x) and

ω(v, rξ(y)) = ω(rξ(x), rξ(y)) = 〈rξ(y), x〉,

Hence the 1-form ivω on M can be written as df where f is the restriction to
M of linear function f(η) = 〈η, x〉. Thus divω = ddf = 0. It follows then that
for any such vector field v we have ivdω = 0. Since G acts transitively on M ,
these vector fields generate the tangent space at each point and we must have
dω = 0.
The two structures appearing in the proposition above are related. To sim-

plify the language and notation suppose that H is connected. (This is actually
irrelevant for the local differential geometric discussion.) Call M an integral
orbit if ξ : h→ R is induced by a Lie group homomorphism ρ from H to S1.

Example For a suitable choice of normalisation of the invariant quadratic
form on the Lie algebra, the co-adjoint orbit fλ(F) of U(n) discussed above is
an integral orbit if and only if the λi are integers.

In the case of an integral orbit, we can form a principal S1 bundle E → M
associated to the principal H-bundle G→ G/H and ρ, thought of as an action
of H on S1. This is an example of an important notion.
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Definition 2 Let G and Γ be Lie groups. A G-equivariant principal Γ-bundle
is a manifold P with commuting actions of G (on the left) and Γ (on the right)
such that the Γ-action defines a principal Γ-bundle.

The definition implies that G acts on the base M = P/Γ of the Γ bundle.
Examples

• For any Lie group G and subgroup K we can regard G as a G-equivariant
K- bundle over M = G/K.

• Let M be any manifold with a G-action. Then the “frame bundle” P
of the tangent bundle of M is a G-equivariant principle GL(n,R- bundle
over M , where n = dim M .

In our situation the bundle E → M is a G-equivariant principle S1-bundle
over M . There is a natural connection on this bundle. To see this consider a
point z ∈ E. The action of G gives a linear map r : g → TEz. We restrict
r to the kernel of ξ : g → R and the image of this in TEz is (one checks) a
subspace transverse to the S1-fibre. One can also see that the curvature of this
connection is the 2-form ω.

Recall the basic Hamiltonian construction in symplectic geometry. Let (V,Ω)
be a symplectic manifold and x ∈ TVp. Then

y 7→ Ω(x, y)

is an element of the dual space T ∗Vp. So Ω is thought of as a linear map
TVp → T ∗Vp and the condition that Ω is nondegenerate means that this is
invertible so we have Ω−1 : T ∗V → TV . Now if H is a function on V we take
the derivative dH and apply Ω−1, to get a vector field XH . The vector fields
appearing this way are characterised by the fact that, at least locally, they are
exactly those which generate 1-parameter subgroups of “symplectomorphisms”
(i.e. preserving ω).
What we get in this way is a homomorphism of infinite dimensional Lie

algebras
C∞(V )→ SDiff(V ),

where the Lie algebra structure on C∞(V ) is the Poisson bracket. Now suppose
a Lie group G acts on V , preserving Ω. So we have a Lie algebra homomorphism
ρ : g → SDiff(V ). We say that the action is Poisson if this can be lifted to a
Lie algebra homomorphism

μ∗ : g→ C∞(V ).

Giving this is equivalent to giving a moment map μ : V → g∗. In fact the
condition can be expressed directly in terms of μ by the requirements that
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• μ is an equivariant map with respect to the given G-action on V and the
co-adjoint action on g∗;

• Fix a basis ei of g and dual basis εi of g∗. Then μ has components μi which
are functions on V . We require that these are Hamiltonian functions for
the vector fields on V corresponding to the generators ei.

Now consider the case when (V,Ω) = (M,ω). We find that the action is
Poisson and the moment map μ : M → g∗ is just the inclusion map. If (V,Ω)
has a transitive Poisson action then the image of μ is a co-adjoint orbit M and
the map μ : V → M is a covering map. Thus, up to coverings, the co-adjoint
orbits are the only symplectic manifolds with transitive Poisson actions.

Poisson actions are related to equivariant circle bundles. Suppose E → V
is a principal S1-bundle having a connection with curvature ω, a symplectic
form on V . Then if E is an G-equivariant S1-bundle the G action on V is
Poisson. The constants in C∞(V ) act on E by constant rotation of the fibres.
The corresponding co-adjoint orbit is integral.

Example Consider V = R2n with its standard symplectic form Ω. There is
an S1-bundle E → V having a connection with curvature Ω. We can consider
the action of G0 = R

2n acting on V by translations, preserving Ω. This is not
a Poisson action and it does not lift to the S1-bundle. Now take G to be the
Heisenberg group so we have homomorphisms

S1 → G→ G0.

Then G acts on V (via the homomorphism to G0) and this action is Poisson
and does lift to E. In fact we can take E to be the Heisenberg group itself, and
the action to be left multiplication.
General references for this subsection are the books of Arnold Mathemat-

ical Methods in Classical Mechanics and Guillemin and Sternberg Symplectic
techniques in physics. Also the lecture course of Dominic Joyce.

2.2.2 The complex picture

Now suppose our Lie group G is compact, with a fixed invariant Euclidean
form on g. So we can identify g with its dual. Given ξ ∈ g we have

g = h⊕W

where H is the stabiliser of ξ and W is the orthogonal complement of h in g.
Then W is naturally identified with the tangent space of M . In this set-up, H
is just the set of η ∈ g with [η, ξ] = 0, so we certainly have ξ ∈ h. We consider
the linear map

ad ξ : g→ g.
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So the kernel of ad ξ is exactly h and ad ξ preserves W . Now ad ξ lies in the Lie
algebra so(W ) so by the standard classification of orthogonal matrices modulo
conjugation we can decompose W into a sum of two dimensional subspaces
on which exp(tad ξ) acts as a rotation. By fixing the sign of the rotation we
get a natural complex structure on the vector space W . This is easier to see
after complexification. We write W ⊗C =W− ⊕W+ where W− is spanned by
eigenvectors of iad ξ with eigenvalue < 0 and W+ with eigenvalue > 0. Then
W−,W+ are complex conjugates and we have an isomorphism W+ →W of real
vector spaces given by

w+ 7→ w+ ⊕ w+.

The complex structure onW is inherited from that onW+ via this isomorphism.

Now we want to see that this “almost complex” structure on M is in fact a
complex structure.

Proposition 7 The vector subspaces W+ and W+ ⊕ h⊗C are Lie subalgebras
of g⊗C.

This follows from THE KEY CALCULATION OF LIE ALGEBRA THE-
ORY.

If wa, wb are eigenvectors of iad ξ with eigenvalues a, b then [wa, wb] is either
0 or an eigenvector with eigenvalue a+ b.

Let Gc be the complexification of G and P ⊂ Gc the complex subgroup
corresponding to W+ ⊕ h ⊗ C. Actually we only need neighbourhoods of the
identity in these groups, so we do not need to worry about global questions of
the existence of these groups. The implicit function theorem implies that there
is a neighbourhood U of the identity in Gc such that any element g ∈ U can
be written as a product of an element in P and an element in G, uniquely up
to multiplication by H. This means that a neighbourhood of ξ in M = G/H
is identified with a neighbourhood in Gc/P . The latter is obviously a complex
manifold.
For example, the flag manifolds, complex Grassmannians and projective

spaces which arise as co-adjoint orbits for U(n) are clearly complex manifolds.
We do have actions of the complexification GL(n,C). The subgroups P are
groups of “block lower triangular matrices”.

A less obvious example is the Grassmann manifold Gr2(R
n) of oriented

planes in Rn. Given such a plane choose an oriented orthonormal basis v1, v2.
So vi are vectors in R

n with

v1.v1 = v2.v2 = 1 , v1.v2 = 0.

Then w = v1 + iv2 is a vector in C
n with w.w = 0, for the obvious com-

plex bilinear extension of the inner product. Changing the choice of vi in the
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same plane changes w by multiplication by a complex scalar. Thus we see that
Gr2(R

n) can be identified with a complex quadric hypersurface Q ⊂ CPn−1.
The complexified group SO(n,C) obviously acts on Q.

The discussion in this subsection applies in some situations to non-compact
groups. For example the co-adjoint orbit of SL(2,R) which is one component of
a two-sheeted hyperbola has an invariant complex structure (and can be thought
of as the upper half-plane in C). But the orbit which is a one-sheeted hyperbola
does not have a natural complex structure.

3 Compact real forms

A vector subspace I in a Lie algebra g is an ideal if [I, g] ⊂ I. This corre-
sponds to the notion of a normal subgroup. A Lie algebra is called simple if it
has no proper ideals, and is not abelian.
Examples

• The Lie algebras of SL(n,C), SO(n,C), Sp(n,C) (n > 1) are simple
except in the cases of SO(2,C), SO(4,C).

• The Lie algebra of the group of oriented isometries of Rn is not simple; it
fits into an exact sequence

0→ Rn → g→ so(n)→ 0.

• The Lie algebra of the Heisenberg group is not simple; it fits into an exact
sequence

0→ R→ g→ R2n → 0.

• The Lie algebra of upper triangular n×n matrices (in a field k = R,C or
H) is not simple; it fits into an exact sequence

0→ n→ g→ kn → 0,

where n is the ideal of matrices with zeros on the diagonal.

There are general theorems, similar to finite group theory, which assert that
any Lie algebra can be “built up” from simple and abelian ones; in exact se-
quences. Another notion is that of a “semisimple” Lie algebra. there are various
definitions which turn out to be equivalent. The easiest is to say that a semisim-
ple Lie algebra is a direct sum of simple algebras.

Theorem 2 Let g be a simple complex Lie algebra. Then there is a complex
Lie group G with Lie algebra g and a compact subgroup K ⊂ G such that the
Lie algebra g is the complexification of the real Lie algebra k.
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For example we have SU(n) ⊂ SL(n,C), SO(n) ⊂ SO(n,C), Sp(n) ⊂
Sp(n,C). The upshot is that the study of the structure and representations
of simple (and semi-simple) complex Lie groups is essentially equivalent to the
study of compact groups.
To prove the Theorem we consider a Lie bracket on V = Cn as a point w in

the vector space
W = Λ2V ∗ ⊗ V.

More generally we could consider any representation W of SL(V ). So we have
a map ρ : SL(V )→ SL(W ). For brevity we will refer to a positive definite Her-
mitian form on a complex vector space as a “metric”. A metric on V induces
a metric on W in a standard way. One can express this abstractly as follows.
We fix some metric H0 on V , thus we have a SU(V ) ⊂ SL(V ). Since SU(V )
is compact we can find a metric on W which is preserved by SU(V ) so ρ maps
SU(V ) to SU(W ). Then ρ induces a map SL(V )/SU(V ) → SL(W )/SU(W ).
Now SL(V )/SU(V ) can be identified with the metrics on V of a fixed determi-
nant, and likewise for W . So each metric H on V , with fixed determinant, we
have a metric ρ(H) on W .

Now write H for the space of metrics on V , that is H = SL(V )/SU(V ) =
SL(n,C)/SU(n). We define a function F on H by

F (H) = |w|2ρ(H).

Suppose we have found a point in H which is a critical point of F (in fact
this will be a minimum as we shall see in a moment). We may as well suppose
that this metric is H0, so SU(V ) ⊂ SL(V ) is the subgroup which preserves the
metric. We let G ⊂ SL(V ) be the subgroup which fixes w ∈ W , under the
action ρ, and let K = G ∩ SU(V ). Then we have

Proposition 8 In this situation, G is the complexification of K.

The proof is very easy. We can think of the function F in an equivalent way
as follows. We fix the metric ρ(H0) on W and for each g ∈ SL(V ) we define

F̃ (g) = |ρ(g)(w)|2ρ(H0).

Then F̃ is a function on SL(V ) which is invariant under left multiplication by
SU(V ) so descends to a function on H, and this is exactly F . The derivative
dρ is complex linear and maps the Lie algebra sl(V ) to sl(W ). It maps the real
subspace su(V ) to su(W ). It follows that dρ must take the operation of forming
the adjoint in V to that in W ; i.e.

dρ(ξ∗) = (dρ(ξ))
∗
.

The condition that F̃ has a critical point is that

〈w, dρ(ξ)w〉 = 0,
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for all ξ ∈ sl(V ). Here 〈 , 〉 denotes the real part of the Hermitian form ρ(H0)
on W . In particular take ξ = [η, η∗] for some η in the Lie algebra of G. Then if
A = dρ(η) we have

dρ([η, η∗) = [A,A∗].

So
〈w, [A,A∗]w〉 = 0

But this gives
|Aw|2 − |A∗w|2 = 0.

Thus Aw = 0 if and only if A∗w = 0. The condition that η is in the Lie algebra
of G is precisely that Aw = 0. So we have A∗w = 0 and η∗ also lies in the
Lie algebra of G. Thus η 7→ −η∗ is an antilinear isomorphism from Lie(G) to
itself and the result follows immediately from the fact that multiplication by i
interchanges the ±1 eigenspaces of this map.
In the case we are interested in, when w is the bracket on V = g, the Lie

algebra Lie(G) is the algebra of derivations of g, that is maps α : g→ g with

α([x, y]) = [αx, y] + [x, αy].

Now suppose we have a critical point of F , as above. To prove the Theorem
it suffices to see that the Lie algebra of G is the Lie algebra g we started with.
In general the adjoint action gives a Lie algebra homomorphism

ad : g→ LieG.

The image is an ideal since for any α ∈ Lie(G) and ξ ∈ g

[ad ξ, α] = ad α(ξ).

Since g is simple the map must be an injection. The restriction of the
standard from on su(V ) gives an invariant inner product on Lie(G) and we have
an orthogonal direct sum

Lie(G) = g⊕ I,

where I is also an ideal. But this means that [I, g] = 0, which is the same as
saying that I acts trivially on g so, by its definition as a set of operators on g,
I must be trivial.
Thus our problem comes down to showing that F has a critical point, when

g is simple. More generally, for an arbitrary representation W as above we have

Theorem 3 Either F has a critical point or there is a nontrivial subspace of
V invariant under the stabiliser G of w.

In the case at hand, a non-trivial subspace of V = g invariant under the
action of G would have to be invariant under the adjoint action, hence an ideal
in g.

The key to proving the theorem is
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Proposition 9 F is convex along geodesics in H

In fact one finds that for any geodesic γ the function is a finite sum

F (γ(t)) =
∑

aie
nit,

with ai > 0.
The group SL(V ) acts on H by isometries and the subgroup G preserves

F . As an exercise in Riemannian geometry we can consider the more general
situation of

• A simply-connected Riemannian manifoldM of non-positive sectional cur-
vature.

• A function f on M which is convex along geodesics.

• A group Γ of isometries of M , preserving f .

In this situation one can define the “sphere at infinity” S∞(M) and Γ acts
continuously on S∞(M). Then we have

Theorem 4 Either f achieves a minimum in M or there is a point in S∞(M)
fixed by Γ.

To complete the proof of the main result we just have to interpret what it
means for G to have a fixed point in S∞(H). In terms of a base point H0 ∈ H
we can identify S∞(H) with the unit sphere in the Lie algebra su(V ). This is
written as a union of co-adjoint orbits (flag manifolds of different kinds) and
the action of SL(V ) is given by the standard action on these orbits. So a fixed
point in S∞(H) is the same as a fixed flag, and in particular gives a non-trivial
G-invariant subspace.

Full details of the proofs sketched above can be found in the preprint Lie
algebra theory without algebra arXiv:math.DG/0702016v2. This is written in a
way that does not require any technical background. The arguments are done
there for the “real” case, but the main steps are identical. The corresponding
result in the real case can be expressed in terms of symmetric spaces. For any
simple real Lie algebra g which is not the Lie algebra of a compact group there is
a Lie group G with Lie algebra g and a maximal compact subgroup K ⊂ G, such
that G/K is a symmetric space of non-compact type. Moreover, K is unique
up to conjugation. In this way we get a 2-1 correspondence between

• simply-connected, irreducible globally symmetric spaces,

• simple real Lie algebras which are not the Lie algebras of compact groups.

(For each Lie algebra g in the latter category, we get a pair of dual symmetric
spaces. If the Lie algebra is actually complex the pair is K,Kc/K where K is
a compact group and Kc its complexification.)
Expressed in terms of Lie algebras, the upshot is that the classification of

simple real Lie algebras is reduced to either one of
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• The classification of simple Lie algebras of compact groups, together with
involutions;

• The classification of simple complex Lie algebras, together with C-linear
involutions.

4 Representation Theory

4.1 The statement of the main theorem, and examples.

We consider a compact connected Lie group G, with a fixed invariant form
on its Lie algebra. We want to describe the irreducible (finite-dimensional)
complex representations of G. (By the result of Section 3, it would be the same
to ask about the representations of a semi-simple complex Lie group.)

Theorem 5 There is a one-to-one correspondence between the irreducible rep-
resentations and integral co-adjoint orbits in g∗.

More precisely, of course, the correspondence is described by a definite pro-
cedure.
Recall that a co-adjoint orbitM is a complex manifold. It is also a symplectic

manifold and these structures are compatible in that the symplectic form arises
from a Hermitian metric on the tangent space. (We forgot to mention this in
Section 2, but it follows immediately from the definitions.) Thus (by definition),
M is a Kahler manifold. If M is integral we have an S1-bundle U →M and we
can form the associated vector bundle L. This is naturally a holomorphic line
bundle and (with the right choice of signs) it has a connection with curvature
the Kahler form ω.
We make two constructions

• Starting with an integral orbit M we let V = VM be the space of holo-
morphic sections of L→M . This is a vector space on which G acts.

• Starting with an irreducible representation V we consider the action of G
on the projective space P = P(V ∗). This is a symplectic manifold and the
action is Poisson, with a moment map μ : P → g∗ (which we will write
down explicitly later). We take the orbit M =M(V ) of a point where |μ|
is maximal.

The first construction is essentially what is known as the Borel-Weil con-
struction of the irreducible representations. One can compare it with the for-
mation of induced representations for finite groups. That is, if A ⊂ B are finite
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groups we consider the (zero-dimensional) manifold B/A and the group B as
a principal A bundle over B/A. Then if U is a representation of A we form
the vector bundle E over B/A associated to the principal bundle. The space of
sections of E → B/A is a representation of B denoted IndBAU .
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To prove our theorem we will have to check/establish a number of things.

1. Any co-adjoint orbit M is simply connected (so we do not have to worry
about coverings).

2. The vector space VM is finite-dimensional.

3. The vector space VM is non-trivial.

4. The vector space VM is an irreducible representation of G.

5. Given an irreducible representation there is a unique G-orbit in the pro-
jective space where |μ| is maximal.

6. The orbit M(V ) is integral.

7. VM(V ) = V for any irreducible representation V .

8. M(VM ) =M for any integral orbit M .

But before getting on with this we discuss examples.
Example 1 G = S1. Then g∗ = R and the co-adjoint orbits are points.

The integral co-adjoint orbits correspond (with a suitable normalisation of the
inner product) to Z ⊂ R. Following the recipe we find the representation
corresponding to n ∈ Z is the n-fold tensor power of the defining representation
S1 ⊂ C.

Example 2 G = SU(2). With a suitable normalisation, the integral orbits
are the sets |x| = d in R3, for integer d ≥ 0. When d = 0 we get the trivial
1-dimensional representation. Otherwise, the orbits are 2-spheres and the line
bundle is the one which we denoted by Ld before. As we (more-or-less) saw, the
holomorphic sections correspond to holomorphic functions on C2 \ {0} which
are homogeneous of degree d. The only such are polynomials of degree d. The
representation we get is Sd, the d-fold symmetric power of the standard 2-
dimensional representation. If we take SO(3) in place of SU(2) the co-adjoint
orbits are the same but the integrality condition is different: the integral orbits
for SO(3) are those corresponding to even values of d.

The fact that the Sd are the only irreducible representations of SU(2) can be
proved quite easily by an algebraic method. We extend to SL(2,C) (by complex
linearity) and consider standard generators H,X, Y of sl2 which satisfy

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = 2H.

Now consider the decomposition of a representation V into eigenspaces for H.
A manipulation similar to that in the KEY CALCULATION from Section 2.2.2
shows that if v ∈ V is an eigenvector of H with eigenvalue λ then Xv is either
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0 or an eigenvector with eigenvalue λ+ 2, and Y v is either 0 or an eigenvector
with eigenvalue λ − 2. Take an eigenvector v with largest H-eigenvalue d say.
Then one finds that Xv = 0 and V must be generated by

v, Y v, Y 2v, . . . , Y rv,

where we go on until Y r+1v = 0. Since the trace of the H action must be 0 we
find that r = d and the H-eigenvalues are

d, d− 2, . . . ,−d;

and the dimension of V is d+ 1. Since the Lie algebra action is entirely deter-
mined by the relations we see that V = Sd.

This algebraic approach can be applied to other groups (see Fulton and
Harris, for example), but becomes considerably more complicated.

There is another, more geometric, way of thinking about a line bundle L
over a complex manifold M and the space V of holomorphic sections. Suppose
that at each point of M there is a section which does not vanish. The ratios of
the sections at a point are well-defined complex numbers and we get a map

M → P(V ∗),

defined in terms of a basis s1, . . . , sn of V by mapping x ∈M to [s1(x), . . . , sn(x)] ∈
Pn−1. Another way of saying this is that for each point x ∈M we have an eval-
uation map

ex : V → Lx,

which can be identified with an element of V ∗, up to a scalar multiple. Con-
versely, given a complex submanifold (say) M ⊂ Pn−1 which does not lie in any
linear subspace we restrict the Hopf bundle L1 → Pn−1 to M . The sections
of L1 over the projective space restrict to sections over M and we recover the
previous set-up. In the case when M = CP1 is the Riemann sphere with the
line bundle Ld we get an embedding

CP1 → CPd

whose image is the “rational normal curve”. Then SL(2,C) acts on CPd and
the rational normal curve is the unique closed orbit.

Example Take G = SU(3) = SU(W ). The integral co-adjoint orbits cor-
respond to integers (λ1, λ2, λ3) modulo the action λi 7→ λi + n (since we are
working with SU(3) rather than U(3), and permutations of the λi. We can
choose a representative λ1 = a, λ2 = 0, λ3 = −b with integers a, b ≥ 0. The
corresponding orbits are:
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• The point 0, when a = b = 0.

• A copy of P = P(W ) when a = 0, b > 0,

• A copy of P∗ = P(W ∗) = P(Λ2W ) when b = 0, a > 0.

• A copy of the flag manifold F when a > 0, b > 0.

The first case gives the trivial representation. The second gives the symmetric
power SbW ∗. The third gives SaW . The fourth case gives the kernel of the
contraction map

SaW ⊗ SbW ∗ → Sa−1W ⊗ Sb−1W ∗.

Notice that we have holomorphic fibrations F → P and F → P∗. The
line bundles over P,P∗ can be pulled back to F and, if we prefer, everything
can be expressed in terms of sections of line bundles over F. (The analogue of
this applies in general and is the more usual way of setting up the Borel-Weil
construction.) The identification of the representation in the fourth case above
is fairly straightforward, using the fact that the flag manifold F is cut out by a
single equation in P×P∗.

Example Take G = SU(n) = SU(W ). This goes much as before, but be-
comes more complicated. When the sequence λi takes just two distinct values
0, 1 we get a co-adjoint orbit which is a Grassmannian Grk(W ). The sections
of the corresponding line bundle give the Plücker embedding

Grk(W )→ P(Λ
k).

The representation we get is ΛkW ∗ which is isomorphic to Λn−kW . For the
general case we get subspaces (or, if you prefer, quotients) of the standard
representations

Sμ1Λ1W ⊗ Sμ2Λ2W ⊗ . . . .

There is an intricate theory of Young diagrams etc. which describes these irre-
ducible representations explicitlyin terms of tensors satisfying certain symmetry
conditions. All this is related to the irreducible representations of the symmetric
groups Σp. See Fulton and Harris, for example.
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4.2 Proof of the main theorem

The main idea in the proof is this. Let V be a representation of G. Suppose
we can find a G-orbit M̃ in P(V ∗) which is a complex submanifold. (It follows
that M̃ is a closed orbit for the action of the complexified group: the basic
example is the rational normal curve in the case when G = SU(2).) Then the
symplectic form on P(V ∗) restricts to symplectic form on M̃ and the moment
map μ : P(V ∗) → g∗ restricts to a moment map on M̃ . Thus we have a
transitive Poisson action of G on M̃ and M̃ is a covering of a co-adjoint orbit.
Assuming that we have established item 1, we have M̃ =M . Consider the line
bundle H → P(V ∗), so the space of holomorphic sections of H is V . Let p be
a point of M̃ . The stabiliser H ⊂ G of p is the same as the stabiliser of μ(p)
in the co-adjoint action. Checking the definitions we see that M is an integral
co-adjoint orbit (item 6) and that H is identified with the line bundle L → M
which we constructed. So restriction to M̃ gives a non-zero G-map from V to
VM . If V is irreducible this must be injective and, if we have established item
7, it must be an isomorphism.

For most of the proof we can think about the following general picture. We
suppose we have a Kahler manifold (X,Ω) and a vector field Iv on X which
generates a 1-parameter group of holomorphic isometries, hence symplectomor-
phisms. We suppose that H : X → R is a Hamiltonian for Iv. The criti-
cal points of H are the zeros of v. The vector field v generates another flow
αt : X → X: these maps are holomorphic but are not isometries. The critical
points of H are the zeros of v. At a zero we have a derivative ∇v which is a
complex-linear endomorphism of the tangent space. This can be identified with
the Hessian of H (matrix of second derivatives). In particular if p is a maximum
of H the eigenvalues of ∇v are ≤ 0.

Lemma 1 Suppose p is a point in X where H is maximal.

• Let N be another vector field on X and suppose that

[v,N ] = λN

for some λ < 0. Then N vanishes at p.

• Suppose F is a function which Poisson commutes with H and generates
a vector field Z. Then IZ(p) lies in the kernel of the Hessian of H. If
Z(p) does not vanish then the derivative of F at p in the direction IZ(p)
is non-zero.

For the first part, it is a general fact that for any two vector fields [V,N ] =
−(∇V )(N) at a zero of V . So if N(p) is not zero it is an eigenvector for ∇v
with positive eigenvalue which is impossible.
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For the second part, any time we have a Hamiltonian F generating a vector
field Z on a Kahler manifold we have ∇IZF = |Z|2. So all we need to show is
that IZ lies in the kernel of the Hessian. But since F and H Poisson commute
the vector Z lies in the kernel of the Hessian (as in the first part) and the kernel
is a complex linear subspace.

Corollary 3 Suppose a compact Lie group G acts on a compact Kahler mani-
fold X, with moment map μ : X → g∗. If p ∈ X is a point where |μ is maximal
then the G-orbit of p is a complex submaifold of X.

To see this, let ξ = μ(p) and let H = 〈ξ, μ〉. This is the Hamiltonian for
the action of the 1-parameter subgroup generated by ξ. (We identify g with its
dual.) Consider the decomposition of the complexified Lie algebra

g⊗C =W− ⊕ (h⊗C)⊕W+.

The complexification of the derivative of the action at p gives a C-linear map
from g⊗C to TXp. We want to see that this vanishes on the summands h⊗C
and W−. For this implies that the tangent space to the orbit is a complex
subspace of TXp, which means that the orbit is a complex submanifold of X.
So let N be a vector field on X corresponding to some eigenvector w in W− for
the action of ad iξ. Thus [iξ, w] = λw for λ < 0 and the fact that the group
action yields a Lie algebra homomorphism implies that [v,N ] = λN . The first
statement in the proposition above shows that N(p) = 0. Now suppose there is
a unit vector η in h orthogonal to ξ. We set F = 〈η, μ〉. This Poisson commutes
with H, since [ξ, η] = 0, and vanishes at p. Suppose the corresponding vector
field Z does not vanish at p. The second part of the proposition implies that
the Hessian of |μ|2 is strictly positive in the direction iZ, which contradicts the
fact that p is a maximum point for |μ|.

We return to the picture of X,H, v, αt, as above. We assume now that p is
the unique point where H is maximised. Suppose that we have a holomorphic
line bundle L→ X and a lift α̃t of the flow αt to L. Then α̃t acts on the fibre
Lp over p with some weight λ, i.e.

α̃t(z) = e
λt(z),

for z ∈ Lp. We say that a non-trivial holomorphic section s of L is a highest
weight vector if it is an eigenvector for the induced action of α̃t, with the same
weight: i.e.

α̃ts = e
λts.

Proposition 10 If a highest weight vector exists it is unique up to constant
scalar multiple.

We show first that a highest weight vector cannot vanish at p. For if a section s
vanishes at p it has an intrinsically defined derivative (∇s) which lies in Lp ⊗C
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T ∗Xp. This derivative is either zero or an eigenvector for the action of ˜alphat.
But the eigenvalues for the action on this space are all strictly less than λ. So
the first derivative vanishes. This means that there is an intrinsically defined
second derivative which lies in Lp⊗C s2T ∗Xp but again there is no λ-eigenvalue
for teh action here, so the second derivative vanishes, and so on. Thus we
conclude that s is identically zero.
Now if s1, s2 are two highest weight vectors the ratio s1/s2 is a holomorphic

function on a neighbourhood of p which is invariant under the flow αt. It is clear
that the only such are constants and by analytic continuation s1 is a constant
multiple of s2 over the whole of X.
Let U be the set of points x in X such that limt→∞ αtx = p. Clearly U

contains a neighbourhood of p, and it follows easily that U is open in X.

Proposition 11 There is a highest weight vector over U ⊂ X.

(By this we mean a holomorphic section over U ⊂ X satisfying the equation
α̃t(s) = e

λts).
There is no loss in supposing that the weight λ is zero (because we can

change the lift of the action by multiplying by e−λt). Fix a non-zero point
z ∈ Lp. Suppose x ∈ U and let z′ be a non-zero point in the fibre Lx. As
t → ∞ the flow α̃t(z

′) converges to some non-zero point in Lp and there is a
unique choice of z′ such that this limit is z. Then we define s(x) = z′ and this
is clearly a holomorphic α̃t-invariant section of L over U .

For the final steps we use a slightly more difficult fact– but one whose truth
seems fairly plain:

(*) The complement of U is a complex subvariety of X.

Assuming this we have next:

Proposition 12 Suppose the line bundle L arises from an S1 bundle having a
connection with curvature the Kahler form ω. Then there is a highest weight
vector over all of X for the action of α̃t on the holomorphic sections of L.

We have to show that the section s we have constructed over U extends
holomorphically to X. The hypotheses give us a Hermitian norm on the fibres
of L. Given a point q in U set

f(t) = − log(|s(etvq)|).

A calculation, using the fact that the curvature is ω, shows that this is a
convex function of t. (This is related to the convexity phenomenon in Section 3.)
Since f(t) is bounded as t → +∞ it follows that f(t) tends to ∞ as t → −∞.
In particular f is bounded below. It follows easily that the holomorphic section
s of L over U is bounded. Then a version of the Riemann extension theorem
shows that the section extends holomorphically to X. (In fact we see that the
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extension of the section vanishes outside U . So a posteriori we see that (*) is
true because the complement of U is the zero set of s.)

With all of this place we can quickly finish the proof.
Item 2. the vector spaces VM are finite-dimensional. Indeed, the space

of holomorphic sections of a line bundle over any compact complex manifold
is finite-dimensional. This follows from the fact that a sequence of uniformly
bounded holomorphic functions over a ball in Cn has a subsequence converging
on compact subsets of the interior.

Let M be the co-adjoint orbit of ξ ∈ g∗ = g. Then ξ generates an action by
holomorphic isometries onM with Hamiltionian the linear function x→< x, ξ >
which clearly has a unique maximum at ξ. If M is an integral orbit we have a
holomorphic line bundle L and a lift of the action, so we are in the situation
considered in Proposition 3 above (with X =M). So we have a highest weight
vector and in particular the space VM is non-trivial: this gives Item 3.

Suppose M is an integral co-adjoint orbit and that the space of sections VM
has a non-trivial decomposition V1 ⊕ V2 as a G-representation. For each point
x ∈ M we have an evaluation map V1 → Lx. If this vanishes for one x it must
do for all, by the transitive G-action, which is impossible if V1 is non-trivial. So
eξ : V1 → Lξ is non-trivial which means that there must be a highest weight
vector in V1. But similarly there must be a highest weight vector in V2 and
this contradicts the uniqueness. So we have Item 4 (the VM are irreducible
representations).

If M is a co-adjoint orbit it follows from (*) that M is simply-connected,
since the complement of U has real codimension 2, so π1(M) = π1(U) and any
loop in U can be contracted into a small ball about p using the flow αt. This
gives item 1.

Now start with an irreducible representation V . We take X = P(V ∗) and
apply Corollary 1 to find a G-orbit M̃ which is a complex submanifold. Then
the argument explained at the beginning of this sub-section shows that M is a
copy of a integral co-adjoint orbitM and there is a natural restriction map from
V to VM which must be an isomorphism. This gives item 7 and item 6 (except
for the fact thatM(V ) is not strictly well-defined until we have established item
5).

The moment map for the action on a projective space CPncan be written
down explicitly. First for the standard action of U(n+ 1) we have

μ(z) =
i

|z|2
zz∗,
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for a column vector z representing a point in CPn. Then for another group G
acting we take the transpose of g→ u(n) to get u(n)∗ → g∗ and compose with
this. In particular suppose that ξ ∈ g acts by iA on Cn+1, for a self-adjoint
matrix A. We can suppose A is diagonal with eigenvalues λa, ordered so that
λ1 ≥ λ2 ≥ . . .. Then the function H is

H(z) =
1

|z|2
∑

λa|za|
2.

Taking the point p where H is maximal corresponds to taking an eigenvector of
A with largest eigenvalue. Also this eigenvalue is just the weight of the action
on the fibre of H over p.

Now, since we can identify V with the sections of L→M , we know that the
largest eigenvalue of A has multiplicity 1 because these eigenvectors correspond
to highest weight vectors. Let ei be the basis for V

∗ of eigenvector for A.
Consider a point P = [

∑
siei] in P(V

∗). If s1 6= 0 then the limit of [eAtP ] as
ttends to infinity is the point P0 = [1, 0 . . . , 0]. So any closed set Z ⊂ P(V ∗)
either lies in the hyperplane s1 = 0 or contains the point P0. Thus there
is at most one closed Gc-orbit not contained in any hyperplane. This gives
the uniqueness of the maximising point for μ (item 5). It also proves item 8
(because certainly the embedding ξ 7→ eξ maps M to a closed Gc-invariant set
in VM which does not lie in any hyperplane, so this must be the set given by
the maximum of |μ|, by uniqueness).

There are many other ways of going about things. In particular, the Kodaira
embedding theorem implies that for any bundle L with “positive” curvature some
power Lk has a non-trivial holomorphic section. If we assume this we can avoid
using (*) by arguing that sk is holomorphic on X and working back from that.
Notice that we have to use the positivity of the curvature somewhere since
otherwise everything we say applies to the dual bundle L∗, which certainly does
not have holomorphic sections. In the case of our application, when X = M is
a co-adjoint orbit, we can avoid using (*) by looking a bit more carefully at the
structure we have. Then we can identify the complement of U explicitly.
The open set U is the first stage in a stratification of the co-adjoint orbit M

by complex subvarieties, which is important for other purposes. In the case of
the Grassmannians we get the stratification by “Schubert cells”; see Griffiths
and Harris Principles of algebraic geometry, for example.

5 Structure theory for compact Lie groups

We consider a compact connected Lie group G. As in the previous Section it
would be much the same to discuss semisimple complex Lie groups, using the
result of Section 3. We first introduce the following concepts
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• A maximal torus in G;

• The Weyl group;

• The roots;

• The Weyl chambers.

A torus is a Lie group isomorphic to (S1)n. Any compact connected Abelian
Lie group is a torus. A maximal torus in G is a subgroup which is a torus and
which is not contained in any strictly larger torus in G.

Proposition 13 Any two maximal tori are conjugate

We need a Lemma, in which we prove a little more than we need immediately.

Lemma 2 Let ξ0, ξ, ξ
′ be elements of g with [ξ0, ξ] = [ξ0, ξ

′] = 0. Then we can
find g ∈ G such that the adjoint action of g fixes ξ0 and [g(ξ), ξ′] = 0.

To see this let H ⊂ G be the subgroup which fixes ξ0 in the adjoint action.
We maximise the function 〈g(ξ), ξ′〉 over g ∈ H. Without loss of generality the
maximum occurs when g = 1. This means that for all η with [η, ξ0] = 0 we
have 〈[η, ξ], ξ′〉 = 0, which is the same as saying 〈η, [ξ, ξ′]〉 = 0. This means that
[ξ, ξ′] is in the orthogonal complement of the Lie algebra h of H. But ξ and ξ′

each lie in h so their bracket does too. Thus [ξ, ξ′] = 0, as required.

Now for any torus T a generic element ξ of Lie (T ) will generate T in the
sense that the closure of the 1-parameter subgroup eξt will be the whole of T .
Given a pair of maximal tori T, T ′ ⊂ G choose such generators ξ, ξ′. By applying
the Lemma (with ξ0 = 0) we see that after conjugation we may as well suppose
that [ξ, ξ′] = 0. If ξ′ does not lie in Lie (T ) the two generate a strictly larger
torus, contrary to maximality of T . Thus ξ′ lies in Lie (T ) which implies that
T ′ is contained in T and T = T ′ be maximality of T ′.
Notice that this argument shows that, given one maximal torus T , any other

torus is conjugate to a subgroup of T .

The rank of a G is the dimension of a maximal torus.
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Examples

• A maximal torus in U(n) is given by the diagonal matrices

diag(eiλ1 , . . . , eiλn),

so U(n) has rank n.

• A maximal torus in SU(n) is given by the diagonal matrices as above,
with

∑
λa = 0. So SU(n) has rank n− 1.

• A maximal torus in SO(2n) is given by the taking the maximal torus in
U(n) and the standard embedding U(n) ⊂ SO(2n). So SO(2n) has rank
n.

• A maximal torus in SO(2n + 1) is given by taking the maximal torus in
SO(2n) and the standard embedding SO(2n) ⊂ SO(2n+1). So SO(2n+1)
has rank n.

• A maximal torus in Sp(n) is given by taking the maximal torus in U(n)
and the standard inclusion U(n) ⊂ Sp(n), so Sp(n) has rank n.

Fix a maximal torus T ⊂ G. The Weyl group is W = N(T )/T , where N(T )
is the normaliser of T . If g ∈ G normalises T the adjoint action maps T to
T , and T acts trivially on itself. So W acts on T . (In fact we could easily
show that the action is effective so that W can also be defined as the group of
automorphisms of T which are induced by inner automorphism in G.)

For example, the Weyl group of U(n) is isomorphic to the symmetric group
on n objects, acting by permutations of the eigenvalues eiλa . Similarly for
SU(n). In particular the Weyl group of SU(2) is {±1}, acting by a reflection
on T = S1.

The Weyl group acts on Lie (T ). Suppose two elements ξ1, ξ2 ∈ Lie (T ) are
conjugate in G. Then it follows easily from Lemma 1 that there is an element
of the Weyl group mapping ξ1 to ξ2. So we have the important fact that the
adjoint orbits in G are in 1−1 correspondence with the orbits of the Weyl group
acting on Lie (T ). (A variant of this is the fact that the conjugacy classes in G
are in 1− 1 correspondence with the orbits of the Weyl group acting on T .)

Let V be any complex representation of G. By restriction we get a repre-
sentation of T . This decomposes into a sum of weight spaces. The weight lattice
Λ is the lattice in Lie (T )∗ consisting of linear maps L(T ) → R which take
integer value on the kernel of exp : Lie (T ) → T . So a representation of T is
specified by giving a collection of integer multiplicities nw > 0 associated to
weights w ∈ Λ. Using our fixed invariant inner product on g we can identify
Lie (T ) with Lie (T )∗, so we can think of Λ ⊂ Lie (T ). The Weyl group acts on
Lie (T ) and Lie (T )∗, preserving Λ.
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Examples

• If V is the complexification of a real representation, V = A ⊗R C, then
the non-zero weights come in pairs ±w, with the same multiplicities. If A
is already complex the weights of A⊗RC = A⊕A are given by taking ±
the weights of A.

• With standard co-ordinates (λ1, . . . , λn) on Lie (T ) for the maximal torus
T ⊂ U(n) the weights of the standard representation Cn are λi.

• For the representation Λ2Cn of U(n) the weights are λi + λj (i 6= j). For
Λ3Cn the weights are λi + λj + λk (i, j, k all different), and so on.

• For the representation s2Cn of U(n) the weights are λi+λj (i = j allowed).
Similarly for the higher symmetric powers.

Now consider the complexification of the adjoint representation g⊗C of G.
The weight 0 subspace just corresponds to Lie (T ) ⊗C ⊂ g ⊗C. The nonzero
weights of this representation are called the roots of G. They are elements of Λ ⊂
Lie (T )∗ and occur in pairs ±α (since the representation is the complexification
of a real representation of G). But using our fixed inner product we will generally
regard the roots as elements of Lie (T ) ⊂ g. The number of roots is the difference
dimG− rank G.

Examples

• With G = U(n) and standard co-ordinates (λ1, . . . , λn) on Lie (T ) as
above, the roots are λi − λj for i 6= j. There are n(n − 1) of these and
dim G = n2, rank (G) = n.

• For SU(n) everything is the same as for U(n), except that the dimension
and rank both drop by 1.

• With the same standard co-ordinates the roots of SO(2n) are ±λi±λj , for
i 6= j. There are 2n(n− 1) of these and dim G = n(2n− 1), rank G = n.

• In the same way, the roots of SO(2n+1) are ±λi ± λj for i 6= j and ±λi.
There are 2n(n−1)+2n = 2n2 roots and dim G = n(2n+1), rank G = n.

• Also in the same way, the roots of Sp(n) are λi − λj for i 6= j together
with ±(λi + λj) (i = j allowed). There are n(n − 1) + n(n + 1) = 2n2

roots and dim G = n(2n+ 1), rank (G) = n.

Remark
Given a pair of compact groups H ⊂ G such that the maximal torus of H is

also maximal in G we can find the roots of G by writing g = h⊕W , say, where
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W is a real representation of G. The roots of G are made up of the roots of H
and the weights of W ⊗C. In the examples above

so(2n) = u(n)⊕ Λ2Cn,

sp(n) = u(n)⊕ s2Cn,

so(2n+ 1) = so(2n)⊕R2n.

So we can use this technique to identify the roots. Notice, by the way, that these
decompositions, all correspond to symmetric spaces: SO(2n)/U(n), Sp(n)/U(n), SO(2n+
1)/SO(2n) as we discussed in Section 2.1. We will use this technique more in
Section 7.

Now we write

g⊗C = (Lie (T )⊗C)⊕
⊕

Rα

where α runs over the roots. To get back to the real Lie algebra we use
the fact that the roots come in pairs ±α with R−α = Rα and the real part is
spanned by sums rα + rα for rα ∈ Rα. By definition, for ξ ∈ Lie (T ) ⊗C and
rα ∈ Rα we have

[ξ, rα] = 〈α, ξ〉rα,

where 〈 , 〉 is the complex bilinear extension of the positive definite inner product
on Lie (T ) ⊂ g.

The same KEY CALCULATION as we used in Section 2.2.2 shows that if
rα ∈ Rα, rβ ∈ Rβ then one of the following occurs

• β = −α and [rα, rβ ] ∈ Lie (T );

• α+ β is a root and [rα, rβ ] ∈ Rα+β ;

• [rα, rβ ] = 0..

We know that any adjoint orbit of G is the orbit of some ξ ∈ Lie (T ). Going
back to the discussion in Section 2.2, we let H be the stabiliser of ξ, so H
contains T . From the formula above we see that

h⊗C = Lie (T )⊗C⊕
⊕

〈α,ξ〉=0

Rα.

For each root α ∈ Lie (T ) the corresponding root plane Lα is simply the
orthogonal complement of α in Lie (T ). These make up a finite number of
hyperplanes in Lie (T ). We see that if ξ is not in any root plane then H = T .
(Here we use the fact from Section 4 that H is connected, since the co-adjoint
orbit is simply connected.) Thus the generic co-adjoint orbit has the form G/T
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but when ξ lie in one or more root planes we get a group H which strictly
contains T , so the orbit is lower dimensional. This is just like the picture we
have seen for G = SU(n) where the generic orbit is the flag manifold F but
for special choices of ξ we get smaller flag manifolds, Grassmannians, projective
spaces etc.

The complement of the union of all the root planes in Lie (T ) is an open set
with a finite number of connected components. The closure of any one of these
components is called a Weyl chamber in Lie (T ).

Example
For G = SU(2) there are two Weyl chambers each of which is a closed half-

line in R. For G = SU(3) there are six Weyl chambers each of which is a wedge
of angle π/3.

Imagine that we are setting out to classify compact Lie groups. A sensible
strategy would be to proceed by the rank of the group. The first case would be

Proposition 14 A compact connected Lie group G of rank 1 is isomorphic to
S1, SU(2) or SO(3).

Suppose there are 2n roots. If n = 0 we clearly have G = S1. If n > 0 then
the non-trivial co-adjoint orbits are 2n-dimensional submanifolds of S2n, hence
equal to S2n. But we know that a co-adjoint orbit is a symplectic manifold and,
by elementary de Rham theory, the only sphere which is symplectic is S2 (since
we need H2 to be non-trivial). Thus n = 1 and the adjoint action maps G to
SO(3). It is clear that this is a local isomorphism, so the universal cover of G is
SU(2) and G = SU(2)/N where N is a finite normal subgroup of SU(2). But
then it is clear that N must be in the centre of SU(2) and since this centre is
±1 we have the two possibilities G = SU(2), G = SO(3).

Remark Notice that in the above argument we do not really need the com-
pactness of G, once n > 0. All we need is that the Lie algebra has the given
structure and that there is an invariant Euclidean form. Then the compactness
of the group comes as part of the conclusion.

Now let G be any compact group and α a root.

Lemma 3 Let β run over the roots which are non-zero real multiples of α and
form the vector space

gc0 = Cα⊕
⊕

β

Rβ ⊂ g⊗C.

Then gc0 is a subalgebra of g⊗C and its real part g0 = g
c
0 ∩ g is a subalgebra of

g.
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We only need to show that if r ∈ Rkα and r′ ∈ R−kα then [r, r′] is a multiple
of α. But if ξ ∈ Lie (T )⊗C is orthogonal to α then

〈ξ, [r, r′]〉 = −〈[r, ξ], r′〉 = [0, r′] = 0.

Now we have

Proposition 15 If α is any root then kα is a root if and only if k = ±1, the
dimension of Rα is 1 and the subalgebra g0 is isomorphic to su(2).

To show this we apply the proposition above. We know that there is an
abstract group G0 corresponding to g0 and by the remark following Proposition
2 we deduce that this is SU(2) or SO(3) (since by hypothesis there are at least
two roots).

Remark. We can also show, easily, that g0 corresponds to an SU(2) or
SO(3) subgroup of G.

For a root α let ρα : Lie (T ) → Lie (T ) be the reflection in the root plane
Lα i.e.

ρα(ξ) = ξ −
2

|α|2
〈ξ, α〉α.

Proposition 16 For each root α there is an element of the Weyl group W
which acts as ρα on Lie (T ).

(Since the Weyl group acts effectively on Lie (T ), we could more simply say
that ρα is an element of the Weyl group.)

This is clearly true for SU(2), SO(3). In general let η = rα + rα ∈ g and
consider the adjoint action of the 1-parameter subgroup exp(tη). This fixes
elements ξ in the plane Lα, since then [ξ, η] = 0. By what we know for SU(2),
and the fact that ξ, α lie in a copy g0 of su(2), we can choose t such that the
adjoint action maps α to −α.

Now we take our classification programme one step further by considering
the rank 2 case. In fact we express things in terms of a pair of roots in g.

Proposition 17 Suppose α, β are roots in Lie (T ) with α 6= ±β. Let Π ⊂
Lie (T ) be the plane spanned by α, β. There are exactly 2k roots in Π, where
k = 2, 3, 4 or 6. Moreover the normalised vectors αi/|αi|, for roots αi ∈ Π, are
equally spaced around the unit circle.
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The reflections defined by the roots in Π act on Π and generate a finite group
(since the Weyl group is finite). Identify Π, and its Euclidean form restricted
from g, with the standard R2. Then we get a finite subgroup A ⊂ O(2). Since
A is not contained in SO(2) it has an index 2 subgroup A0 = A ∩ SO(2) which
must be cyclic of order k for some k ≥ 2. LetM be a generator of A0: a rotation
through an angle θ = 2π/k.
Let ΛΠ be the intersection of the weight lattice with Π. Then ΛΠ contains

α, β so it must have rank 2. The action of A preserves ΛΠ so we see that M
is conjugate in GL(2,R) to an element of SL(2,Z), i.e. a matrix with integer
entries. In particular the trace of M is an integer. So 2 cos(θ) is an integer and
the only possibilities are θ = ±π/3,±π/2,±2π/3, π. The proposition follows
immediately: the group A is generated by a pair of reflections defined by roots
at an angle of θ/2.

What we have here is essentially the familiar fact that the only lattices in
the plane with a rotational symmetry are the square lattice and the hexagonal
lattice.

There is a refinement of the Proposition which describes the ratios of the
lengths of the roots in the cases when k = 3, 4, 6.

• When k = 3 all the roots in Π have the same length.

• When k = 4 the ratios of the lengths of successive roots as we go around
the circle are alternately

√
2, 1/
√
2.

• When k = 6 the ratios are alternately
√
3, 1/
√
3.

This is a simple consequence of

Fact 1 For any two roots α, β in Lie (T ) the quantity

2〈α, β〉
|α|2

is an integer.

We will not prove this (although there is no special difficulty in doing so).

Going back to our classification programme, we see that there are four pos-
sibilities for the pattern of the roots in the rank 2 case, and in fact these are all
realised.

• k = 2, occurs for the groups SO(4) or SU(2)× SU(2). (These groups are
locally isomorphic, see Section 7.)

• k = 3, occurs for the group SU(3).
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• k = 4 occurs for the groups SO(5) or Sp(2) (again, locally isomorphic).

• k = 6 occurs for the exceptional group G2, see Section 7.

We do not take the classification programme further here: it has all been
done for us by Killing and Cartan. A root system in a Euclidean vector space
V is defined to be finite set of non-zero vectors R such that

• The elements of R span V ;

• If α is in R then kα is in R if and only k = ±1.

• For each α ∈ R the reflection in the hyperplane orthogonal to α maps R
to R.

• For any α, β ∈ R the quantity

2〈α, β〉
|α|2

is an integer.

Then the roots of any compact Lie group form a root system (in some sub-
space of Lie (T )). On the other hand, purely as a matter of Euclidean geometry,
the root systems have been completely classified.

We now have a very detailed picture of the structure of our Lie algebra g. We
explain this for the complexified algebra, where the notation is a little easier,
but everything can be restated in terms of g if we prefer. Each space Rα is
one dimensional so we choose a basis element rα. We know that [rα, r−α] is a
nonzero multiple of α and we can multiply by a factor so that without loss of
generality

[rα, r−α] = α.

If α, β are roots with α 6= ±β then either α+ β is a root in which case

[rα, rβ ] = εαβrα+β ,

for some εαβ ∈ C or α+β is not a root in which case [rα, rβ ] = 0. And of course
we know that for ξ ∈ Lie (T )c we have

[ξ, rα] = 〈ξ, α〉rα.

So we have a complete description of the Lie algebra in terms of the root
system and the collection of numbers εαβ . These are not uniquely defined. If
we change the basis elements rα by scalar multiples μα, with μ−α = μ−1α , we
get an equivalent collection

ε̃αβ = μαμβμ
−1
α+β εαβ .
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If we take any εαβ we can define a bracket by the formulae above. The Jacobi
identity becomes a system of equations for the numbers εαβ . If we can solve
these we get a Lie algebra.

Fact 2 Given a root system there is a way to choose εαβ to solve these equations,
and the solution is unique up to equivalence.

In this way, the classification of root systems leads to the renowned Cartan-
Killing classification of compact Lie groups, or semisimple complex Lie groups.
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Now we go back to look at the geometry of the Weyl chambers in Lie (T ).
Clearly the Weyl group acts by permuting the chambers.

Proposition 18 The action of the Weyl group on the set of chambers is simply
transitive.

To see that the action is transitive we join two Weyl chambers by a path
which crosses one root plane at a time, in a transverse fashion. Then the
corresponding product of reflections does the job.
To see that the action is simply transitive, suppose p is an element of the

Weyl group and B is a chamber with pB = B. Then p has finite order n say,
and all powers pr map B to B. Choose any point η in the interior of B and set

ξ =

n∑

1

prη.

Then η is an interior point in B (by convexity) which is fixed by p. Let g ∈ G
be an element whose adjoint action realises p. Then g is in the stabiliser Hξ
of ξ. But since ξ is an interior point of B it does not lie in any root plane, so
Hξ = T and we see that g is in T and so p is the identity.

For ξ ∈ Lie (T ) let Wξ be the subgroup of the Weyl group which fixes ξ. A
similar argument to that above shows that Wξ acts transitively on the set of
Weyl chambers which contain ξ. From this it is elementary to deduce.

Corollary 4 No two distinct points in the same Weyl chamber are in the same
orbit of W acting on Lie (T ).

IMPORTANT CONCLUSION
We fix a Weyl chamber B0 which we call the fundamental chamber. Then the

adjoint (or equivalently co-adjoint) orbits of G in g can be identified with the
points of B0. The integral co-adjoint orbits can be identified with the elements
of the weight lattice in B0.

Remark There is a useful way to visualise the relation between the orbits
of G in g and of W in Lie (T ). Let ξ be a point in Lie (T ). The orbit of ξ under
the action of the Weyl group is a finite set Wξ ∈ Lie (T ). Let P be the convex
hull of this set. Thus P is a convex polytope in the Euclidean space Lie (T ).
Consider the adjoint orbit Mξ ⊂ g of ξ. It is a fact that under orthogonal
projection from g to Lie (T ) the manifiold Mξ maps onto P . For example if M
is an adjoint orbit of SU(n) which is a copy of CPn−1 the set P is an n − 1
simplex and the projection map, in suitable co-ordinates, is given by

[z1, . . . , zn] 7→
1

∑
|zi|2
(|z1|

2, . . . , |zn|
2).
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Given a choice of fundamental Weyl chamber B0, we say that a root α is
positive if 〈α, ξ〉 ≥ 0 for all ξ ∈ B0.

The fundamental Weyl chamber B0 can be defined by finite set of inequalities
〈α, ξ〉 ≥ 0 for roots α. There is a unique minimal set of such inequalities. The
roots appearing in this set are called the “simple roots”. (To be more precise,
a root α is simple if 〈α, ξ〉 ≥ 0 on B0 and if equality occurs when ξ is in the
interior of some codimension-1 face of the boundary.)

Fact 3 The angle between two simple roots is ≥ π/2.

Thus the angle between two simple roots is one of π/2, 2π/3, 3π/4, 5π/6. The
Dynkin diagram is defined by taking a node for each simple root and joining
nodes by 0, 1, 2, 3 bonds in the four cases respectively.

Fact 4 The root system can be recovered from the Dynkin diagram

Fact 5 The Lie algebra is simple if and only if the Dynkin diagram is connected

Fact 6 If the Lie algebra g has trivial centre then the number of simple roots is
equal to the rank. We can choose ω1, . . . ωr in B0 such that

B0 = {
∑

aiωi : ai ≥ 0}.

Fact 7 If G is simply connected (which implies that g has trivial centre) then
we can choose the ωi to be weights and such that the intersection of the weight
lattice with B0 is given by vectors

∑
aiωi for integers ai ≥ 0.

6 More on representations

6.1 The general picture

We consider a compact, connected Lie group G with maximal torus T , as in
the previous Section. Recall that we have a weight lattice Λ ⊂ Lie (T ) and a
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complex representation of T is specified by a a finite collection of weights μ ∈ Λ
and multiplicities nμ. If we have any representation of G, restriction to T gives
a set of weights and multiplicities and these are invariant under the action of
the Weyl group. We also have a root lattice ΛR ⊂ Λ, the subgroup generated by
the roots of G.

Fix a fundamental Weyl chamber B0. From what we know in Section 5, the
integral co-adjoint orbits are in 1-1 correspondence with points in Λ ∩ B0. So
the main theorem of Section 4 takes the following form.

The irreducible representations are in 1-1 correspondence with the points in
Λ ∩B0.

Given ξ ∈ Λ∩B0, let Vξ be the corresponding irreducible representation. Let
Pξ ⊂ Lie (T ) be the convex hull of the finite set Wξ, as considered in Section
5. Then we have

Proposition 19

• ξ is a weight of Vξ and the multiplicity nξ is 1.

• The weights of Vξ are contained in the intersection of Pξ with the coset
ξ + ΛR ⊂ Λ

The weight ξ of Vξ is called the “highest weight”, and the corresponding
eigenvector in Vξ (which is unique up to scalars, since nξ = 1) is called the
“highest weight vector”.

The proof of the proposition is (in our approach) an exercise in the tech-
niques used in Section 4. The first item we have already established, when we
constructed a particular section s of L → M . Let Qξ ⊂ Lie (T ) be the convex
hull of the weights, so Pξ ⊂ Qξ. To see that Qξ = Pξ it suffices to show that the
only extreme point of Qξ in B0 is ξ (for then, by the Weyl group invariance, the
only extreme points of Qξ are those in the orbit Wξ). This statement follows by
considering the action of a suitable 1-parameter subgroup on M , and using one
of the results from Section 4. To see that the weights are contained in ξ+ΛR we
can consider the derivatives of a section of L at the point p ∈M fixed by T ⊂ H.
The first non-vanishing derivative is well-defined (without using a connection),
as in Section 4. If σ were a section belonging to a weight not in ξ+ΛR one sees
that all derivatives of σ must vanish at p, so σ is identically zero by analytic
continuation.

Remark
We stated as a “fact” in Section 5 that for a simply connected group G

of rank r there are r fundamental weights ωi such that the weights in B0 are
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∑
aiωi for integers ai ≥ 0. For each ωi there is a unique simple root αi such

that 〈αi, ωi〉 6= 0. On the other hand, each ωi is associated to an irreducible
representation, Vi say. So we can label the vertices of the Dynkin diagram with
these fundamental irreducible representations.

We have described the irreducible representations as sections of line bundles
over the different co-adjoint orbits. Just as we saw in the case of SU(3) there
is another, slightly different, approach. Consider any point ξ in the interior of
the Weyl chamber B0. The co-adjoint orbit is identified with G/T and as ξ
varies we get the same complex structure. So we can think of a fixed complex
manifold G/T (the flag manifold in the case when G = SU(n)). From this point
of view we think of a weight ξ as defining a homomorphism from T to S1 and
hence a line bundle Lξ → G/T . Then our representation Vξ, when ξ is a weight
in the interior of B0, is the space of holomorphic sections of Lξ over G/T . Now
suppose ξ is a weight on the boundary of B0. Then we have a different co-adjoint
orbit Mξ = G/H but T ⊂ H so we have a fibration G/T → Mξ. Checking the
definitions, one sees that this is a holomorphic fibration and the line bundle Lξ
over G/T is the lift of the line bundle L → Mξ. So the holomorphic sections
of Lξ → G/T can be identified with sections of L → Mξ. Thus we see that
for all ξ in the (closed) Weyl chamber B0 we can describe Vξ as the space of
holomorphic sections of Lξ → G/T . This the Borel-Weil Theorem, in the form
usually stated.

We will now take a more algebraic point of view. For each weight μ we
have a vector space Uμ of dimension nμ and Vξ =

⊕
μ Uμ. We consider the

representation of the complex Lie algebra gc = g ⊗ C = Lie (T )c ⊕
⊕
αCrα,

where α runs over the roots. Then, by definition of the weights, an η ∈ Lie (T )c

acts on Uμ as scalar multiplication by 〈η, μ〉. Our KEY CALCULATION shows
that a root α acts as

gα : Uμ → Uμ+α

interpreted as 0 if μ + α is not a weight. The algebraic approach to proving
the main theorem (irreducible representations↔ highest weight vectors) extends
what we did for sl2(C) in Chapter 4. If we have an irreducible representation
V we take a highest weight vector e (with a suitable definition of “highest”)and
repeatedly apply the operators gα for negative roots α. The vectors we get in
this way generate V . See Fulton and Harris (for example) for all this. (Just as
in the approach of Chapter 4, the most difficult part is the construction of a
representation with a given highest weight.)
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THIS COMPLETES THE CORE OF THE COURSE

SHORT BREAK.

Creators of the theory:

• S. Lie 1842-1900

• W. Killing 1847-1923

• E. Cartan 1869-1951

• H. Weyl 1885-1955

WHAT YOU SHOULD REMEMBER FROM THIS COURSE

1. Symmetric spaces: generalise Euclidean/spherical/hyperbolic geometries.

2. Irreducible representations↔ integral coadjoint orbits ↔ orbits of weights
under Weyl group ↔ weights in Weyl chamber.

3. The “key calculation” for eigenvectors in Lie algebra actions: passage back
and forth between compact/complex semisimple groups.
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6.2 Spin representations

We have seen that π1(SO(3)) = Z/2 (since the universal cover is SU(2)). It
follows easily from the fibration

SO(n− 1)→ SO(n)→ Sn−1,

that π1(SO(n)) = Z/2 for all n ≥ 3. Thus there are compact, simply connected,
groups Spin(n) which are double covers of the SO(n). (And Spin(3) = SU(2).)
In general if G̃ → G is a finite covering of compact groups then we can

identify Lie (T ), the Weyl chambers and the roots for the two cases but the
weight lattices will be different. There are representations of G̃ which do not
factor through G. We saw this in the case of SU(2)→ SO(3).

Background (not essential) According to the fact stated in Section 5,
the weights in the fundamental Weyl chamber for the simply connected group
Spin(2m + 1) are linear combinations of m fundamental weights ωi, each cor-
responding to an irreducible representation. It turns out that m − 1 of these
representations are just the exterior powers ΛiC2m+1 for 1 ≤ i ≤ m − 1, so
these factor through SO(2m+1). The other representation does not factor and
is the spin representation S of Spin(2m + 1). Similarly, Spin(2m) has rank m
and m− 2 of these fundamental representations come from the exterior powers
ΛiC2m for 1 ≤ i ≤ m− 2 but we have two more representations S+, S− which
do not factor through SO(2m).

Our task is to construct these spin representations explicitly. The even and
odd cases are a little different, so we begin with the even case. In one sense, our
general theory constructs these representations. The relevant co-adjoint orbit of
SO(2m) isM = SO(2m)/U(m)–which can be viewed as the adjoint orbit of the
standard I0 : R

2m → R2m. With the right scale factor, working with the group
SO(2m), we get the homomorphism det : U(n)→ S1 and the corresponding line
bundle L → M . This can be described as follows. A point of M is a complex
structure I : R2m → R2m which allows us to think of R2m as a complex vector
space. The we get a 1-dimensional complex vector space by taking the dual of
the top exterior power, and this is the fibre of L over I.
Now define

Ũ(m) = {(g, z) ∈ U(m)× S1 : det g = z2}.

This is a group which double covers U(m). (We can think of working in Ũ(m)
as the same as working in U(m), but being allowed a choice of square root of the
determinant.) It is easy to see that in the double cover Spin(2m) → SO(2m)
the preimage of U(m) is a copy of Ũ(m) ⊂ Spin(2m). We can regard the same
coadjoint orbit M as a coadjoint orbit of Spin(2m) but now

M = Spin(2m)/Ũ(m).
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With this description we get a square root of the line bundle L, i.e. a line bundle
L1/2 with

L = L1/2 ⊗ L1/2.

The representation S+ of Spin(2m) is given by the space of holomorphic sections
of L1/2 over M . The representation S− which is obtained similarly from the
orbit of a complex structure compatible with the opposite orientation of R2m.
(Thus a choice of one of the representations S± is the same as the choice of an
orientation of R2m.)

But we want a more explicit description. Recall that the Lie algebra of
SO(n) can be identified with Λ2Rn. If wi is a standard basis of R

n we have
standard elements wij = −wji spanning so(n) and the brackets [wij , wkl] are
specified by

• 0 if |{i, j} ∩ {k, l}| = 2;

• 0 if |{i, j} ∩ {k, l}| = 0;

• [wij , wjl] = wil if i, j, l distinct.

Lemma 4 Suppose we have a complex vector space V and linear maps Γi :
V → V which satisfy the relations

ΓiΓj + ΓjΓi = 0 (i 6= j)

Γ2i = 1.

Then the map wij 7→ ΓiΓj defines a representation of so(n) on V .

This is easy to check, using the relations defining so(n). More invariantly we
can thing of the input as a family of linear map Γw : V → V for w ∈ Rn such
that

Γ2w = |w|
21V

Now start with an m-dimensional Hermitian vector space E. The wedge
product gives a map E ⊗ Λ∗E → Λ∗E. Explicitly in terms of a standard basis
we have wedge products

eα : Λ
pE → λp+1E.

Using the metric we get a complex linear map defined by contraction

E ⊗ Λ∗E → Λ∗E.

Explicitly, we have the contraction operators

e∗α : Λ
pE → Λp+1E.
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Lemma 5
eαe

∗
β + e

∗
βeα = δαβ1.

This is straightforward to check.
Now given v ∈ E with complex co-ordinates vα in the standard basis set

Γv =
∑

vαeα +
∑

vβe
∗
β .

Then expanding out we find that

Γ2v = 1.

This uses the preceding Lemma and the obvious relations eαeβ = −eβeα, e∗αe
∗
β =

−e∗βe
∗
α. So we conclude that we get a representation of so(2m) on Λ

∗E. By gen-
eral theory, this Lie algebra representation corresponds to a representation of
the simply connected group Spin(2m). This is the total spin representation S.
However S obviously decomposes into S = S+ ⊕ S− corresponding to the even
and odd parts of the exterior algebra, and these are the irreducible representa-
tions that we want. Our maps Γi give maps of representations of Spin(2m):

R2m ⊗R S
+ → S− , R2m ⊗R S

− → S+.

These are called the Clifford multiplication maps.

Now consider SO(2m− 1) ⊂ SO(2m). That is we fix a unit vector in R2m.
Then from the above we get a map S+ → S− which is an isomorphism. In
other words when restricted to SO(2m − 1) the representations S± become
isomorphic. This defines the spin representation S of SO(2m− 1).
Another approach, in place of complex structures, is to use induction on

dimension. Suppose that for m = 2n we have Γi as above where S = S+ ⊕ S−

and Γi = γi + γ
∗
i where γi : S

+ → S−. Then we get the same structure for
m = 2n+ 1 by taking

Γ2m+1 = (1)⊕ (−1) : S
+ ⊕ S− → S+ ⊕ S−

Suppose that we have S for m = 2n + 1 and Γ∗i = Γi. Then we set S
+ =

S, S− = S and γi =
√
−1Γi. We also let γ2n+2 = 1.

Thus we construct the spin representations inductively.

The embedding M = SO(2n)/U(n) ⊂ P(S+) can be described more ex-
plicitly as follows. Fix a decomposition C2n = L0 ⊕ L∗0 by isotropic subspaces.
Then a generic n-dimensional subspace can be written as the graph of a linear
map from L0 to L

∗
0 i.e an element of L

∗
0 ⊗ L

∗
0. The condition that the graph is

isotropic is that this map is skew symmetric. So we parametrise a dense open
set in M by Λ2L∗0. Identifying S

+ with ΛevenL∗0 the embedding is defined by

A 7→ [exp(A/2)],

where exp is computed in the commutative algebra Λeven.
Extra facts

56



• When we restrict to SU(m) ⊂ Spin(2m) the spin representations are iden-
tified with the even and odd exterior powers. When we restrict to the
larger group Ũ(m) we get the representations

ΛevenCm ⊗ (detCm)1/2 ,ΛoddCm ⊗ (detCm)1/2.

• If we identify the Lie (T ) for Spin(2m) with that of SO(2m) and use the
same co-ordinates as before the weights of S are

1

2
(±λ1 ± λ2 ± λ3 . . .± λm) .

For S+ we take those terms with an even number of + signs and for S−

those with an odd number of − signs. Notice that the weight lattice of
Spin(2m), in these co-ordinates, is given by

∑
aiλi where ai ∈ Z/2 and

ai = aj modulo 1, for all i, j.

• If we consider Spin(2m) ⊂ Spin(2m + 1) then the spin representation
S in 2m + 1 dimensions decomposes as S+ ⊕ S− where S± are the spin
representations in 2m dimensions.

• The spin representations S± of Spin(2m) start life as complex vector
spaces of dimension 2m−1. But they can be considered in a variety of
ways, depending on the dimension. We have a complex antilinear map

∗ : ΛpE → Λm−pE,

defined by
θ ∧ (∗θ) = |θ|2 vol.

Whenm = 0 modulo 4, ∗maps Λeven to Λeven and has ∗∗ = 1. This implies
that S+ is the complexification of a real representation of Spin(2m), and
similarly for S−.

When m = 2 modulo 4, ∗ again maps Λeven to Λeven but ∗∗ = −1. This
implies that S+ is naturally a quaternionic vector space, and similarly for
S−.

When m = ±1 modulo 4, ∗ maps Λeven to Λodd and this implies that the
representations S± are duals of each other.

Likewise, in the odd case, the spin representation of Spin(n) is real if
n = ±1 modulo 8 and quaternionic if n = ±3 modulo 8.
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• Write S(R2m) for the total spin space associated to a Euclidean vector
space. (More precisely the “association” is only up to a sign.) Then we
have

S(R2p ⊕R2q) = S(R2p)⊗ S(R2q)

and the decomposition into ± parts works in the obvious way.

• There is an analogue of the spin representation associated to the real
symplectic group Sp(n,R). This is a noncompact group and the repre-
sentation, called the metaplectic representation is an infinite-dimensional
unitary representation of a double cover of Sp(n,R). The infinite dimen-
sionality brings in analytical issues but, ignoring these, we proceed as
follows. In the orthogonal case the relations we need for our maps Γv can
be written as

ΓvΓw + ΓwΓv = 〈v, w〉1.

Now we take v to lie in R2m endowed with the standard symplectic form
Ω and consider instead the relations

ΓvΓw − ΓwΓv = Ω(v, w)1.

Given such a family we get a representation of the Lie algebra of Sp(n,R).
Take a Hermitian space E as a before and consider the symmmetric (i.e.
polynomial) algebra s∗(E). We have maps eα, defined by multiplication,
and e∗α, defined by differentiation, and we proceed as before using the
Heisenberg relations

[eα, e
∗
β ] = δαβ .
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6.3 The Weyl character formula.

The data of the weights and multiplicities of a representation can equiva-
lently be encoded in the character χV : T → C. This is the character of V
restricted to T . Since each conjugacy class in G contains a representative in T
there is no loss of information. The character is obviously invariant under the
action of the Weyl group. In the case of the representation sk of SU(2) we have

χ(x) = eikx + ei(k−2)x + . . .+ e−ikx.

This can be written as

χ(x) =
ei(k+1)x − e−i(k+1)x

eix − e−ix
.

(Here x is a co-ordinate on Lie (T ) = R and we are regarding the character
as a periodic function on Lie (T ).)

For the general case: given a weight λ, let eλ be the corresponding complex-
valued function. This can be thought of as a function on Lie (T ) or T (by
periodicity). We have eλ+μ = eλeμ. The character is

χV =
∑

λ

nλ,V eλ.

Fix a fundamental Weyl chamber and let ρ be one half the sum of the positive
roots. Define a homomorphism sgn : W → {±1} by the determinant of the
action on Lie (T ). Given a highest weight vector ξ ∈ B0 set

Aρ+ξ(x) =
∑

w∈W

sgn(w)ew(ξ+ρ)(x).

In general ξ+ρ may not be a weight, so we have to interpret this on Lie (T )
for the moment. Let

D(x) =
∏

α

(eα/2(x)− e−α/2(x)),

where the product is taken over the positive roots α.
The Weyl character formula is

Theorem 6 For a weight ξ in B0 the character of the corresponding irreducible
representation is

χVξ =
Aρ+ξ

D
.
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The statement should be taken as including the assertion that the right hand
side actually is a finite sum of multiples of eλ for weights λ.

There are various ways of proving this Theorem. One, as in Adams (follow-
ing Weyl), uses a careful discussion of the orthogonality of characters. (This
also leads to another proof—the original proof— of the main theorem about
representations, but not in a very explicit form.) Another approach, covered in
Fulton and Harris, is entirely algebraic. Both these proofs require some rather
detailed arguments. We discuss a proof which involves more background but
leads straight to the formula.

Preliminaries
Note first that the Weyl formula is interesting and non-trivial for “familiar”

groups such as SU(3), SU(4), . . .. So, if you prefer, it makes good sense not
to worry too much about the arguments involving the Weyl group etc., in the
general case, but just verify the assertions in these familiar cases.

Lemma 6 Let α0 be a simple root. Then the reflection defined by α0 permutes
all the positive roots not equal to α0

By definition α0 corresponds to a codimension-1 face of the boundary of B0.
Let ξ be a generic point on this face and choose nearby points ξ+, ξ− with ξ+
in the interior of B0 and ξ− the reflection of ξ− in the root plane Lα0 . So the
line segment from ξ+ to ξ− does not cross any root planes apart from Lα0 . So,
for any positive root α, the inner products 〈α, ξ±〉 have the same sign and this
sign is positive, since ξ+ is in the interior of B0. But if the relection ρdefined
by α0 took α to a negative root we would have

〈α, ξ−〉 = 〈α, ρ(ξ+)〉 = 〈ρ(α), ξ+〉 < 0,

in contradiction to the above.

A function f on Lie (T ) is called alternating if f(wx) = sgn(w)f(x) for
w ∈W . Clearly Aρ+ξ is alternating. Two elementary observations are

Corollary 5 1. The function D(x) is alternating.

2. The element ρ lies in the interior of the fundamental Weyl chamber B0.

These facts are easy to show, given the preceding lemma. For (1) we see
that each time we apply a reflection we change the sign of just one term in the
product defining D. For (2), we see that for a simple root α0

2〈α0, ρ〉 = 〈α0, α0〉+ 〈S, α0〉,
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where S is the the sum is of the positive roots not equal to α0. By the lemma,
S is fixed by the reflection defined by α0, so 〈S, α0〉 = 0.

There is no loss of generality in supposing that ρ is a weight of G. For the
truth of the Weyl formula is not affected by taking finite coverings. Consider
the adjoint representation of G, which maps to some orthogonal group SO(d).
This may not lift to Spin(d) but we can construct a double cover G̃→ G which
does have this property. So we can suppose that the adjoint representation lifts
to Spin and then ρ is a weight, by what we know about the weight lattice of
Spin. This is not really essential but will simplify language. Geometrically, the
line bundle Lρ over G/T , corresponding to ρ, is a square root K

−1/2 of the dual
“anti-canonical” line bundle of the manifold G/T .

Two extra facts which we do not need to use in the proof of the Theorem,
but which are useful to know for orientation are:

• The denominator D can be written in another way:

D(x) = Aρ(x) =
∑

w∈W

sgn(w)ew(ρ)(x).

This follows from the main theorem by taking the trivial representation,
but it is not hard to prove directly using the alternating property of D.

• If ρ is a weight then the map σ 7→ σ+ρ gives a 1-1 correspondence between
weights σ in B0 and weights σ + ρ in in the interior of B0.
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Input from general representation theory: the reciprocity principle

The basic theorem about representations of a finite group A can be stated
as follows. Consider the space C(A) of complex-valued functions on A. This is
a representation of A×A, with A acting on itself by left and right translation.
The statement is that, as representations of A×A

C(A) =
⊕

V ∗ ⊗ V,

where the sum runs over the irreducible representations V of A and we let A
act on the left on V ∗ and on the right on V . All the properties of orthogonality
of characters etc. can be read off from this.
The same theorem holds, ignoring some technicalities, for a compact Lie

group. We let C(G) be the space of complex-valued “functions” on G and we
have

C(G) =
⊕

V ∗ ⊗ V.

The technicalities involve what kind of functions we consider and precisely what
we mean by the direct sum, running over the infinitely many irreducible repre-
sentations. But these issues appear already in the case when G = S1

C(S1) =
⊕

r∈Z

C eirx,

which is the theory of Fourier series. There are a variety of different precise
interpretations we can put on the formula e.g.

• The space formed by the finite sums on the right hand side is dense in
C∞(S1),

• If we take l2 sums on the right hand side we get an isomorphism with
L2(S1),

• If we take sums on the right hand side which do not grow too fast we get
distributions on S1

and so on. In fact these issues will be irrelevant for our discussion so we just
ignore them. (The essential thing one needs is to break up the functions on G
into a sum of finite dimensional representations, and this can be seen by using
the eigenspaces of the Laplace operator on G, or using integral operators as in
Adams.)

Now consider T ⊂ G. Given a weight μ we can consider the functions on G
which transform by the weight −μ under the right action of T on G. These are
just the same as the smooth sections Γ(Lμ) of the line bundle Lμ → G/T . But
now G acts on Γ(Lμ) and we can decompose into irreducibles

Γ(Lμ) =
⊕

V

mV,μV,
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for certain multiplicitiesmV,μ. Now the formula above implies thatmV,μ = nV,μ:
i.e.the multiplicity with which the weight μ occurs in a representation V is the
same as the multiplicity with which the representation V occurs in the space of
smooth sections of Lμ.

The analogue of this for finite groups and induced representations is the
Frobenius reciprocity theorem.
Input from complex geometry: the Dolbeault complex and vanishing theorems

Suppose in general that we have a complex manifold M and a holomorphic
line bundle L → M . The holomorphic sections of L can be viewed as the
smooth sections which satisfy a linear partial differential equation, a version of
the Cauchy-Riemann equations. This equation can be written as ∂s = 0 where
∂ is a linear differential operator

∂ : Γ(L)→ Γ(L⊗ τ),

where τ is the conjugate dual of the tangent bundle of M . This extends to the
Dolbeault complex

∂ : Γ(L⊗ Λpτ)→ Γ(L⊗ Λp+1τ),

with ∂
2
= 0. We form the corresponding Dolbeault cohomology groupsHp(M,L),

so H0(M,L) ⊂ Γ(L) is the same as the holomorphic sections. The basic fact
we need is that when M = G/T and L = Lλ−ρ for a weight λ ∈ B0 the co-
homology groups vanish for p ≥ 1. Further, if λ is not in the interior of B0
then the 0-dimensional cohomology vanishes as well. These statements follows
from the Kodaira Vanishing Theorem. This may seem more familiar if we write
Lλ−ρ = Lλ⊗K1/2 and note that Lλ is a “semi-positive” line bundle and K−1/2

is a strictly “positive” line bundle. This last follows from the second part of the
corollary above (that ρ is in the interior of B0.)

(Remark Those who have encountered the Kodaira Vanishing theorem will
recognise similarities between the proof and the identities used in 6.2 above.)

Now we are ready to derive the Weyl formula. Let μ be a weight and consider
the Dolbeault complex of the line bundle Lμ over G/T . The group G acts on
everything and each space of sections Γ(L ⊗ Λpτ) can be expressed as a sum
over irreducibles. The ∂-operators can only map between pieces corresponding
to the same irreducible. That is, we have

Γ(L⊗ Λpτ) =
⊕

W

Np,W ⊗W

say, where W runs over the irreducible representations of G. Then the ∂-
operator is defined by linear maps Np,W → Np+1,W .so If we fix the representa-
tion V and look at the corresponding sub-complex we get a finite dimensional
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complex
N0 → N1 → N2 → . . .

where we have written Np = Np,V . Using the well-known relation relation
between the Euler characteristics of a complex and its cohomology we see that
the alternating sum ∑

p

(−1)pdimNp

is given by the multiplicity of V in the cohomology of Lμ, taken with suitable
signs. Now suppose that V has weight ξ and that μ+ ρ lies in the fundamental
Weyl chamber B0. Then by what we know about the cohomology we have

∑

p

(−1)p dim Np = δξμ

(i.e. equal to zero unless μ = ξ when it is 1.)

Using a Hermitian metric, we can identify the bundle τ with the tangent
bundle of the complex manifold. But the decomposition into root spaces allows
us to write this as

τ =
⊕

Lα

where α runs over the positive roots. (This is not a holomorphic isomorphism,
but that does not matter here.) Thus the exterior power Λpτ can be identified
with the direct sum of line bundles Lα1+...αp where the sum runs over distinct
positive roots α1, . . . , αp. Using our “reciprocity principle’,’ this means that

dimNp =
∑

nμ+α1+...+αp,V .

Let E(x) =
∏
(1− e−α(x)), where the product runs over the positive roots.

We see that
∑
(−1)pdimNp is the coefficient of eμ in the product

(
∑

λ

nλ,V eλ(x))E(x),

that is, in χV (x)E(x). So our formula above says that the only term in χV (x)E(x)
corresponding to a weight in B0 − ρ is eξ. Clearly D(x) = E(x)eρ(x), so the
only term in the product χV (x)D(x) corresponding to a weight in B0 is eξ+ρ.
But we know that χV (x)D(x) is alternating, by (1) of the Corollary, under the
action of the Weyl group, so we must have

χV (x)D(x) =
∑
sgn(w)ew(ξ+ρ)(x),

which is the Weyl formula.
Remark From our argument we can derive (most of) the generalisation due

to Bott of the Borel-Weil theorem. Consider any holomorphic line bundle Lμ
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over G/T . The cohomology groups are representations of G. ThenH∗(G/T,Lμ)
is zero if μ+ ρ lies in a root plane. Otherwise, μ+ ρ lies in the interior of some
Weyl chamber wB0 and the cohomology is zero except in a certain dimension
p(w). In this dimension we get a copy of Vξ where ξ is the weight w

−1(μ+ρ)−ρ
which is in B0. What we are missing is an precise description of p(w); we only
see that p(w) is odd or even as sgn(w) is ±1. The whole discussion, and the role
of ρ, is clearer if one works with the Dirac operator in place of the Dolbeault
complex.
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7 Exceptional groups and special isomorphisms

7.1 Low dimensions:special isomorphisms

The dimension of the spin representation of SO(n) grows very rapidly as a func-
tion of n, but for low values of n the spin representation can be “smaller” than
the usual fundamental representation on Rn. This leads to special isomorphisms
within the families of classical Lie groups. We write ∼ for local isomorphism
(i.e. isomorphism up to coverings.)

• Spin(3) ∼ SU(2) ∼= Sp(1), and C2 = H is the spin representation.

• Spin(4) ∼ SU(2) × SU(2) and the C2 representations of the two factors
are the representations S±.

• Spin(5) ∼ Sp(2) and H2 is the spin representation.

• Spin(6) ∼ SU(4) and C4 is the positive spin representation (the negative
spin representation is the dual).

And there we stop: apart from these special isomorphisms, the groups SU(n), Spin(n), Sp(n)
are all distinct. These special isomorphisms can all be seen in a variety of other
ways.

• SO(3) ∼ SU(2): we have seen this many times. The adjoint representation
gives a double covering SU(2)→ SO(3).

• SO(4) ∼ SU(2)×SU(2) ∼ SO(3)×SO(3): We consider the exterior power
Λ2R4. In the presence of a metric and orientation there is a ∗-operation
∗ : Λ2 → Λ2 with ∗2 = 1. Then Λ2 = Λ2+ ⊕ Λ

2
−, the ±1 eigenspaces of

∗. These are 3-dimensional. The symmetry group SO(4) acts on Λ2± and
this gives a homomorphism SO(4)→ SO(3)× SO(3).

• SO(5) ∼ Sp(2). We think of Sp(2) acting on the quaternionic projective
line HP1 i.e.

HP1 = Sp(2)/Sp(1)× Sp(1).

Now use the fact that HP1 = S4 and the previous isomorphism to recog-
nise this, up to coverings, as

S4 = SO(5)/SO(4).

• SO(6) ∼ SU(4). Start with SU(4) acting on C4. Similar to the real case
there is a ∗ operator ∗ : Λ2 → Λ2, with ∗2 = 1, but this is now complex
antilinear (since it uses the Hermitian form on C4). We encountered this
in Section 6.2. The eigenspaces Λ2± are 6-dimensional real vector spaces
(since ∗ is antilinear). The action on one of these gives a homomorphism
SU(4)→ SO(6).
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In the above we have discussed compact groups. We get similar isomorphisms
between non-compact forms with the same complexification: for example SL(2,R) ∼
SO(2, 1). Another example is SL(4,R) ∼ SO(3, 3) which comes from the fact
that, given a volume form, the wedge product defines a natural quadratic form
on Λ2R4. Then we can get SU(4) ∼ SO(6) by a slightly different route: first
complexifying and then taking maximal compact subgroups.

7.2 Dimensions 7 and 8: Triality and G2.

What happens when we go further? The special isomorphisms stop but in di-
mensions 7 and 8 the spin representations are roughly the same size as the
fundamental representation and this leads to exceptional phenomena, and in
turn the existence of the exceptional Lie groups. Since we defined the spin rep-
resentation in dimension 2n−1 by passing to dimension 2n we skip 7 dimensions
for the moment and go straight to Spin(8).

The two spin representations S± of Spin(8) are each 8 dimensional and have
natural real structures. So we get two homomorphisms Spin(8) → SO(S±)
and it is easy to see that these are local isomorphisms. It follows that there
are inner automorphisms of Spin(8) which take the standard representation to
either of the spin representations. In fact the inner automorphisms permute
the three 8 dimensional representations R8, S+, S− in all possible ways. This
is the phenomenon of “triality”. The symmetry is also evident in the Dynkin
diagram. The Clifford multiplication

R8 × S+ → S−,

gives, after transposition, a trilinear map

R8 × S+ × S− → R,

which is preserved, up to sign, by the automorphisms interchanging the three
representations.

Now go back to 7 dimensions. The spin representation gives an action of
Spin(7) on the 8-dimensional real vector space S and hence on the unit sphere
in this space, which we denote by Σ(S). So Σ(S) is a copy of S7. We claim
that this action is transitive. Indeed we can think of Spin(7) ⊂ Spin(8) as the
stabiliser of a unit vector in the standard representation on R8. By triality it
is the same to show that if H ⊂ Spin(8) is the stabiliser of a unit spinor in S+

then H acts transitively on the unit sphere in the standard representation R8.
Fix a complex structure R8 = C4. Then the group SU(4) preserves the form
1 + ∗1 ∈ Λ0 ⊕Λ4,and this is a real element in the sense of the real structure on
S+. So H contains SU(4) and this already acts transitively on the unit sphere
in C4.
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Given the above, we can define a Lie group G2 ⊂ Spin(7) to be the stabiliser
of a unit spinor ψ. So we have

S7 = Σ(S) = Spin(7)/G2,

andG2 has dimension
1
27.6−7 = 14. We claim now that Spin(7) acts transitively

on the unit sphere bundle of Σ(S), i.e. on pairs of orthogonal vectors in S. By
the same principle as before it is the same to show that H acts transitively on
pairs of orthonormal vectors in R8. Since we already know it acts transitively
on unit vectors we can consider pairs of the form (e1, e2), (e1, e

′
2). Then we

choose a complex structure on R8 so that e2, e
′
2 are in the same 1-dimensional

complex subspace. Then, with this complex structure, there is an element of
SU(4) which fixes e1 and takes e2 to e

′
2.

From the above, the group G2 acts transitively on the unit sphere in the
tangent bundle of Σ(S) at the point ψ, i.e. on S6. We look at the stabiliser
G of a point in this unit sphere bundle, which has dimension 8. By the same
principle this is the same as looking at the stabiliser of a unit spinor ψ and a
pair of orthonormal vectors e1, e2 in R

8. Choose a complex structure on R8

with e2 = Ie1. Then the standard embedding SU(3) ⊂ SU(4) maps into the
stabiliser and since SU(3) has dimension 8 we see that it must be the whole
group. Thus

S6 = G2/SU(3).

It follows that we can build the Lie algebra of G2 as

g2 = su(3)⊕ V

for some representation V of SU(3). It is not hard to identify this as the stan-
dard representation on C3. It follows that G2 has rank 2, with same maximal
torus as SU(3). The roots of G2 are given by adjoining ± the weights of the
standard representation to the roots of SU(3). This gives a configuration of
two concentric hexagons in the plane and realises the case k = 6 discussed in
Section 5.

: Further facts about G2.

The decomposition g2 = su(3)⊕V is not that of a symmetric space. That is,
there is a non-zero component of the bracket mapping C3 ×C3 to C3. This is
the complex analogue of the cross product in R3 and in standard co-ordinates
is given by

(z × w)i =
1

2

∑
εijkzjwk.

Take R7 = R ⊕C3. We can define a skew-symmetric cross product × : R7 ×
R7 → R7 by
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• The component C3 ×C3 → C3 is the cross product above;

• The component C3×R→ C3 is scalar multiplication, and R×C3 → C3

defined by skew symmetry.

• The component C3×C3 → R is the imaginary part of the Hermitian form
on C3.

This is visibly invariant under the action of SU(3) on R7. It is also invariant
under the action of G2 ⊂ SO(7). We can alternatively define G2 to be the
subgroup of GL(7,R) which preserves this cross product.

The cross product on R7 can be used to define the octonion product on
R8 = R1⊕R7, with the same formulae as for the quaternions. The octonions
are not associative. A 3-dimensional subspace of R7 which is closed under the
cross-product and on which the product is isomorphic to that on ImH is called
an associative subspace. Let M be the set of associative subspaces. Then G2
acts transitively on M and it turns out that M = G2/SO(4). Furthermore this
is a symmetric space (and the only compact symmetric space associated to G2).

7.3 Lie algebra constructions

7.3.1 Construction of F4, E8.

Now we go back to our discussion of the Lie algebras associated to symmetric
spaces in Section 2.1. Suppose we have a Lie algebra g, with a nondegenerate
invariant quadratic form, and a Euclidean representation on a vector space V
(i.e. a homomorphism g → so(V ): all of this can be done in either the real
or complex cases). Then we have g ⊗ V → V which we can transpose using
the inner products to get V ⊗ V → g. Using these we can build a bracket
[, ] : W × W → W where W = g ⊕ V . Thus the component of [, ] mapping
V × V to V is defined to be 0. Now [, ] will not always satisfy the Jacobi
identity (usually it will not), but the only problem comes from the component
of J(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] which maps V × V × V to V . In
fact we can think of the equivalent data

Ω(x, y, z, w) = 〈J(x, y, z), w〉

as an element of Λ4V ∗, canonically determined by the input (g, V ). Call V
a good representation of g if J (or equivalently Ω) vanishes. In this case we
get a new Lie algebra (W, [, ]). If we had a good technique to calculate Ω we
would have a good method for constructing interesting Lie algebras, but direct
calculations can be complicated.
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Now suppose we have a Lie algebra g, with invariant form, and three Eu-
clidean representations V1, V2, V2. Suppose we have a g-invariant trilinear map

B : V1 × V2 × V3 → R.

Suppose also that we have automorphisms of g which permute the Vi cyclically
and which preserve B up to sign. Now take

U = g⊕ V1 ⊕ V2 ⊕ V2,

and define a skew-symmetric bracket [, ] on U as follows.

• The component g⊗ Vi → Vi as before.

• The component Vi ⊗ Vi → g as before.

• Define V1 ⊗ V2 → V3 by transposing B, and similarly for cyclic permuta-
tions, and the terms required by skew-symmetry.

• All other components are set to 0.

Now suppose that V1 is a good representation of g. (By the symmetry we
assume, V2 and V3 are also good representations.) Then we have a pair of Lie
algebras g ⊂ g+ as above, with g+ = g ⊕ V1. Suitable components of [, ] on U
give a map

g+ ⊗ (V2 ⊕ V3)→ V2 ⊕ V3.

Suppose we can show that this defines an action of g+ on V = V2 ⊕ V3. Exam-
ining the definitions we see that this is Euclidean and that [, ] on U = g+ ⊕ V
is defined by the same procedure as before. Now we claim that in this situation
V is a good representation of g+. For, by what we have said, the only possible
difficulty comes from J(x, y, z) where x, y, z all lie in V2 ⊕ V3. That is to say, Ω
lies in Λ4(V2 ⊕ V3). But by symmetry we have

Ω ∈ Λ4(V2 ⊕ V3) ∩ Λ
4(V3 ⊕ V1) ∩ Λ

4(V1 ⊕ V1 ⊕ V2,

and this intersection is 0. So the Jacobi identity is satisfied. (Of course one
does need to think carefully about the signs here, but the argument holds up.)

We apply this in two cases. First we take g = so(8) and the three representa-
tions R8, S+, S−. The initial hypotheses express what we know about triality.
We recognise so(8) ⊕ R8 as so(9) (corresponding to the description of S8 as
as symmetric space), so R8 is a good representation. Also we can recognise
S+ ⊕ S− as the spin representation S of so(9), and check that the recipe above
does define the usual action. So we conclude that there is a Lie algebra, called
f4 with

f4 = so(8)⊕R
8 ⊕ S+ ⊕ S−,

and so(8) ⊂ so(9) ⊂ f4. We get a corresponding group F4, either by general
theory or more concretely by taking the automorphisms of the Lie algebra, and
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then the universal cover. With the right choice of signs F4 is compact. It
has dimension 1

28.7 + 8 + 8 + 8 = 52 and rank 4; the maximal torus is the
same as that of so(8). We also get a new symmetric space F4/Spin(9) which is
called the Cayley, or Moufang, plane. It is the analogue, for the octonions, of
the real, complex and quaternionic projective planes. (But the analogy is not
straightforward and there is no analogue of the higher dimensional projective
spaces.)

For the second application we start with g = so(8)⊕ so(8) and the represen-
tations

V1 = R
8
1 ⊗R

8
2 , V2 = S+1 ⊗ S

+
2 , V3 = S

−
1 ⊗ S

−
2 .

Here the lower indices (R81 etc.) mean that either the first or second copy of
so(8) acts. Triality on each copy of so(8) puts us in the setting considered above
(and using the tensor product of the two maps B). Now we recognise so(8) ⊕
so(8) ⊕ R81 ⊗ R

8
2 as so(16), corresponding to the symmetric space description

of the Grassmannian of 8-planes in R16. So the Vi are good representations of
g. Then we recognise V2⊕V3 as the positive spin representation S+(R16), (and
check that our rules define the usual action). So we conclude that we have a Lie
algebra

e8 = so(8)⊕ so(8)⊕ V1 ⊕ V2 ⊕ V3,

and a chain
so(8)⊕ so(8) ⊂ so(16) ⊂ e8.

All the same remarks as before apply. We get a compact simply connected Lie
group E8 of rank 8 and dimension 7.8 + 3.8.8 = 248. The maximal torus in
Spin(16) is still maximal in E8. We get a new symmetric space E8/Spin(16).

7.3.2 Configurations of roots: constructions of E6 and E7

We will now get another view of E8. This will make it obvious that it
contains subgroups E6 ⊂ E7 ⊂ E8 and these are related to two classical topics:
the 27 lines in a cubic surface and the 28 bitangents of a quartic curve.

For r ≥ 1 consider the standard Lorentzian form x20 − x
2
1 − . . .− x

2
r on R

1,r

and the integer lattice Z1,r ⊂ R1,r. Set K = (−3; 1, . . . , 1), an element of bZ1,r.
If r ≤ 8 then K.K ≥ 0 and the form is negative definite on the orthogonal
complement of K. From now on we assume r ≤ 8. Let Λ be the intersection
of the integer lattice with this orthogonal complement and let C be the set of
vectors of length −2 in Λ, i.e.

C = {C ∈ Zr+1 : C.C = −2,K.C = 0}.
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Let L be the set of vectors L in Zr+1 with

L.L = −1 ,K.L = −1.

Digression for those interested These definitions will look familiar to alge-
braic geometers. Suppose S is a complex cubic surface in CP3. Then the
integral homology group H2(S) is Z

7 and the “intersection form”is the stan-
dard Lorentzian form above. Tbe element K represents the canonical class of
S. It is shown in surface theory that the conditions defining L characterise ho-
mology classes which are represented by exceptional curves in S; copies of CP1

with self-intersection −1. So L can be identified with the set of exceptional
curves. Likewise C can be identified with the classes of “vanishing cycles”, or
−2 curves in resolutions of singular cubic surfaces. The same discussion applied
to the other values of r. When r = 7 we consider the surface S formed as a
double cover of the plane branched over a smooth quartic curve Σ ⊂ CP2. For
each bitangent line to Σ we get a pair of exceptional curves and all arise in this
way.

The sets C,L are finite and it is easy to enumerate them. For example when
r = 6 consider (a; b1, . . . , b6) ∈ Z7. This lies in L if

3a+
∑

bi = 1 , a2 + 1 =
∑

b2i .

Now the Cauchy-Schwartz inequality in this case gives

(∑
bi

)2
≤ 6.

∑
b2i ,

so (3a − 1)2 ≤ (a2 + 1) or 3a2 − 6a − 5 ≤ 0. Since a is an integer this leads to
a = 0, 1, 2. We get

1. When a = 0 six elements of L like (0, 1, 0, . . . , 0);

2. When a = 1 fifteen elements of L like (1,−1,−1, 0, . . . , 0);

3. When a = 2 six elements of L like (2,−1,−1,−1,−1,−1, 0).

So L has 27 elements when r = 6, corresponding to the classical fact that there
are 27 lines on a cubic surface. Indeed, continuing the digression for a moment,
we can represent a cubic surface S as the “blow-up” of the plane at 6 points.
The six classes of the first type above can be taken to be the exceptional curves
in this blow-up, the fifteen of the second type to be the proper transforms of
lines through 2 of the points and the six of the third class to be the proper
transforms of conics through 5 of the points. When r = 7 we perform a similar
analysis and find that L has 56 = 2.28 elements. These correspond to the 28
bitangents of a quartic curve.
It is important to realise that the division into the three caes above is not

really intrinsic to the set-up. Let Γ be the group of linear automorphisms of Z1,r

72



which preserve the element K and the quadratic form. This is a finite group
which acts on C,L and it is the natural symmetry group of the situation. But Γ
does not preserve the division into the three classes; in fact it acts transitively
on L.
We leave it as an exercise to show that for any distinct L,L′ ∈ L the inner

product L.L′ is either 0 or 1. Thus L is a finite set equipped with a simple
combinatorial structure L × L → {0, 1} given by the inner product, and this
is preserved by the finite group Γ. In the case when r = 6 this is the classical
study of the incidence realtions of the “double six” configuration of lines on a
cubic surface (see Hilbert and Cohn Vossen “Geometry and the imagination”
for example).

If L,L′ ∈ L then L.L′ = 0 if and only if L− L′ ∈ C. Similarly for C,C ′ ∈ C
with C 6= ±C ′ we have C.C ′ = 0,±1 and C+C ′ ∈ C if and only if C.C ′ = 1. Also
of course we have a map C → C taking C to −C. Thus we have combinatorial
structures both on C,L individually and connecting the two sets, everything
invariant under Γ. To see that Γ is large note that for any element C of C
defines a reflection map

x 7→ x+ (x.C)C,

which is in Γ.

It is clear from the definitions that the set C is a root system (in its span).
Now we claim that for 1 ≤ r ≤ 8 the set C is the root system associated to a
complex Lie algebra hcr. That is we let h

c as a vector space be the direct sum of
T c = T ⊗C and root spaces CwC for each C ∈ C. Suppose given ε(C,C ′) = ±1
for each pair C,C ′ ∈ cC with C ′.C = 1 satisfying ε(C,C ′) = −ε(C,C ′). Then
we define a bracket by

• For α, β ∈ T c we set [α, β] = 0.

• For α in T c and C ∈ C we set [α,wC ] = (α.C)WC .

• For each C ∈ C we set [wC , w−C ] = C.

• For C,C ′ ∈ C with C ′ 6= ±C we set [wC , wC′ ] = ε(C,C ′)wC+C′ if C.C ′ = 1
and [wC , wC′ ] = 0 if C.C

′ = 0,−1.

Then we have

Proposition 20 There is a way to define ε so that [, ] satisfies the Jacobi iden-
tity.

Of course this is essentially a special case of the fact we stated in Section 5,
but we do not want to appeal to that here.
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It is elementary to verify Proposition 2 from the combinatorics of the situa-
tion, up to a sign—that is, if we take any choice of ε. The difficulty is to choose
ε so that all the signs work out correctly. The point here is that while the
problem is invariant under Γ, so that if we have one solution ε we get another
by applying any element of Γ, there is no solution invariant under Γ, although
all solutions are equivalent in the sense that we can change our basis vectors
wC by a sign μ(C) = ±1, with μ(−C) = μ(C), and given one solution ε we get
an equivalent one

ε̃(C,C ′) = μ(C)μ(C ′)μ(C + C ′)ε(C,C ′).

Assume the above Proposition for the moment. Form a vector space V
with basis vL for L ∈ L. Suppose we have signs g(C,L) = ±1 for each pair
L ∈ L, C ∈ C with C.L = 1.

Proposition 21 There is a way to choose g such that the recipe

α(vL) = (α.L)vL , wC(vL) = g(C,L)vC+L

defines an action of g on V .

Again, this is easy to check up to sign. Of course the choice of g will depend
on the choice of ε.

Now we fix attention on the case r = 8. In this case Proposition 3 is rather
vacuous, assuming we have established Proposition 2. Since K.K = 1 the map
L 7→ L+K is a bijection from L8 to C8 and the representation in question is just
the adjoint representation. Of course the Lie algebra h8 will be e8, so what we
have to do is to match up the description here with our previous construction.

Take (y1, . . . , y8) as the standard co-ordinates on the Lie algebra of the
maximal torus in so(16). The roots of SO(16) are of the form

(. . . ,±1, . . . ,±1 . . .)

with all other entries 0, and there are 112 of these. The weights of the positive
spin representation are

1

2
(±1,±1, . . . ,±1)

where we take an even number of minus signs, and there are 128 of these.
The roots of E8 are the union of these two sets, since e8 = so(16) ⊕ S+. We
take our form to be negative definite, −

∑
y2i . Then all these roots y have

y.y = −2. Let Λ′ be the lattice in R8 consisting of vectors (y1, . . . , y8) in 12Z
8

with yi = yj mod 1 and
∑
yi = 0 mod 2. Then it is easy to check that the

roots of E8 are precisely the vectors in Λ
′ with y.y = −2. So all we have
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to check is that the lattices Λ and Λ′, with their negative definite forms, are
isomorphic. For then our general structure theory shows that the bracket on e8,
when transferred to the other setting, has the given form. (Actually our general
theory will tell us that we get a bracket by taking some ε(C,C ′) ∈ R but it is
not hard to see that we can arrange ε(C,C ′) = ±1 in this case.
To check that Λ and Λ′ are isomorphic we observe that, since K.K = 1, we

have Z⊕Λ = ZK⊕Λ = Z1,8 with the standard Lorentzian form. So we consider
Z⊕ Λ′ ⊕Z ⊂ R⊕R8. Write a vector in R⊕R8 as (y0; y1, . . . , y8) and use the
quadratic form y20 − y

2
1 . . .− y

2
8 . Set

κ = (1; 0, . . . , 0),

q1 = (1,
1

2
,
1

2
, . . . ,

1

2
),

q2 = (1, 1, 1, 0, . . . , 0),

q3 = (1, 1, 0, 1, 0, . . . , 0),

and similarly down to
q8 = (1; 0, 0, . . . , 1).

Then
κ.κ = 1, qi.qi = −1, κ.qi = 1, qi.qj = 0.

On the other hand, if Li (i = 1, . . . , 8) is the standard basis vector for R
1,8 with

L2i = −1, we have

K.K = 1, Li.Li = −1,K.Li = 1, Li.Lj = 0

So there is a unique isometry of R1,8 taking κ to K and qi to li. Thus this
isometry takes Λ′ ⊗ R to Λ ⊗ R and it is straightforward to check that it
actually takes Λ′ to Λ.

We have now established our results for the case when r = 8. Change
notation slightly to write Cr,Lr for the different sets C,L. There is are obvious
inclusions Cr−1 ⊂ Cr; just taking vectors with last entry zero. Given a choice
of ε for Cr we get a choice for Cr−1 by this embedding and the definitions show
immediately that if the Jacobi identity holds in hr it does also in hr−1. This
proves Proposition 2, and we get a chain of Lie algebras

h1 ⊂ h2 ⊂ . . . ⊂ h7 ⊂ h8 = e8.

Similarly, there is an obvious embedding of Lr−1 in Lr and the Proposition
2 for (hr, Vr) implies the same statement for (hr−1, Vr−1). So we have represen-
tations Vr of hr for all 1 ≤ r ≤ 8.

The groups H6,H7 are the remaining exceptional groups E6, E7 and we have
constructed them along with representations of dimension 27, 56 respectively.
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Now consider the relation between Cr−1 and Cr in more detail. Let Lr be
the standard basis vector (0; 0, . . . , 1), as above. We define a map

i+ : Lr−1 → Cr

by i+(L) = L − Lr, where we regard R
1,r−1 ⊂ R1,r as usual. We define

i− : Lr−1 → Cr by i−(L) = −i+(L) = Lr − L. When r ≤ 7 one finds that the
elements of Cr are

1. Vectors of the kind ±(0; 1,−1, 0, . . . , 0): there are r(r − 1) of these.

2. Vectors of the form ±(1;−1,−1,−1, 0, . . . , 0). These only occur when
r ≥ 3 and there are r(r − 1)(r − 2)/3 of these.

3. Vectors of the form ±(2;−1,−1,−1,−1,−1,−1, 0, . . . , 0). These only oc-
cur when r ≥ 6 and there are 2 of there are 2Cr6 of these.

In particular we have Lr.C = 0,±1 for all C ∈ Cr. If Lr.C = 0 then C lies in
the copy of Cr−1 ⊂ Cr. If Lr.C = ±1 then C is an element of i±(Lr−1). So for
r ≤ 7 we have a disjoint union

Cr = Cr−1 ∪ i
+(Lr−1) ∪ i

−(Lr−1).

This translates into a vector space isomorphism

hcr = (h
c
r−1 ⊕C)⊕ Vr−1 ⊕ V

∗
r−1,

or for the real forms
hr = (hr−1 ⊕R)⊕ Vr−1.

It is clear from the definitions that gr−1 ⊕R is a Lie subalgebra and the com-
ponent of the bracket mapping Vr−1 × Vr−1 to Vr−1 vanishes, so we have a
symmetric pair. In other words, for r ≤ 7 there is a group Ĥr−1 ⊂ Hr, locally
isomorphic to Hr−1 × S1, and Xr = Hr/Ĥr−1 is a symmetric space.

When r = 8 a new feature arises. There are 16 vectors in C8 of the form
±(3;−2,−1, . . . ,−1). Thus there are two vectors ±c say having inner product
±2 with L8. So now we have

C8 = C7 ∪ {c,−c} ∪ i
+L7 ∪ i

−L7,

and this translates into a symmetric pair decomposition

e8 = (e7 ⊕ su(2))⊕ V7,

and a symmetric space X8 = E8/Ĥ7, with Ĥ7 locally isomorphic to H7×SU(2).

To sum up, we have another way of building up E8 via a chain of symmetric
pairs. The groups and representions which occur are
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1. H1 = S
1 and V1 is the standard 1-dimensional representation.

2. H2 = U(2) and X2 = U(2)/S
1 × S1 is the Riemann sphere CP1.

3. H3 = SU(3)×SU(2) and X3 = (U(3)×SU(2))/(U(2)×S1) is CP2×CP1.

4. H4 = SU(5) and X4 = SU(5)/(U(3) × SU(2)) is the Grassmannian of
2-planes in C5.

5. H5 = Spin(10) and X5 = Spin(10)/Ũ(5).

6. H6 = E6 and we have an exceptional symmetric spaceX6 = E6/(Spin(10)×
S1), associated to the representation S+ of Spin(10).

7. H7 = E7 and we have an exceptional symmetric space X7 = E7/(E6×S1)
associated to the 27-dimensional representation of E6.

8. H8 = E8 and we have the exceptional symmetric space X8 = E8/(E7 ×
SU(2)) associated to the 56-dimensional representation of E7.

(The identification of the groups above is only meant up to local isomor-
phism.)

8 Lie groups and topology

8.1 The cohomology ring of a group

Throughout, G will be a compact Lie group.
We start by considering the real cohomology H∗(G;R). It is a graded-

commutative ring.

The multiplication m : G×G→ G induces a co-product

Δ : H∗(G)→ H∗(G)⊗H∗(G).

This is a homomorphism of algebras. The fact that m(1, g) = m(g, 1) = g
implies that

Δα = 1⊗ α+ α⊗ 1 + Δ(α),

where, for α ∈ Hp,

Δ(α) ∈
p−1⊕

i=1

Hi ⊗Hp−i.

More generally we consider a Hopf algebra A which is just an abstraction of
this algebraic structure.
Hopf’s Theorem A finite dimensional Hopf algebra over a field of charac-

teristic 0 is the exterior algebra generated by certain homogeneous elements of
odd degree.
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Outline proof

Let I ⊂ A be the ideal of elements with vanishing A0 component.

Then I2 ⊂ I is also an ideal in A.
Elementary arguments give a finite set of homogeneous elements ei ∈ I which

• generate I,

• map to a basis for I/I2.

We claim that these do the job. Need to show

• ei have odd degree,

• there is no multilinear relation between the ei.

Suppose e = e1 has even degree. Some power e
p must vanish (finite dimen-

sionality). Suppose for simplicity that e2 = 0. Then

0 = Δ(e2) = e2 ⊗ 1 + 1⊗ e2 + 2e⊗ e+ S,

where S ∈ I ⊗ I2+ I2⊗ I. This implies that e = 0. The same argument applies
for all p.

Suppose there is a relation and without loss of generality that e1 is the term
of highest degree appearing in the relation. This means that e1 cannot arise
in any term Δei for any ei appearing in the relation. Write the relation as
e1P + Q = 0. Applying Δ one finds that e1 ⊗ P lies in the sum of ei ⊗ I for
i > 1 and I2 ⊗ I which contradicts the choice of ei.

In general an element α ∈ A is called primitive if

Δα = 1⊗ α+ α⊗ 1.

Taking duals we have the Δ∗A∗ ⊗ A∗ → A∗. This is a product operation
on A∗ which will not in general be associative. It can be shown that Δ∗ is
associative if and only if A is an exterior algebra on its primitive elements. The
whole structure is determined by the degrees of the primitive elements.
In our topological situation we have the Pontrayagin product

Δ∗ = m∗ : H∗(G)⊗H∗(G)→ H∗(G),

and associativity follows from the group law.

The Leray-Serre spectral sequence
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We want to use the spectral sequence of a fibration

F → E → B.

Assume for simplicity that B is 1-connected. We start with

Ep,q2 = Hp(B)⊗Hq(F ).

There are differentials
d2 : E

p,q
2 → Ep+2,q−12 ,

with d22 = 0 and we form cohomology groups E
p,q
3 .

There are differentials

d3 : E
p,q
3 → Ep+3,q−23 ,

and we take cohomology to get Ep,q4 and so on. There is a “limit” Ep,q∞ and

Hk(E) =
⊕

p+q=k

Ep,q∞ .

It is better to say that there is a filtration of Hk(E) whose successive quotients
are the Ep,q∞ . there are also product structures at each stage, compatible with
the cup products on H∗(F ),H∗(B),H∗(E).

Sketch proof (see Griffiths and Harris Principles of algebraic geometry 3.5
for example).
In algebra we get a spectral sequence any time we have a filtered complex.
Take the complex Ω∗ of differential forms on E filtered by saying that FpΩ∗

consists of forms with “at least p terms in the base direction”.

Suppose for example that we want to compute H1(E). There are classes
coming from the base, which can be represented in F1. We work modulo these,
so we seek a closed 1-form α on E which is not identically zero on the fibres.

• The first condition is that α is closed on the fibres so defines a class in H1

of each fibre.

• The second condition is that this cohomology class is constant as the fibre
varies.

• Now, fixing a class in H1)(F ), we can choose α so that dα = ω̃ lies in
F2(Ω2). The fact that dω̃ = 0 implies that ω̃ is the lift of a closed 2-form
ω on B. This defines d2 : H

1(F )→ H2(B).
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The first two steps correspond to the E0, E1 terms of the spectral sequence.
Once we reach E2 everything is expressed in terms of cohomology.

Examples

• We have
U(n− 1)→ U(n)→ S2n−1.

Using the spectral sequence and induction we find that H∗(U(n)) is the
exterior algebra on generators in dimensions 1, 3, . . . , 2n− 1.

• Similarly for
Sp(n− 1)→ Sp(n)→ S4n−1.

We find that H∗(Sp(n)) has generators in dimensions 3, 7, . . . 4n− 1.

• The orthogonal groups are more complicated. We find H∗(SO(2n+1)) has
generators in dimensions 3, 7, . . . , 4n−1 while H∗(SO(2n)) has generators
in dimensions 3, 7, . . . , 4n − 5, 2n − 1. For example H∗(SO(4)) has two
generators in dimension 3.

Spin(m) and SO(m) have the same rational cohomology.

More generally the same is true for any finite coverings.

For the exceptional group G2 we can use either

SU(3)→ G2 → S6

or
G2 → Spin(7)→ S7,

to see that the cohomology has generators in dimensions 3, 11.

For the exceptional group F4 we use the symmetric space P = F4/Spin(9).

Clifford multiplication gives a map s2(S(R9)→ R9 and so a quadratic map
S15 → S8. A study of the Jacobi equation (for example) shows that P is
obtained by attaching a 16-ball to S8 using this map on the boundary. So
H∗(P ) has a generator u in dimension 8 and one other class u2 ∈ H16.

One finds that theH∗(F4) has generators in dimensions 3, 11, 15, 23.
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Consider the map S : G → G defined by S(g) = g2. Then S∗ : H∗(G) →
H∗(G) is the composite of Δ and the cup-product. It follows that S∗ei = 2ei+σ
where σ ∈ I2. The top dimensional class of G is represented by the product
Π = e1e2 . . . es. It follows that S

∗(Π) = 2sΠ. Thus S has degree 2s. If h is
a generic element of a maximal torus T ⊂ G then all solutions of g2 = h lie
in T and the number of these is 2r, where r is the rank of G. It follows (after
checking signs) that s = r.

8.2 Classifying spaces

In algebraic topology one considers the classifying space BG of a topological
group G. By definition this is the quotient of a contractible space EG on which
G acts freely. Thus there is a fibration G→ EG→ BG. For a Lie group G we
can approximate EG by finite dimensional manifolds. Isomorphism classes of
G bundles over a space X are in 1-1 correspondence with homotopy classes of
maps from X to BG.

Example If G = U(n) then BG is the Grassmannian of n-planes in C∞,
which for our purposes can be studied by taking n-planes in CN for sufficiently
large N , in any given problem or calculation.

Borel’s Theorem Suppose we have a spectral sequence (of vector spaces over
a field k of characteristic zero) with

Ep,q2 = Aq ⊗Bp,

where A is an exterior algebra on generators ei ∈ A2li−1, B is an algebra with
B0 = k, and the sequence is compatible with products. Suppose Ep,q∞ = 0 for
p+ q > 0. Then B is a polynomial algebra on generators bi in dimensions 2li.
The bi appear in the spectral sequence as bi = d2liei.

It follows that for a compact Lie group G, H∗(BG) is a polynomial algebra,
as above.

For the classical groups G we see that H∗(BG) has generators as follows

• U(n): generators ci ∈ H2i for i = 1, . . . , n.

• Sp(n): generators pi ∈ H4i for i = 1, . . . , n

• SO(2n+ 1) generators pi ∈ H4i for i = 1, . . . , n.

• SO(2n) generators pi as above and e ∈ H2n.
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8.3 Differential forms approach

General fact: If a compact connected group G acts on a manifold M we can
compute the cohomology of M from the complex of G-invariant forms.
This follows because d commutes with the operation of averaging over the

G-action and G acts trivially on the cohomology.
We can apply this to the left action of G on itself. Then we see that H∗(G)

can be computed from a complex D : Λpg∗ → Λp+1g∗ defined by the product
with the bracket in Λ2g∗ ⊗ g and contraction g⊗ Λpg∗ → Λp−1g∗.
Note. This complex is defined for any Lie algebra and leads to the notion

of Lie algebra cohomology. For example we saw in Section one that classes in
H2 correspond to central extensions. For non-compact groups it is not directly
related to the topological cohomology.

We can apply the same principle to the right action and see that H∗(G) can
be computed from the G-invariants in Λ∗(g).
Let ι : G → G be ι(g) = g−1. Then ι acts on the bi-invariant p forms as

multiplication by (−1)p. It follows that d vanishes on these forms. So we see
that Hp(G) can be identified with the G-invariants in Λpg∗.

Example

If 〈 , 〉 is an invariant inner product then

(x, y, z) 7→ 〈x, [y, z]〉,

defines an invariant 3-form, hence a class in H3(G). This is non-zero if G is not
abelian.

Chern-Weil Theory: First treatment

Let P →M be a principal G-bundle. Choose a connection A. the curvature
is a section of the vector bundle λ2T ∗M⊗adP overM , where adP is the bundle
assoaciated to teh adjoint representation.
Let φ ∈ sp(g∗) be an ad-invariant polynomial. We can regard it as a function

on g. Then φ(F ) is a well-defined 2p-form on M .

Main fact This form is cloaed.

Proof Compute in a trivialisation of P at a point in M such that the con-
nection form vanishes.

Corollary The cohomology class of φ(F ) is independent of the choice of
connection.
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Proof. Any two connections can be joined by a path. We lift P to M × [0, 1]
and apply the homotopy invariance of de Rham cohomology.

The conclusion is that we construct a “characteristic class” in H2p(M),
which is an invariant of the bundle. Applying the construction to the universal
bundle one sees that what we have constructed is a homomorphism of rings

s∗Gg
∗ → H∗(BG),

where s∗G denotes the G-invariant polynomials.

We will see presently that this map is an isomorphism.

Note that S∗G(g
∗) can be identified with the polynomials on the Lie algebra

of a maximal torus invariant under the Weyl group.

• U(n): the Weyl group acts as permutations of λ1, . . . , λn. The invariant
polynomials are generated by the standard elementary symmetric func-
tions

σ1 =
∑

λi, σ2 =
∑

λiλj .

Up to factors of 2π these correspond to the Chern classes.

• For Sp(n) or SO(2n+1) the Weyl group permits us to change any number
of signs. The invariants are generated by symmetric functions of λ2i . We
get the Pontrayagin classes pi ∈ H4i.

• For SO(2n) we can only change an even number of signs. We get another
invariant e = λ1 . . . λn, the Euler class.

The invariant polynomial corresponding to the Euler class is the Pfaffian. It
can be written more directly as follows. Identify the Lie algebra of SO(2n) with
Λ2R2n and map Ω ∈ Λ2 to Ωn ∈ Λ2n = R. The Pfaffian is a square root of the
determinant. Notice that it needs an orientation: the Euler class is not defined
for O(2n) bundles.

Go back to T ⊂ Spin(9) ⊂ F4. One sees that the Pontrayagin class p2 of
Spin(9) does not come from a Weyl group-invriant polynomial on the torus.
Rather there are three such degree 4 polynomials φ1, φ2, φ3 which are inter-
changed by the Weyl group. The product φ1φ2φ3 is an invariant degree 12
polynomial and this gives a characteristic class in H24, matching up with our
previous calculation.
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8.4 Equivariant cohomology

If G acts on X we set XG = X×GEG and define the equivariant cohomology
H∗G(X) = H

∗(XG).
There is a fibration X → XG → BG and hence a spectral sequence in

cohomology. The pull back gives a map H∗(BG) → H∗G(X) so H
∗
G(X) can be

regarded as a module over the “co-efficient” ring H∗(BG).
The inclusion of a fibre gives a restriction map H∗G(X) → H∗(X). An

equivariant cohomology class can be regarded as an ordinary cohomology class
with extra data which defines the extension over XG. More generally if P → B
is any principal G-bundle and X → B is the associated bundle with fibre X
then an equivariant cohomology class automatically extends over X .

Motivation

Isomorphisms classes of S1 bundles overM correspond to classes inH2(M ;Z).
Thus if G acts on M , to give a class in H2G(M) should be the same as defining
a G-equivariant line bundle. A connection on a line bundle gives a curvature
form ω which represents the ordinary cohomology class. Lifting the action is
the same as giving a map μ : M → g∗ which is equivariant and satisfies the
“Hamiltonian” property: if we fix a basis for g so μ = (μa) then

dμa = i(va)(ω),

where va are the corresponding vector fields on M . This gives a candidate for
a de Rham definition of H2G(M) whose cochains we can write as sums ω + μ in
Ω2 ⊕ g∗ ⊗ Ω0.
Now we want to have products in our theory so we should be able to multiply

such objects. This suggests that 4-cochains should lie in Ω4⊕g∗⊗Ω2⊕s2(g∗)⊗
Ω0.

Suppose we have vector spaces g, T and a linear map g → T . Then from
1 ∈ g ⊗ g∗ we get an element in T ⊗ g∗ and the tensor product of contraction
and multiplication gives

I : Λq(T ∗)⊗ sp(g∗)→ Λq−1(T ∗)⊗ sp+1(g∗).

Clearly I2 = 0. Apply this in the tangent spaces of a manifoldM with G action.
We get

I : Ωq(M)⊗ sp → Ωq−1 ⊗ sp+1,

where we write sp = sp(g∗).

Now let CG(M) be the G-invariants in Ω
∗ ⊗ s∗.
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Lemma dI + Id = 0 in CG(M).
For simplicity work with an invariant metric and identify g, g∗. The proof

boils down to the fact that if [ei, ej ] =
∑
cijkek, in an orthonormal basis, then

cijk is totally skew symmetric.
Thus D = d + I is a differential in CG(M). We grade by q + 2p. We get

cohomology groups H∗dR,G(M).
This is the Cartan model for equivariant cohomology.

Biographic

Sophus Lie 1842-1899
Eli Cartan 1869-1951
Henri Cartan 1904-2008

We can also think of elements of CG(M) as equivariant polynomial maps

f : g→ Ω∗(M).

The differential can then be defined by

(Df)(ξ) = d[f(ξ)] + iξf(ξ),

where iξ is the contraction with the action of ξ.

The complex is filtered by p. We get a spectral sequence with

E2p,q2 = Hq(M)⊗ spG,

and E2p+1,q2 = 0. The sequence converges to H∗G,dR(M).

Here spG denotes the G-invriants in s
p. This identification of the E2 term

uses the fact that G acts trivially on the ordinary cohomology.

Next we show that if G acts freely then H∗G,dR is the ordinary cohomology
of M/G. Consider

I : sp(g∗)⊗ Λq(g∗)→ sp+1(g∗)⊗ Λq−1(g∗.

If we regard the objects as differential forms on g with polynomial co-efficients
then I is the contraction with v =

∑
xi

∂
∂xi
. We also have a map

J : sp(g∗)⊗ Λq(g∗)→ sp−1(g∗)⊗ Λq+1(g∗,
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defined by the exterior derivative. So IJ−JI = (p+q). This means that we can
invert I on the kernel of I. More generally if g→ T is injective, so T = g⊕W
say, the same argument applies.

Now if a class in H∗G,dR(M) is represented in
⊕
p≤p0

we can use the preceding
to show that it is also represented in

⊕
p≤p0−1

. When p0 = 0 the forms in
question are precisely those which lift from M/G.

Now suppose that G acts on a contractible space Y . We claim that

H∗G,dR(X × Y ) = H
∗
G,dR(X).

For the pull-back gives a map of filtered complexes

CG,dR(X)→ CG,dR(X × Y ),

which induces an isomorphism on the E2 term of the spectral sequences and
thus an isomorphism on the cohomology.

Thus

H∗G,dR(M) = H
∗
G,dR(M × EG) = H

∗(MG) = H
∗
G(M).

Taking M = pt. we get H∗(BG) = s∗G. The Chern-Weil construction for a
principle bundle P → X becomes a particular case of the map

H∗(BG)→ H∗G(P ),

in the case of a free action.

Go back to a bundle X → B induced from a principal bundle P → B by
an action of G on X. Choose a connection so we have horizontal and vertical
subspaces

TX = V ⊕H,

and a curvature F . We define a map from CG(X) to differential forms on X .
This is induced by a map which takes a polynomial f ∈ sp(g∗) to f(F ) ∈ Λ2pH∗.
The basic fact is that this is a chain map so a representative for an equivariant
cohomology class on X defines a specific closed form on X .

The Matthai-Quillen form

This represents the Thom class in H2ncomp(R
2n). Actually it is neater to use

rapidly decaying rather than compactly supported forms. Start with n = 1.

86



Consider the 2-form ω = e−r
2/2rdrdθ, in polar co-ordinates. The Hamiltonian

is e−r
2/2. So

e−r
2/2(ω + σ),

is a closed equivariant form where σ denotes the standard generator for the dual
of Lie(SO(2).

Next take co-ordinates xiyi on R
2n and forms ωi = dxidyi. Let T be the

corresponding maximal torus in SO(2n) and σi the standard basis for Lie(T ).
Then by taking products we see that

(ω1 + σ1)(ω2 + σ2) . . . (ωn + σn)e
−r2/2

is a closed T -equivariant form.

For the general case it is easier to work with maps f : g → Ω∗, with G =
SO(2n). We define

f(ξ) = ∗ exp(ξ)e−r
2/2,

where we identify g with Λ2, compute the exponential in the exterior algebra
and ∗ is the Hodge ∗-operator.
The proof that this is equivariantly closed comes down to the identity

i(v)(exp(ξ)) = wξ ∧ exp(ξ),

where v =
∑
xi

∂
∂xi
+ yi

∂
∂yi
is the “radial” vector field and wξ = i(v)(ξ). It

suffices to check this when ξ =
∑
aiωi which is easy.

Notice that the sn component of our Thom form is the Pfaffian. Now if we
have a vector bundle E → B with fibre R2n and structure group SO(2n), and
a connection, we get a closed 2n-form τ on E by our general construction. This
has integral 1 over each fibre and restricts on the zero section to the Pfaffian of
the curvature. By considering a smooth section we get

∫

B

Pfaff(F ) = ](Zeros).

In particular if E = TB we get the generalised Gauss-Bonnet formula

∫

B

Pfaff(F ) = Euler Number.

Transgression and Chern-Simons invariants
Take the action of G on itself by right multiplication. This is free and the

quotient is a point so the equivariant cohomology is trivial. The Cartan complex
is a purely finite-dimensional gadget. Let b be an invariant polynomial of degree
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p > 0. This defines a cochain in the complex so we can apply the construction
above to write b = (D + I)Tb. The equivariant class has a component (Tb)0
say in Λ2p−1g∗G. If b ∈ s

p is a polynomial generator then (Tb)0 ∈ Λ2p−1 is the
corresponding exterior generator.
An explicit formula for going between invariants in s∗ and Λ∗ is

(Tb)0 = P (θ, [θ, θ], [θ, θ], . . . , [θ, θ]),

where we write P ( , , , ) for the corresponding multilinear form and θ is the
identity in g⊗ g∗.

Now let π : P → X be a principleG-bundle with connection. The polynomial
b defines a Chern-Weil form b(F ) ∈ Ω2p(X). The equivariant cochain Tb defines
a (2p− 1)-form φ say on the total space of P such that

dφ = π∗(b(F )).

In a case when b(F ) = 0 then φ yields a cohomology class on P which is the
Chern-Simons invariant of the connection.

Localisation

This is one of the most important applications of equivariant cohomology.
If E → B is a fibration with fibre a compact oriented n-manifold M there is an
“integration over the fibre” map

Hn+r(E)→ Hr(B).

In particular this gives us a map Hn+2pG (M) → H2p(BG). In the de Rham
approach this is simply given by integration

Ωn(M)⊗ s2p → s2p.

If G acts freely then the cohomology vanishes in dimensions ≥ n so this map is
zero.

Suppose for simplicity that G = S1. If Ω ⊗ σ is the tope term in a equiv-
ariantly closed form we can use the local formulae to write Ω = dχ away from
the fixed points of the action, where χ is given explicitly by the lower terms.
This leads to a formula for the integral of Ω in terms of local data at these fixed
points. For example if n = 2n, ω is a sympectic form and H is the Hamiltonian
for a circle action this applies to integrals

∫

M

Hpωm,

which are given by Duistermaat-Heckmann formulae at the fixed points.
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8.5 Other topics

Homogeneous spaces

We can also study the cohomology of homogeneous spaces. Suppose M =
G/K with G compact and choose a K-invariant complement so

g = k⊕ p.

Then H∗(M) can be computed from a complex consisting of the k-invariants in
Λ∗p with differential defined by the component of the bracket p× p→ p.
When M is a symmetric space this differential is trivial so the K-invariant

forms give the cohomology.

Let T ⊂ G be a maximal torus. The T bundle G → G/T gives a map
H∗(BT ) → H∗(G/T ). Now H∗(BT ) can be identified with the polynomial
functions on Lie(T ) and H∗(BG) ⊂ H∗(BT ) with the polynomials invariant
under the Weyl group W . The general result is that H∗(G/T ) is the quotient
of H∗(BT ) by the ideal generated by H∗(BG).
To see this one can use the fact that G/T has no cohomology in odd dimen-

sions (this is true for any symplectic manifold with a torus action, by elementary
Morse theory).
There is a fibration G/T → BT → BG and all the terms in Epq2 are in even

dimensions so the spectral sequence collapses and the result follows by staring
at this.
Example G = U(3). Then H∗(BT ) is polyomials in h1, h2, h3 say and

H∗(G/T ) is generated by the hi ∈ H2 with relations

h1 + h2 + h3 = h1h2 + h2h3 + h3h1 = h1h2h3 = 0.

K-theory

One can also consider equivariant K-theory. For a G-space X, this is the
Grothendieck group of g-equivariant complex vector bundles over X. When
X is a point we get the representation ring R(G) of the group, analogous to
H∗(BG) in equivariant cohomology. It follows from Weyl’s Theorem that, if G
is simply connected, R(G) is a polynomial algebra generated by the fundamental
representations.

9 Problems
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Qn. 1.
Show that the exponential map does not map onto SL(2,R). Can you

describe explicitly those matrices in SL(2,R) which have a “logarithm”?

Qn. 2. Let G be a connected Lie group with a simple Lie algebra. Show
that any normal subgroup of G is contained in the centre of G.

Qn. 3. Let V be a Euclidean vector space and write Λp for the exterior
powers ΛpV . Show that there is a non-trivial SO(V )-invariant contraction map

Λp × Λq → Λp+q−2

which we write as (α, β) 7→ α ◦ β.

1. Show that Lie algebra structures on V , compatible with the Euclidean
structure, correspond to elements B ∈ Λ3V with B ◦B = 0.

2. Given a B as above let b : Λp → Λp+1 be the map b(α) = B ◦α. Show that
b2 : Λp → Λp+2 is zero,so we have a cochain complex with cohomology
groups Hp. Can you interpret the meaning of these, for small p, in terms
of the Lie algebra? Show that if V is 6 dimensional and B corresponds to
the Lie algebra SO(4) the cohomology group H3 is 2-dimensional.

3. In the case when V is the Lie algebra of a compact group G, with a bi-
invariant metric, can you see any relation between the complex above and
the de Rham complex of differential forms on G?

(The general topic which this question leads into is Lie algebra cohomology.)

Qn. 4.

Show that, with its standard invariant Riemannian metric suitably scaled,
the sectional curvatures of CP2 lie between 1 and 1/4. Then show the same for
CPn,HPn (n ≥ 2).
(The sectional curvature in a plane Π ⊂ TMp is the quantity K(X,Y )

defined in the lectures, where X,Y form an orthonormal basis for Π.)

Qn.5.

Let Z ⊂ C3 be the set defined by the equation

|z0|
2 − (|z1|

2 + |z2|
2) = 1.

Show that the symmetric space dual to CP2 can be identified with the
quotient of the Z by S1. Find another model of this space as the unit ball B in
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C2, with a suitable Riemannian metric. (This is the analogue of the disc model
for the real hyperbolic plane.)

Qn. 6.

Consider the set-up discussed in Section 3 for the case of sl2(C). We have a
function F defined on the space of Hermitian metrics on C3. Verify the assertion
that on any geodesic γ through H0 the function F (γ(t)) is a finite sum

∑
are

rt.
What can you say about the values of the exponents r which occur?

Qn. 7.

let g be a real of complex Lie algebra. One standard definition of what it
means for g to be semisimple is that that the Killing form of g is nondegenerate.
Using the main result of Section 3, show that this is equivalent to the definition
stated in Section 3 (i.e. semisimple if and only if a direct sum of simple algebras).

Qn. 8.
Let g be a Lie algebra and g∗ its dual. Write C∞(g∗) for the space of

smooth functions on g∗. Show that there is a way to define a “bracket” {f, g}
making C∞(g∗) an (infinite dimensional) Lie algebra. How is this related to the
symplectic structure on the co-adjoint orbits?
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Qn. 9.

Let M be an integral co-adjoint of a Lie group G. Verify the assertion made
in lectures that there is a connection on the corresponding S1 bundle E → M
with curvature the symplectic form on M .

Qn. 10.

Give a description of the co-adjoint orbits of SO(n), Sp(n) which makes it
apparent that they are complex manifolds.

Qn. 11.
Consider the standard symplectic form on R2n. Let W be the space of

polynomial functions on R2n of degree less than or equal to 2. Show that W
is closed under the Poisson bracket and so becomes a Lie algebra. Find a Lie
group with this Lie algebra.

Qn. 12.
Find the weights and multiplicities of the representations sp ⊗ sq of SU(2).

Hence, or otherwise, decompose this as a sum of irreducibles. Find the decom-
positions of Λ2(sp) and s2(sp).

Qn.13.

Let P,Q be complementary subspaces in Cn (i.e. Cn = P ⊕ Q), with
dim P = p. By considering the graphs of linear maps, show that there is
an open dense subset V of the Grassmannian of p-planes in Cn which can be
identified with P ∗⊗Q. Let D be the complement of V . Show that if we consider
the Grassmannian as a co-adjoint orbit of U(n) and take Q to be the orthogonal
complement of P this set V coincides with the set U considered in Section 4
(with P = p). Now let P ′ be another subspace, so we get another subset V ′ of
the Grassmannian. Find an equation, in terms of the “co-ordinates” on V ′ as
above, defining the intersection D ∩ V ′.

Qn. 14. Give an algebraic proof of the result from Section 5; that if α is a
root then the only roots kα occur when k = ±1, and that the dimension of the
root-space Rα is 1.

Qn. 15. (For those who like Riemannian geometry.)

A fibre bundle π : X → Y is called a Riemannian submersion if X,Y are
Riemannian manifolds and the derivative of π maps the orthogonal complement
in each TXx of the tangent space to the fibres isometrically to the tangent space
TYπ(x).
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1. Show that the sectional curvature of X in a plane orthogonal to the fibre
is no greater than the sectional curvature to Y in the corresponding plane.
(This can be done by direct, but rather lengthy, calculation. But there
is also a more conceptual argument using the relation between sectional
curvature and geodesics.)

2. Suppose M = G/H is a co-adjoint orbit of a compact group G endowed
with its Kahler metric. Show that if v is a tangent vector at a point in
M then the sectional curvature in the plane spanned by v, Iv is strictly
positive.

3. Hence show, using the second variation formula for length, that there are
no length-minimising closed geodesics in M and deduce that M is simply
connected.

Qn. 16.
Find a set of simple roots for Sp(3) and verify the form of the Dynkin

diagram. Find the corresponding “fundamental weights” ωi and try to identify
the corresponding representations. (You probably want to consider U(3) ⊂
Sp(3) and start with the roots of U(3).)

Qn 17.

Same question for SO(7) (or Spin(7).)

(It would probably be very helpful for your understanding to attempt these
questions: if you get stuck you could look in Fulton and Harris, Part III, for
example. But it would best if you do so after trying the questions by yourself.
Beware that there are different standard notations for the “n” in the symplectic
group Sp(n).)

Qn.18.

Show that the centre of Spin(n) is isomorphic to

• Z/2 if n is odd.

• Z/2× Z/2 if n is divisible by 4,

• Z/4 if n = 2 modulo 4.

Qn. 19.

Using the “reciprocity principal” from Section 6, or otherwise, find a decom-
position of the functions on S2 into irreducible representations of SO(3). How
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is this related to the study of “harmonic polynomials” on R3, and the Legendre
polynomials?

Qn. 20.

Show that, in the case of U(n), the equality of the two ways of writing
the denominator D in the Weyl character formula becomes the formula for the
Vandermonde determinant det(zji ).

Qn 21.

Using our description of the irreducible representations Va,b of SU(3), find a
formula for the dimension dimVa,b. Then obtain this in another way using the
Weyl character formula.

Qn. 22.

Let G be a compact Lie group and T a maximal torus. Show that there
is a non-trivial action of the Weyl group of G on G/T . (The action does not
preserve the standard complex structure.)

Qn. 23.

For n ≥ 1 let SL(n,H) be the group of n × n quaternion matrices whose
determinant, regarded as a real 4n × 4n matrix, is 1. Show that the the com-
plexification of SL(n,H) is SL(2n,C).
Show that that SL(2,H) is locally isomorphic to S0(5, 1) and that the nat-

ural action of SL(2,H) on S4 = HP1 coincides with the action of SO(5, 1) on
a quadric hypersurface in RP5.

Qn. 24. (Longer)

Find a subgroup SO(4) ⊂ G2 and identify the roots of SO(4) inside the set
of roots of G2. What is the Euclidean form on the Lie algebra of SO(4) induced
from that of G2? Show that G2/SO(4) is a symmetric space and identify the
corresponding Euclidean representation of SO(4).
(There are many ways of going about this. One way is to follow the line in-

dicated in Section 7 and consider associative subspaces in the imaginary Cayley
numbers. Another way is to start with an oriented Euclidean R4 and construct
an SO(4) invariant cross -product on

R7 = Λ2+(R
4)⊕R4.

Then show that, with a suitable choice of constants, this coincides with the cross-
product derived from R7 = R⊕C3. A third way is to spot the representation
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of SO(4) asked for in the last part of the question, then show that you can build
a Lie algebra using that.)

Qn 25.(Longer)

1. Suppose M = G/H is a compact symmetric space and p is the corre-
sponding Euclidean representation of H, which can be identified with the
tangent space to M at the base point. Let x, y be orthogonal vectors in p.
Show that the the sectional curvature of M is zero in the plane spanned
by x, y if and only if y is orthogonal to tangent space of the H-orbit at x.

2. Consider the action of Spin(9) on the spin space S, regarded as a real
vector space of dimension 16. Fix some ψ ∈ S. For any unit vector
n ∈ S9 we can take the orthogonal complement nperp ∼= R8 and decompose
S = S+(R8)⊕ S−(R8), and hence ψ = ψ+ ⊕ ψ−, say. Show that we can
choose n so that ψ− = 0.

3. Hence, or otherwise, show that Spin(9) acts transitively on the unit sphere
in S.

4. Now consider the Cayley/Moufang planeX = F4/Spin(16), with its symmetric-
space Riemannian metric, inducing a “distance function” d(p, q). Show
that the sectional curvature of X is strictly positive and that X is “2-
point homogeneous” in the sense that if p, q, p′, q′ are points in X with
d(p, q) = d(p′, q′) then there is a g ∈ F4 such that g(p) = p′, g(q) = q′.

You may be interested to go further. For example, you could show that
S15 = Spin(9)/Spin(7), for a non-standard embedding Spin(7) ⊂ Spin(9). Or
you could find a fibration

S7 → S15 → S8,

analogous to
S3 → S7 → S4,

and
S1 → S3 → S2.

(Topologically, the space X can be constructed by attaching a 16-dimensional
ball to the 8-sphere using the map above on the boundary of the ball.) You
could look for the appropriate definition of a “line” in X, and show that any
two distinct points lie on a unique line.

Q, 26. Let G = SO(2n) and M = S2n−1 with the standard action. Find an
extension of the volume form in Ω2n−1(M) to an equivariant form (i.e. a closed
element of the Cartan complex.)
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