
Differential Geometric Methods in

Low-dimensional Topology

S. K. Donaldson

July 9, 2008

1 Introduction

This is a survey of various applications of analytical and geometric techniques
to problems in manifold topology. The author has been involved in only some of
these developments, but it seems more illuminating not to confine the discussion
to these.
We begin by recalling the notion of a manifold. Suppose we are provided

with a large collection of small paper discs. Then we can construct a wide
variety of complicated objects by pasting these discs together in various fashions.
Mathematically, the paper discs generalise to disjoint copies Uα of the unit ball
Bn in some fixed Euclidean space Rn, where α ranges over some index set. The
pasting data generalises to a collection of homeomorphisms

φαβ : U
′
αβ → U ′′αβ ,

where U ′αβ ⊂ Uα and U
′′
αβ ⊂ Uβ are open subsets. Then we form a space M by

identifying, in an abstract way, each point x in each U ′α with its image φαβ(x) in
U ′′β , and such a space is called an n-dimensional manifold. The essential point
is that a manifold is locally modelled on Euclidean space, so we can transfer
many familiar constructions from multi-dimensional geometry and calculus to
this wider setting. It is important to emphasise that this notion of a mani-
fold does not just derive from mathematicians fancy, but grows naturally out
of many diverse applications, often in Mathematical Physics. Most obviously,
one formulates General Relativity in terms of a four-dimensional space-time
manifold.
The basic problem of geometric topology is to classify manifolds. More

precisely, for our discussion, we want to consider manifolds constructed using
differentiable maps (which allow us to do calculus): these lead to the definition
of a “smooth” manifold, and the natural equivalence relation is that of “diffeo-
morphism”. So, for each dimension n we are interested in classifying smooth
n-dimensional manifolds up to diffeomorphism. For example, in two dimensions,
any ellipsoid in R3 is diffeomorphic to the sphere, but a hyperboloid is not.
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This classification problem has two complementary parts. In one direction,
one seeks invariants of manifolds: the oldest example being the Euler charac-
teristic which is an integer χ(M) one can assign to any (compact) manifold M ,
such that χ(M) = χ(M ′) ifM andM ′ are diffeomorphic. In the complementary
direction, one seeks to construct diffeomorphisms f : M → M ′ showing that a
pair of manifolds M,M ′ are equivalent, under suitable hypotheses.
Over the 100 years since Poincaré introduced the notion of a manifold, and

hence this classification problem, many different strands have been developed.
In this article we focus on constructions using differential geometry and anal-
ysis. The interesting feature here is that these methods call in techniques and
ideas from other subjects, which do not ostensibly enter into the classification
problem as we have formulated it. This means that we consider manifolds with
some additional auxiliary structure such as a Riemannian metric, though this
structure may disappear from the statement of the final result. A striking this,
which probably has deep origins, is that these techniques are usually most rele-
vant in “low-dimensional” topology, specifically when we consider n-dimensional
manifolds with n ≤ 4. In “high dimensions” (n ≥ 5) a very rich theory was de-
veloped, particularly in the period 1950-1970. In brief, the subject of algebraic
topology gives a systematic understanding of possible invariants and a funda-
mental result of Smale, the “h-cobordism theorem” yields a very powerful and
general abstract technique for constructing diffeomorphisms between manifolds
with the same invariants.

2 Two dimensions

The classification of two-dimensional manifolds is comparatively straightforward
and has been known in some form since the mid 19th. century. Nevertheless, it
is interesting to see how geometric and analytical techniques can be brought to
bear on this, as a model for developments in higher dimensions.
Consider first the issue of invariants. Suppose we have a closed surface

S ⊂ R3. We can consider the flow of an imaginary fluid on the surface, or in
mathematical terms a vector field v (the velocity field of the fluid) defined on S
and everywhere tangent to S. In this way, we are lead to study a pair of partial
differential equations

div(v) = 0 , curl(v) = 0

for a tangent vector field v, corresponding to incompressible, irrotational flows.
These are linear equations so the solutions form a vector space of dimension
d(S) (which could a priori be infinite). It turns out that d(S) is finite and is
unchanged if we continuously deform the surface in 3-space. Moreover we can
extend the ideas further to an abstract two-dimensional manifold M equipped
with a Riemannian metric. This metric is just the data required to define lengths
and angles between tangent vectors at the same point and in turn the notions
of divergence and curl. There is an enormous space of possible Riemannian
metrics. In local co-ordinates u1, u2 (i.e. a local identification of the surface
with a ball in R2), a metric is given by any functions gij(u1, u2) for i, j = 1, 2,
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subject only to the constraint that for each fixed u1, u2 the matrix with entries
gij is symmetric and positive definite. The upshot is that , changing notation, we
now have an integer d(M, g) where g denotes any choice of Riemannian metric
out of this enormous space of possibilities. Now the crucial thing is that one
can show that d(M, g) does not change if we deform the metric in a continuous
fashion. So we conclude that this dimension is actually an invariant d(M) of
the manifold M .
All the ideas above are now very well understood. The dimension d(M)

is just 2 − χ(M) where χ is the Euler characteristic, which can be defined
in many other ways. The ideas extend to higher dimensions in the form of
“de Rham cohomology” and “Hodge theory”, and the more general setting
involves the machinery of “differential forms” rather than vector fields. At a
more sophisticated level, one encounters the Dirac equation for fields of spinors
on a manifold, and the Atiyah-Singer index theorem. One gets many invariants
of manifolds, of any dimension, in this way, by studying the solutions of linear
partial differential equations, but broadly speaking these can all be obtained in
other ways, using the tools of algebraic topology.
Next we turn to the complementary question of constructing diffeomor-

phisms between 2-dimensional manifolds. Suppose for example that we want
to show that any manifold M with χ(M) = 2 is diffeomorphic to the standard
sphere. One geometric approach to this goes via proving the existence of a par-
ticular Riemannian metric on the manifold. In classical differential geometry
one defines, at each point of a surface in R3, the Gauss curvature of the surface:
a natural generalisation of the notion of the curvature of a curve in the plane.
The content of Gauss’ famous “Theorem Egregium” is essentially that the Gauss
curvature can be defined for any Riemannian metric on a general 2-dimensional
manifold M . So we can search for metrics with constant Gauss curvature and
in particular, in the case at hand, with Gauss curvature 1. Then it is quite an
easy exercise in differential geometry to show that if we have such a metric g
on our manifold there is a unique diffeomorphism f :M → S2 (up to rotations
of the sphere) which takes g to the standard metric: in particular M is indeed
diffeomorphic to the sphere.
So much for the overall strategy of this approach: we are left with the crucial

problem of how to prove the existence of a Riemannian metric of Gauss curvature
1 on an abstract manifold M2, using only the hypothesis that χ(M) = 2. This
can be viewed as solving a complicated nonlinear partial differential equation
for the unknowns gij . The easiest way to proceed is to bring in another kind of
structure, that of a Riemann surface, but we will not go into details. Suffice it to
say that the hypothesis χ(M) = 2 enters through the assertion that there are no
non zero abstract “fluid flows”of the kind considered above, and the Fredholm
Alternative from Functional Analysis.
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3 Three dimensions

Exciting recent developments make it natural to include some brief discussion of
3-dimensional manifolds in our account, although this is not an area the author
has contributed to personally.
First, the question of invariants. Over the past twenty years new 3-manifold

invariants of various kinds have been discovered, having fundamental connec-
tions with geometry. On the one hand there are invariants such as the Casson
invariant and Floer homology groups which are the 3-dimensional counterparts
of the ideas in 4-dimensions discussed below. On the other hand there are the
“Jones-Witten invariants” which, in Witten’s point of view, arise from certain
Quantum Field Theories.
Second, the question of constructing diffeomorphisms between 3-manifolds.

The famous problem here is the “Poincaré conjecture” which is that any sim-
ply connected compact 3-manifold is diffeomorphic to the 3-dimensional sphere.
This is the natural analogue of the question about 2-dimensional manifolds dis-
cussed above, with the “simply connected” hypothesis in place of the condition
on the Euler characteristic. There has been striking progress on this problem
recently, through work of G. Perelman [5], which makes it seem very likely that
this famous problem has now been resolved, and the strategy of proof follows
that in our two-dimensional model. A Riemannian metric in higher dimensions
has, in place of the simple Gauss curvature, a complicated curvature tensor.
From this one forms a slightly simpler object: the Ricci tensor Rij . This is
what enters into Einstein’s formulation of General Relativity, and one can write
down an analogue of Einstein’s equation in the context of Riemannian geome-
try: Rij = λgij , where λ is a constant. In three dimensions it turns out that
the Ricci tensor contains the same information as the full curvature tensor, and
using this it is easy to show that a simply-connected 3-manifold which admits
a solution of the Einstein equation is diffeomorphic to the 3-sphere. So the
problem is how to construct such Riemannian metrics.
Perelman’s work follows a strategy developed over many years by R. Hamil-

ton. One introduces an extra “time” variable t and considers a 1-parameter
family of Riemannian metrics on a 3-manifold satisfying the evolution equation

∂gij

∂t
= −Rij .

Starting with an arbitrary initial metric at t = 0 one seeks to show that, after
suitable rescaling, the metrics generated by this evolution equation converge
to a solution of Einstein’s equation. There are immense difficulties in carrying
this through, but it appears that the crucial problems have been overcome by
Perelman. This approach is not limited to the Poincaré conjecture. In the 1970’s
W.Thurston formulated a “Geometrisation conjecture” which asserts that any
3-manifold can be decomposed in a standard and well-controlled way into pieces
each of which admits an Einstein metric or one of a small family of other special
structures. This is a much more wide-ranging conjecture which in a sense gives
a complete classification of 3-manifolds and it is this which is the natural target

4



for Perelman and Hamilton’s work.

4 Four dimensions

4.1 Invariants

We now turn to four dimensional manifolds, the topic to which the author has
contributed. Standard algebraic topology provides certain tools. We restrict
attention to compact, simply-connected 4-manifolds with a fixed orientation.
Then the algebro-topological data associated to such a manifold M is the free
Abelian groupH2(M) and the intersection form Q, which is a symmetric bilinear
form on H2(M). The natural “grand problem”in the field is to classify, for each
algebraic isomorphism class of the data (H2, Q) the possible diffeomorphism
classes of manifolds. Roughly speaking, almost nothing was known about this
question until the early 1980’s but now we know a substantial amount through
the emergence of the instanton and Seiberg-Witten invariants. However the
problem itself still seems way out of reach, as we will discuss further below.
The general strategy by which these invariants are defined follows the same

pattern as in the two-dimensional model discussed above. The crucial ingredient
is the existence of certain geometrical objects and partial differential equations
governing them, which play the role of the vector field and the irrotational,
divergence-free conditions there. As in that model, the objects arise naturally
from considerations in Mathematical Physics, although now that of fields and
elementary particles rather than fluids.
A great achievement of 19th. century Mathematical Physics was the formu-

lation of electro-magnetic theory in terms of a pair of vector fields E,B governed
by Maxwell’s equations. Further insight in the 20th. century lead to the ideas
that, first, the equations could be formulated in a four-dimensional setting, with
space and time on an equal footing, involving a single field tensor F . Second
that this field has an essentially geometric origin. The geometry involves the in-
troduction of a complex line bundle L over space-time, and the wave-functions
of Quantum Theory are viewed as sections of L. Thus the value ψ(x) of a
wave function at a point is not naturally a complex number but lies in a one-
dimensional complex vector space Lx, and there is no completely canonical way
to identify Lx with C. The basic geometrical structure is a connection on this
line bundle and the field tensor F is the curvature of this connection. Math-
ematically, these ideas are underpinned by the general theory of bundles and
connections which had been developed by differential geometers and which grow
naturally out of classical differential geometry and notions such as the Gauss
curvature. In Physics, these ideas lead to natural generalisations in “Gauge The-
ory” where one simply replaces the one dimensional vector spaces Lx by vector
spaces of some fixed higher dimension. (The extension can also be formulated
in the language of symmetry groups such as SU(2), SU(3).)
These general notions of bundles, connections and curvature can be formu-

lated over manifolds of any dimension but there is a crucial special feature of
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4-dimensions. The field tensor is a skew-symmetric tensor and in a four di-
mensional space, with a positive definite metric, these skew symmetric tensors
decompose naturally into “self-dual” and “anti-self-dual” parts. So we can write
F = F++F− and we consider the special condition that F+ = 0. If we go back
to make a “space-time decomposition” and express F in terms of a pair of vector
E,B, this condition is just E = B, but the crucial thing is that the condition is
actually a natural one in four-dimensions, independent of the decomposition.
Putting these ideas together, we see that if we consider a Riemannian metric

on our 4-manifold M , a bundle E over M and a connection A on E, we can
write down a natural condition

F+(A) = 0,

for the curvature tensor F (A). This is a partial differential equation for the
connection A. If the dimension of the fibres of E is 1, as in electromagnetic the-
ory, the equation is linear and we essentially recover part of the familiar Hodge
Theory. But for higher dimensional fibres we get more subtle, nonlinear equa-
tions; the “Yang-Mills instanton equations”. The basic strategy is to extract
invariants of the manifold M from a study of the solutions (instantons) to these
equations.
A variety of mathematical techniques are involved in extracting discrete in-

variants from the instantons. On the one hand there are fundamental analytical
results of K. Uhlenbeck which give information about compactness of the space
of solutions. A prerequisite here is the fact that the instanton equations are
elliptic equations and roughly speaking Uhlenbeck’s work allows the extension
of standard ideas for linear elliptic equations to this nonlinear setting. On the
other hand, there is a general and more abstract body of ideas which allow
one to extend techniques of differential topology to certain infinite dimensional
“Fredholm” problems. In particular, under suitable technical hypotheses, one
gets discrete invariants from the solution spaces to the equations in much the
same way as one can define the degree of a map f : Sn → Sn by “counting”
(with signs) the points in a generic preimage f−1(y) (i.e. by counting the so-
lutions of the equation f(x) = y). Of course the crucial thing is that these
discrete invariants are unchanged by continuous deformations of the data. This
translates in our problem to independence of the choice of Riemannian metric
on M .
The upshot of all this technical work was that one obtained, under suitable

hypotheses, new invariants of M which took the form of a collection of poly-
nomials functions on the homology group H2(M)[2]. The fact that we get a
collection of polynomials comes from the fact that we have a choice of bundles
E to consider. In the late 1980’s these instanton invariants were used to give
much new information about the “grand problem” above: for example by show-
ing that certain large families of 4-manifolds with the same intersection form
where all distinct up to diffeomorphism.
In 1994, Seiberg and Witten introduced some different equations in four

dimensions, guided by considerations from Quantum Field Theory [7]. These
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share many of the features of the instanton equations, in that they are formu-
lated in terms of a connection on a bundle over the 4-manifold, but now the
bundle has fibre dimension 1, just as in electromagnetism. The new subtlety is
that one considers a spinor field ψ in addition to the connection on the bun-
dle. This extra field can be thought of a something like the wave function of
quantum mechanics but its’ spinorial nature is crucial. The Seiberg-Witten
equations take the shape

F+(A) = ψ
∗ψ ,DAψ = 0,

where DA is the linear Dirac operator coupled to the connection and ψ
∗ψ de-

notes a certain quadratic form mapping spinors to self-dual 2-forms. Invariants
of the underlying 4-manifold X can be extracted from the solutions to the
Seiberg-Witten equations in a similar manner to the instanton case, but the
newer theory has some decisive technical advantages. The invariants that result
take the shape of certain distinguished classes (“basic classes”) κi ∈ H2(X)
with associated integers ni. Witten made a wide ranging conjecture, backed
up by almost overwhelming evidence from examples, as to precisely how these
Seiberg-Witten invariants determine the polynomials given by the instanton the-
ory. With these insights, the extent of the information which can be obtained
from these methods has become much clearer, and the whole theory seems to
have attained a reasonably mature form. (There is scope for exploiting the older
instanton theory, and its relation with the Seiberg-Witten theory, particularly
in applications of these ideas to 3-dimensions, as in recent work of Kronheimer
and Mrowka [4], which establishes a result very like the Poincaré conjecture for
a slightly different class of 3-manifolds.)

4.2 Constructing diffeomorphisms

As we have emphasised in this article the problem of classifying manifolds has
two complementary parts. In four dimensions we have now a good supply of
invariants but what is almost entirely lacking is any way of constructing dif-
feomorphisms between manifolds, under suitable hypotheses on the invariants.
We can write down many families of 4-manifolds with the same instanton and
Seiberg-Witten invariants and we have no idea whether they are diffeomorphic
or not. Something completely new is almost certainly needed to make substan-
tial further headway with the “grand problem”, but whether this will come in 1
year, 10 years or 100 years is anybody’s guess. The only progress so far in this
direction seems to lie in the special case of symplectic 4-manifolds. A symplectic
structure on a 4-manifold is a closed 2-form ω which is everywhere nondegerate,
a notable supply of examples being furnished by complex algebraic surfaces with
Kahler metrics. Until the 1980’s there were as many inacessible questions about
symplectic 4-manifolds as for the general case. But now we know a great deal
more, principally through fundamental advances of Gromov and Taubes. These
involve a network of ideas closely related to those above. In one direction, Gro-
mov’s fundamental paper [3] introduced the use of pseudoholomorphic curves
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as a tool to study symplectic manifolds. This development has had extremely
wide-ranging consequences and uses some of the general ideas exploited in the
instanton and Seiberg-Witten theories. One result of Gromov is particularly
relevant to the classification problem because he shows that a symplectic 4-
manifold satisfying suitable hypotheses, notably the existence of a certain kind
of embedded 2-sphere, must be equivalent to the standard complex projective
plane. The proof goes by moving the 2-sphere in a family of pseudoholomorphic
curves sweeping out the manifold, and is quite parallel to arguments from the
classification of algebraic surfaces. In the other direction, Taubes [6] discovered
a fundamental connection between Gromov’s pseudoholomorphic curves and the
Seiberg-Witten equations, and was able to use this to establish the existence
of the required embedded sphere. Some of the author’s recent work [1] has
been motivated in part by the desire to extend this technique to more general
4-manifolds, but so far without very conclusive results.
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