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1 Introduction

Let T be an irreducible variety which parametrises a family of Fano manifolds.
For simplicity we suppose that each of these has a discrete automorphism group.
Write TKE ⊂ T for the subset corresponding to manifolds which admit Kahler-
Einstein metrics. It is known that TKE is open in the classical topology and all
points in TKE are “K-stable”. The purpose of these notes is to make progress
towards the following three goals

• Goal 1. TKE is Zariski open.

• Goal 2 If TKE is nonempty then all K-stable points are in TKE .

• Goal 3 Without assuming a priori that TKE is non-empty, all K-stable
points are in TKE .

These statements are (at least roughly) of increasing strength. The last one
(in which the parameter space T is irrelevant) is the “Yau conjecture” for Fano
manifolds. The first could be viewed as precise form of the statement that hav-
ing a Kahler-Einstein metric is “an algebro-geometric condition”. The author
hopes that these notes essentially achieve Goal 1, modulo results in forthcoming
joint work with X-X Chen. The scheme of proof applies to Goal 2 but we run
into algebro-geometric difficulties which we do not overcome here. In Section 5
we explain how the ideas can be applied to Goal 3, making the rather large as-
sumption that there is an appropriate differential geometric theory of manifolds
with cone singularities. However the algebraic geometry is somewhat simpler in
this setting.
Note that it is not actually clear from the definition that the set of K-stable

points (or Kstable points) is Zariski open (it could a priori be the complement
of a countable union of algebraic sets). So in some respects Goal 1 goes beyond
Goals 2 and 3. See the related discussion in Section 6.

2 Sequences of Kähler-Einstein metrics

In this section we consider the following set-up. We have a sequence of polarised
complex algebraic n-manifolds Xi converging to a smooth limit X∞. We use
the same symbol L for the positive line bundle over each Xi and X∞. To be
precise we might say that Xi are defined by a convergent sequence of integrable
almost-complex structures on a fixed C∞ manifold. From another point of view,
if we have an appropriate moduli space M of complex structures then we can
regard our data as a convergent sequence inM. For simplicity, we assume that
the holomorphic automorphism group of X∞ is trivial.
Now suppose that each Xi has a constant scalar curvature Kahler (cscK)

metric ωi in the class c1(L). The problem we address is to show that if X∞
satisfies an appropriate stability condition then it will also have a cscK metric.
In reality—for real applications—our results will be limited to the case when
the Xi are Fano, L is the anticanonical bundle and the metrics in question are
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Kahler-Einstein. But the central argument we use applies in the more general
cscK setting. So we will state our results somewhat more generally, adding
differential geometric hypotheses which are known to hold in the Kahler-Einstein
case.
We consider the following stability condition for X∞. First (X∞, L) should

be K-stable. Second there should be an ε0 > 0 such that for all points x in
X∞ and all rational ε < ε0 the blow-up of X∞ at x should be K-stable with
the polarisation L − εE. We call this condition K-stability. It is known from
the work of Arezzo-Pacard and Stoppa that if X∞ has a cscK metric then it is
K-stable. Most likely K-stability is equivalent to K-stability, but that this does
not seem to be obvious.

2.1 Differential Geometric input

LetM, g be any compact Riemannian manifold and let r be a positive real num-
ber, to be thought of a scale parameter. Let Z(r) ⊂M be the r-neighbourhood
of the set of points in M where |Riem| > r−2 and write Ω(r) for the comple-
ment M \ Z(r). Thus on the r-ball centred at each point of Ω(r) the curvature
is bounded by r−2. If we rescale the metric by a factor r−1 then we get a unit
ball (in the rescaled metric) over which the curvature is bounded by 1.

Hypothesis V
There is a constant C such that for each of the Riemannian manifolds (Xi, ωi)

and all r > 0 we have
VolZ(r) ≤ Cr4.

This is the essential hypothesis for our arguments. X-X Chen and the author
have proved that this hypothesis holds in the Kahler-Einstein case, for complex
dimension n=3 [3]. The constant C could be made to depend explicitly on
standard topological invariants of Xi and certain universal constants.

Supplements to Hypothesis V

1. There is a connected open set Ω′(r) ⊂ Ω(r) with Vol(Xi\Ω′(r) ≤ Cr6n/2n−1.

2. For each point in Ω(r) the r-ball is embedded by the exponential map.

The first of these is also proved in [3] when n = 3. The second is a “noncol-
lapsing” hypothesis which is known to hold in the Kahler-Einstein case, after
unimportant adjustment of constants.
The effect of these hypotheses is that for any (small) scale r there is a

connected set with small complement such that the geometry on scale r is com-
pletely controlled at each point of this set.
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Additional hypotheses

1. We suppose that the Ricci curvature of (Xi, ωi) satisfies a fixed bound
|Ric| ≤ C.

2. Let G by the Green’s function on Xi, normalised so that minx,y G(x, y) =
0. (Our sign conventions are that Δ = ∂2 and the Green’s function satisfies
ΔxG(x, y) = −δy, so that G is very positive near the diagonal.) We
suppose there is a fixed bound

∫

Xi

G(x, y)dy ≤ C,

for all x ∈ Xi and all i.

3. There is an L∞ bound, for every holomorphic section s of Lk over Xi

‖s‖L∞ ≤ Ck
n/2‖s‖L2

These are all known to hold in the Kahler-Einstein case (the first being
trivial, of course.) See the discussion in Appendix 1. We next state another
fact that will be important in our arguments. Fix r0 so that the volume of
Ω(r0) ⊂ Xi is at least half the volume of Xi.

Proposition 1 For r ≥ r0 and any integer k there is a constant C(r, k) such
that for any holomorphic section of Lk → Xi we have

‖s‖2L2 ≤ C(r, k)
∫

Ω(r)

|s|2.

We sketch a proof in the Kahler-Einstein case. By “additional hypothesis 3”
above we can fix r1 = r1(k) < r so that

‖s‖2L2 ≤ C
′(r1, k)

∫

Ω′(r(k))

|s|2.

for a suitable C ′(r1, k). Now suppose the statement is false. Then without loss
of generality there are holomorphic sections si of L

k → Xi with
∫

Ω′(r1)

|si|
2 = 1

but ∫

Ω(r)

|si|
2 → 0,

as i → ∞. Now take the Gromov-Haussdorf limit of a subsequence of the
Xi, which we may as well suppose is the whole sequence. The sequence of
domains Ω′(r1) ⊂ Xi can be supposed to converge to a domain Ω′ in the smooth
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part of this limit. The holomorphic sections are si are bounded (by additional
hypothesis 3) so we can suppose they converge over a slightly larger set than
Ω′. Then the limit gives a non-trivial holomorphic section over the connected
set Ω′ vanishing on a proper open subset, which is a contradiction.
This argument is not completely satisfactory; first because it does not yield

an explicit estimate and second because it relies on the metric convergence
theory of Gromov et al. It is possible to write out a longer but more direct
proof, just using the Hypotheses above, which does not have these drawbacks.
Now choose an arbitrary Kahler metric ω∗∞ onX∞ and a convergent sequence

of “reference metrics” ω∗i on Xi. So we can write ωi = ω
∗
i +
√
−1∂∂φi for a

sequence of Kahler potentials φi. We write Osc(φi) for the difference between
the maximum and minimum values. Now what we would like to show is

Goal 2’ Assume Xi satisfy the hypotheses above. If X∞ is K-stable then
there is a fixed bound on Osc(φi), for all i.

We will not quite achieve this goal here. If we did then in the Kahler-
Einstein case the estimates of Yau give bounds on all higher derivatives and we
would deduce that X∞ has a KE metric, achieving “Goal 2” (with the small
modification that we use K-stability).

2.2 The main argument

2.2.1 The Chow weight and stability

Now we review the central concept in our approach. Let V be a finite-dimensional
Hermitian vector space which we may as well take to be the standard CN+1

and Z ⊂ P(V ) = PN a projective manifold. Suppose A is a Hermitian endo-
morphism of V and let H be the corresponding Hamiltonian function on CPN

given by

H(z) =
1

|z|2
∑
Aαβzαzβ .

Then we define the Chow weight of Z with respect to A to be

Ch(Z,A) = −
1

Vol(Z)

∫

Z

HdμFS +
1

N + 1
Tr(A).

Here dμFS is the volume form on Z induced by the Fubini-Study metric. Notice
that the factors are chosen so that the Chow weight vanishes if A is a multiple
of the identity. We write |A| for the operator norm of A, i.e. the modulus of
the largest eigenvalue. Thus |H| ≤ |A| on PN .
In the case when Z is preserved by the 1-parameter subgroup generated by

A the Chow weight is an algebro-geometric notion, independent of the choice of
Hermitian metric. Now we recall the definition of K-stability. Given a polarised
manifold (X,L) we consider a test configuration which is aC∗-equivariant family
π : X → C with π−1(1) = X and an equivariant, ample, Q-line bundle L → X
which restricts to L on the fibre π−1(1). Then for sufficiently large k we can
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represent this family by a 1-parameter subgroup acting on projective schemes,
with the fibre π−1(1) embedded by the linear system H0(X,Lk). Thus the
central fibre Z = π−1(0) is embedded in PN , where N = Nk, and preserved by
a 1-parameter subgroup with generator A = Ak. To fix signs, in moving towards
the central fibre we flow along the decreasing gradient flow of the function H.
The Chow weights Ch(Z,Ak) have a finite limit as k → ∞ which is, by

defintion, the Futaki invariant of the test configuration. The pair (X,L) is K-
stable if this Futaki invariant is positive for all non-trivial test configurations.
Remarks

• The central fibre will in general be a scheme. The definition of the Chow
weight extends immediately to algebraic cycles and we use the cycle cor-
responding to the scheme to define the Chow weight.

• By saying that L is a Q-line bundle we mean that only some power Lm is
defined as a genuine line bundle. Thus the index k will only run through
multiples of m in the discussion above.

Three important properties of the Chow weight are as follows.

1. The Chow weight is continuous as a function on the Chow variety parametris-
ing algebraic cycles.

2. For fixed A the Chow weight Ch( , A) is constant on each connected com-
ponent of the fixed point set of the 1-parameter subgroup exp(tA) acting
on the Chow variety.

3. If Zt = exp(tA)Z then the Chow weight Ch(Zt, A) is a decreasing function
of t.

Concerning the second item: one point of view is that Ch( , A) is a Hamilto-
nian function for the action of exp(itA) with respect to a symplectic structure
on the Chow variety–in fact this is induced from a symplectic form on an am-
bient projective space. Then we have the familiar fact that the Hamiltonian is
constant on each component of the fixed set. From another point of view the
Chow weight is a cohomological invariant of a space with a torus action and an
equivariant line bundle and then the deformation invariance is clear from this.
Concerning the third item: we can think more generally of a function H on a

compact Riemannian manifold M and a submanifold N ⊂M . Let ft :M →M
be the flow generated by the gradient of H, let Nt = ft(N) and

I(t) =

∫

Nt

Hdμ,

where dμ is the induced Riemannian volume form. Write v⊥ for the component
of gradH orthogonal to N . Then we have

I ′(0) = −
∫

N

|v⊥|2 + h(v⊥)dμ,
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where h denotes the mean curvature of N . So if N is a minimal submanifold we
have I ′(0) ≤ 0. In the case at hand, when M = CPN and N = Z, the desired
assertion now follows from the fact that complex submanifolds are minimal.
For fixed Z the Chow weight can be regarded as the derivative of a function

FZ on the space of Hermitian metrics on C
N+1 and the third property is the

assertion that FZ is convex.

2.2.2 Bound on the Chow weight

The input for this is a slightly refinement of the theory of Luo-Tian-Zelditch.
Let L → Z be a positive line bundle over a compact complex manifold with
a Hermitian metric on the fibres whose curvature yields a Kahler form ω with
volume form dμ. For integers k > 0 we define the density of states function by

ρk =
∑
|sα|

2,

where sα is an orthonormal basis of H
0(Lk) and we use the volume form kndμ.

The basic fact is that ρk has an asymptotic expansion

ρk ∼ 1 + a1k
−1 + a2k

−2 + . . . , (∗)

as k → ∞. The ai are functions on Z, determined by the curvature tensor of
the metric, and in particular a1 is half the scalar curvature.
The refinement we need is that this is statement is local in Z.

Theorem 1 Suppose that the unit ball centred at some point z0 ∈ Z is embedded
and that the modulus of the Riemann curvature is bounded by 1 on this ball.
Suppose also that the metric has constant scalar curvature and satisfies a bound
on the Ricci tensor |Ric| ≤ C throughout Z. Then the asymptotic expansion *
holds in the half-sized ball centred at z0 with constants depending only on C and
the dimension n.

Thus, for example, we can find a k0 depending only on C, valid for all such Z
of dimension n, such that |ρk − 1| ≤ .01 at z0, once k ≥ k0.
We will discuss the proof in Appendix 2 below. The constant scalar curvature

assumption is not really fundamental here: it is only used to give control of all
derivatives of the metric in the ball.

Now consider the sequence of manifolds Xi in our problem. We use the
standard L2 norm on H0(Xi, L

k), so Xi becomes a variety in a projectivisation
of a Hermitian vector space which we identify with the fixed CN+1.

Theorem 2 Assuming the hypotheses above there is a constant C such that

|Ch(Xi, A)| ≤ Ck
−2(log k)|A|

for all A, i.

The proof of Theorem 2 is given in Section 3 below.
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2.3 Limit in the Hilbert scheme

With these preliminaries stated we can begin the main argument. We change
point of view slightly and let V be a fixed hermitian vector space of dimension
N + 1 = dimH0(Xi, L

k); which we often identify with CN+1. For each i we
choose a hermitian isomorphism of V with H0(Xi, L

k) so we get a sequence
of manifolds which we still denote by Xi in the fixed projective space, with
its fixed Fubini-Study metric. On the other hand we can fix some arbitrary
embedding of X∞ as a projective variety X

∗
∞ ⊂ P(V

∗) and chose a sequence
X∗i say converging to X

∗
∞. Thus Xi and X

∗
i are isomorphic projective varieties

and there is a gi ∈ PGL(V ∗) such that gi(X∗i ) = Xi. Our hypothesis on the
automorphism group implies that the gi are uniquely determined. We may
suppose that our reference metrics ω∗i are those induced from the Fubini-Study
metric on X∗∞.
Now we regard the Xi as points in the appropriate Hilbert Scheme. By

compactness of the Hilbert scheme they have a convergent subsequence, which
we may as well suppose is the whole sequence. The limit is some scheme W .
There are two possibilities: either the gi converge in PGL(V

∗), in which case
W is a variety isomorphic to X∞, or the gi do not converge, in which case W
is not isomorphic to X∞.

Proposition 2 There is a k0 such if k ≥ k0 and the sequence gi converges then
the sequence Osc(φi) is bounded.

This is the foundation of our argument. Supposing that the φi are not
bounded we obtain for each large enough k a limit W in a different orbit in the
Hilbert scheme and our overall goal is to use these to show that X∞ cannot be
K-stable.

To prove Proposition 1 we apply a standard analytical argument. Let ω, ω′

be two cohomologous Kahler metrics on a compact manifold Z so ω′ = ω +√
−1∂∂φ. Let φmax, φmin be the maximum and minimum values of φ and set
f = φ− φmax. Since ω +

√
−1∂∂f > 0 we haveΔf ≥ −n (with sign convention

Δ = ∂2). If z is a point where φ attains its maximum we have

0 = f(z) = Avω(f)−
∫

Z

G(z, w)Δfdw,

so ∫

Z

fdμ ≥ −C,

where C depends only on n, the volume of Z and the Green’s function bound
for ω. Here dμ is the volume form of ω. In terms of φ,

∫

Z

φmax − φ dμ ≤ C
′
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Now interchange the roles of ω, ω′. This gives
∫

Z

φ− φmin dμ
′ ≤ C ′

where dμ′ is the volume form of ω′ and C ′ depends on the Green’s function
bound for ω′. Suppose there is a open set set Σ ⊂ Z on which dμ′ > εdμ, for
some ε > 0. Then ∫

Σ

φ− φmindμ ≤ C
′/ε,

so ∫

Σ

φmax − φmindμ ≤ C + C
′/ε,

and φmax − φmin ≤ (C + C ′/ε)Vol(Σ)−1.
Now we apply this in our situation to the reference metrics and cscK metrics

on Xi. The Green’s function bounds are controlled by hypothesis. So if we can
show that there is a set Σ ⊂ Xi of a fixed volume (that is, independent of i) with
respect to the cscK metric and such that the measure of the reference metric
is bounded below on Σ by a fixed multiple of that of the cscK metric then we
obtain a uniform bound on the Kahler potentials. Now we apply our Hypothesis
(Hypothesis V) in a rather weak form, to say that there is some r0 such that the
volume of Z(r0) is less that half (say) the volume of Xi. In particular there is
some ball in Xi of radius r0 on which the curvature is bounded by r

−2
0 . Scaling

by the fixed amount r0 we can apply Theorem 1 to find some fixed k0 such that
if k ≥ k0 then ρk is very close to 1 (in C2-norm) over the half-sized ball. This
implies that the Fubini-Study metric induced by the projective embedding is
close to the cscK metric and in particular the volume form of the Fubini-Study
metric is bounded below by some fixed multiple of that of the cscK metric, on
this half-sized ball. We take this half-sized ball as our set Σ
Now suppose that the gi are convergent. This means that the map gi : X

∗
i →

Xi distorts the Fubini-Study volume by a bounded amount. Then it follows that
the reference volume form on Σ is bounded below by a fixed multiple of the cScK
volume form and we obtain the uniform bound on the Var(φi).

Now, given k, fix r0(k) = bk
−1/2 and Ω′i = Ω

′(r0) ⊂ Xi. The number b
is fixed so that the Fubini-Study metric induced by the projective embedding
fi : Xi → P

N is uniformly equivalent to the cscK metric on Ω′i. We can suppose
k chosen so large that the volume of Ωi in the Fubini-Study metric is at least
3/4 of the volume of X.

Proposition 3 There is an irreducible component B of W with Vol(B) >
1
2Vol(W ) and so that fi(Ω

′
i) converges to an open subset Ω

′
∞ ⊂ B, and B is

smooth and reduced at points of Ω′∞.

Notice that B is trivially unique by the volume condition, so we know that
W contains one “big” irreducible component.

Proposition 4 The component B does not lie in any hyperplane in PN .
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Suppose that B lies in a hyperplane. For each i, this hyperplane corresponds
to a holomorphic section s of Lk over Xi, with L

2 norm 1. We have

|s|2

ρ
≤ δi,

on Ω(r) where δi → 0 as i → ∞. But ρ is bounded above on Ω(r) so we
get maxΩ(r) |s|2 ≤ Cδi. For large i, this contradicts the third supplementary
hypothesis, since the L2 norm of s is 1.

Now take an integer m > 0 and set k′ = mk. Thus we have another sequence
of embeddings

f ′i : Xi → P
N ′

say. Here PN
′

again has a fixed Fubini-Study metric and the embeddings are
determined, up to the action of the unitary group, by the L2 norm on sections

of Lk
′
over Xi. We get another limit W

′ ⊂ PN
′

. Let Λ→W be the restriction
of the hyperplane bundle of PN to W and likewise for Λ′ →W ′.

Proposition 5 Suppose that W is reduced and irreducible. Then for all suf-
ficiently large m the schemes W,W ′ are isomorphic. More precisely the pair
(W ′,Λ′) is isomorphic to (W,Λm).

We can choosem so large that the natural map sm(H0(W,Lk))→ H0(W,Lkm)
is surjective. Hence, for each large i

p : sm(H0(Xi, L
k))→ H0(Xi, L

mk)

is surjective. Let K be the kernel of p. The L2 norm on H0(Xi, L
k) induces a

stsndard norm on the symmetric power, let J be the orthogonal complement of
K. Using the obvious isomorphism from J to H0(Xi, L

mk) we get an induced
norm, ‖ ‖0 say, on H0(Lmk). To fix ideas suppose for example that m = 2. Let
(sα) be an orthonormal basis of H

0(Xi, L
k). A section σ of L2k can be written,

in general, in a variety of different ways as σ =
∑
cα,βsαsβ and we have

‖σ‖20 = min
∑
|cαβ |

2,

where the minimum is taken over all such representations of σ.
Now we also have an L2 norm on H0(Xi, L

km). We claim that it suffices to
prove that these two norms are uniformly equivalent, in the sequence, i.e.

C−1‖σ‖0 ≤ ‖σ‖ ≤ C‖σ‖0,

for a fixed C independent of i. To see this consider the standard Hermitian

vector space CN
′+1. The embeddings f ′i : Xi → P

N ′ are given by choosing an
isometry between the standard metric and the L2 norm on H0(Xi, L

mk). On
the other hand we can compose the embeddings fi with the Veronese embedding
and these are given by choosing an isomorphism between the standard metric
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and ‖ ‖0. So if the norms are uniformly equivalent the embeddings f ′i differ from
the composites V ◦ fi by a bounded sequence in PGL(N ′ + 1) and it follows
that the limits W,W ′ are equivalent.
Now in one direction it is clear from the third additional hypothesis that

‖σ‖L2 ≤ C‖σ‖0. The difficulty comes in the other direction. Suppose that we
have a sequence σi with ‖σi‖L2 → 0 and ‖σi‖0 = 1. We can suppose that σi
converge to an non-zero element σ orthogonal to the kernel of sm(H0(W,Lk))→
H0(W,Lmk). Then σ is a polynomial on PN which does not vanish on W
but does vanish on an open set in B. If W is reduced and irreducible this is
impossible.

2.3.1 General theory for group actions

Suppose that a reductive group G with maximal compactK, acts on a projective
variety S ⊂ P(V ) via a linear action on V . In our application S will be a Hilbert
scheme or, more precisely, the corresponding underlying variety. Suppose that
we have sequences xi, yi in S and gi ∈ G such that xi = giyi and that xi →
x, yi → y as i→∞. What can we say about x and y?. A familiar case is when
the yi are all equal so we have xi = gi(y). This is the case which is relevant
to the proof of the “Hilbert criterion” in Geometric Invariant Theory, and one
shows that there is some 1-parameter subgroup λ : C→ G such that λt(y)→ x
as t→∞. In fact we can choose this to be an algebraic 1-parameter subgroup,
factoring through C∗. We might say that there is an orbit of λ “going from” y
to x. But more complicated situations can arise.
Example
Suppose S is a toric surface so G = C∗×C∗ has an open dense orbit S \D.

Any two points x, y ∈ S are limits of sequences xi, yi in the open orbit so with
xi = gi(yi) as above. Fix a base point s0 ∈ S \D and identify the Lie algebra of
K with R2. The “fan” of S is a decomposition of R2 into wedge-shaped regions
Wα, each corresponding to a fixed point σα ∈ D of the action. If v is a vector
in the interior of a Wα then

lim
t→∞

exp(itv)(s0) = σα.

Now let v′ be another vector in the interior of some Wβ . It might be that there
is a vector u such that u is in the interior of Wα and −u is in the interior of Wβ .
In that case σα, σβ can be connected by the orbit of the 1-parameter subgroup
generated by iu, in the sense that

lim
t→∞

exp(itu)s0 = σα, lim
t→−∞

exp(itu)s0 = σβ .

But ifWα∩(−Wβ) is empty we cannot find a single such 1-parameter subgroup.
What we can do is to take u = 1

2 (v− v
′) and consider orbits of the 1-parameter

subgroup λt generated by u. Then σα, σβ can be connected by a “chain” of
orbits of this fixed subgroup, in the sense that there are α0, α1, . . . , αp with
α0 = α, αp = β and points s1, . . . , sp−1 such that

lim
t→−∞

λt(si) = αi−1 lim
t→∞

λtsi) = αi.
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As before, we can arrange that the 1-parameter subgroup is algebraic.

With these examples in mind we seek a general result. Given an algebraic
1-parameter subgroup λ in G we write Gλ ⊂ G for its centraliser and Sλ ⊂ S
for the set of points fixed by λ. Thus Gλ acts on Sλ. If O ⊂ S is a non-trivial
λ-orbit then the closure O is a rational curve containing a point O− in one
component of Sλ and a point O+ in another component. We say that the orbit
goes from O− to O+. More generally we want to consider “positive semi-orbits”
by which we mean a subset of S of the form

{λtz : t ≥ 0}.

The closure contains an extra point O+ in Sλ (the limit as t → ∞) and we
say that the semi-orbit goes from z to O+. Likewise for “negative semi-orbits”
which go from a point of Sλ to a point not in Sλ.
Now suppose we have two points w,w′ in the same connected component of

Sλ, an orbit or positive semi-orbit going from some point z to w and an orbit
or negative semi-orbit going from w′ to some other point z′. Then we say that
the orbits are matching. Suppose we have O1, . . .Op where O1 is either an orbit
or a positive semi-orbit, Op is either an orbit of negative semi-orbit and Oj are
orbits for 1 < j < p. If consecutive pairs Oj ,Oj+1 are matching we say that we
have a chain of orbits. This chain has an initial point z1 ∈ O1 and a terminal
point zp in Op. Finally we say that the chain goes from x ∈ S to y ∈ S if x is
either equal to z1 or they are both in the same component of Sλ and likewise
for y and zp.
With all this terminology in place we can state

Proposition 6 Suppose, as above, that G acts on S and xi → x, yi → y, xi =
gi(yi). Then we can find an algebraic 1-parameter subgroup λ in G, elements
k, k′ ∈ K and a chain of orbits going from kx to k′y. Moreover we can choose
λ to be the complexification of a 1-parameter subgroup of K.

One general setting for this is the theory of gradient flows. We fix a metric on
CPM preserved by a maximal compact K ⊂ G. There is a family of functions
Fξ for ξ ∈ k so that the action of 1-parameter subgroup generated by iξ is the
gradient flow of Fξ. We can do this either on CP

M or on S, and the possible
singularities of S are not really relevant. Saying that two points a, b are in the
same G-orbit is the same as saying that for some k ∈ K the points a, bk are
joined by a gradient flow line of some Fξ, where we may suppose that ξ has
unit length. Now the standard theory (as in finite dimensional Floer theory) for
families of gradient flow lines of a single function is that any sequence of such
contains a subsequence converging to a “broken trajectory”. In the case of a
Morse function, with isolated critical points, the different links of the limit have
the same endpoints but in general they have endpoints in the same connected
component of the critical set. The same ideas applies to a compact family of
functions and prove the proposition.
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For another point of view on this, consider the closure of a generic G-orbit
in S. This is a subvariety of S and defines a point in the appropriate Chow
variety. Varying the generic orbit we get a subsetM of the Chow variety whose
closure is a subvarietyM. Points inM\M correspond to degenerations of the
generic orbit. Such a degeneration will be reducible, given by a union of orbit
closures. This is what is happening in the case above, when the limits x, y are
joined by a chain, moving from one component to another.
For example, consider the theory of SL(2,C) bundles over a curve, rep-

resented in terms of a G action on some S. A generic bundle will have line
sub-bundles of degree at most a certain number d + 1, but we may have a
special bundle E with a line sub-bundle L of degree d. Thus E is an extension

0→ L→ E → L−1 → 0.

There may well be also a non-trivial extension

0→ L−1 → F → L→ 0.

The closures of the orbits corresponding to E,F meet along points corresponding
to L⊕L−1. In the simplest case the generic orbit splits into the union of these
two orbits. But it might happen that E has another non-generic sub-bundle
leading to another component. Or it might happen that F has a non-generic
sub-bundle, and so on.

2.3.2 Partial proof in the reduced irreducible case

We apply the ideas of the previous subsection to the points X∗∞,W in the Chow
variety. We get a 1-parameter subgroup with Hermitian generator A and a
chain of orbits “going from” X∗∞ to W . The Chow weight is constant on each
connected component of the fixed point set. If Ch1, . . .Chp are these Chow
weights we get, by the monotonicity property

Ch1 ≤ . . . ≤ Chp ≤ Ch(W,A) ≤ Ck
−2 log k|A|.

Since (for large k) X is Chow stable, we know that Ch1 > 0. By itself this does
not give any contradiction: what we need to do is to increase k. So we consider
k′ = mk as above, for large m.
Suppose we know that W is reduced and irreducible, so W ′ = W . We now

encounter a major difficulty, which we are not able to deal with fully. When
p = 1 things work well. There are two sub-cases. In sub-case (1), W has an
C∗ action and is the central fibre of a test configuration for X. We can use
this same test configuration with the higher power k′ and the generator A′ has
|A′| = m|A|. We deduce that the Futaki invariant of W is 0, contradicting
the K-stability of X. In subcase (2), W need not have a C∗ action but there
are schemes Y, Y ′ with C∗-actions, in the same component of the fixed point
set, such that Y is the central fibre of a test configuration for X and Y ′ is the
central fibre of a test configuration for W . Again we can use these same test

13



configurations for the higher power mk. The inequality above tells us that the
Futaki invariant of Y is less than or equal to zero and we get our contradiction.
The difficulty is that when p > 1 we cannot read off, or at least not so easily,

a chain for mk from that for k. Consider a C∗-orbit going from some scheme
Z0 to another Z∞. We can regard this as C

∗-equivariant family π : Z → CP1.
Conversely suppose we have such a family. Given a power k we can form the
vector bundle Ek → CP

1 by the direct image of sections of Lk. The condition
that we can represent this family by a C∗ orbit in the Hilbert scheme is that the
bundle Ek is projectively trivial. But this does not imply that Ek′ is projectively
trivial for all k′ = mk. This gives an obstruction to passing a chain from the
power k to mk. If we do not encounter this obstruction then the same argument
as above, for p = 1, works.
We can think about this difficulty in terms of the “splitting of orbits” dis-

cussion of the previous subsection. In our original family T of Fano manifolds
there is a Zariski open set T0 where the orbit in the Hilbert scheme, for the
given value k0, is generic (for example, has maximal degree) among all those in
the family. If the limit X lies in T0 we are in good shape, for in that case W
is the closure of the orbit corresponding to X and we are in subcase (1) above.
More subtly, there is a Zariski-open T1 containing T0 consisting of orbits char-
acterised in the following way. A point Y ∈ T gives an orbit O in the Hilbert
scheme. There may be various ways to augment this to a union of orbit closures
O∪ 0i ∪ . . . Oq which is a degeneration of the generic orbit. We say Y is in T1 if
there is one such way in which all the Oi meet 0. Then we can argue that if X
is in T1 and one takes a suitable sequence Xi then only the good case occurs,
either with sub-case (1) or (2).
This line of argument can be pushed a bit further and may, in fact, cover

many cases where the pattern of orbit degeneration is suitably generic. But
it seems impossible to verify this in a practical case. However if we restrict
attention to our “Goal 1” then we can avoid this difficulty of chains.
To sum up, our approach to Goal 2 meets two difficulties

• Difficulty 1 The limiting scheme W may not be reduced and irreducible
in which case taking a larger value k′ = mk we may a get a different limit
W ′.

• Difficulty 2 If X is joined to W by a long chain then we have a problem
in passing this to to the higher power k′.

In Section 4 we attack the first difficulty, understanding how W ′ and W are
related.

3 Proof of Theorem 2

We write X = Xi and ω for the cscK metric in the fixed Kahler class. We work
with the line bundles Lk → X and write

∑

α

|sα|
2 = ρ

14



where sα is any orthornomal basis of holomorphic sections of L
k. Let the scalar

curvature of X be 2c and write

ρ = 1 + ck−1 + η.

Let V0 be the volume of X with respect to the metric ω so

dimH0(X,Lk) = V0k
nP (k),

say, where P (k) = 1+ck−1+O(k−2). The metric ωFS induced from the Fubini-
Study metric is

ωFS = kω +
√
−1∂∂ log ρ

Then one finds from the definition that

V0Ch(X,A) =

∫

X

H
ρ

P
ωn −

∫

X

H(ω + i
√
−1∂∂ log ρ)n.

Given b write r0 = bk
−1/2 and let Ω = Ω(r0), Z = Z(r0). Writing I for the

first integral and J for the second, we have

V0|Ch| = |IΩ + IZ − JΩ − JZ |,

in an obvious notation. Thus

V0|Ch| ≤ |IΩ − JΩ|+ |IZ |+ |JZ |.

To estimate these integrals we use

Lemma 1 Suppose F is a function on Ω such that |F | ≤ k−2r−4 in Ω(r) ⊂ Ω
for all r ≥ r0. Then ∫

Ω

|F |dμ ≤ Ck−2 log k,

where C depends on b and the constant appearing in Hypothesis V.

To see this, let ν be the distribution function of |F |, i.e.

ν(t) = Vol{x ∈ Ω : |F (x)| ≥ t}

We have |F | ≤ b−4 in Ω so

I =

∫ b−4

0

ν(t)dt.

If |F (x) ≥ t then x is not in Ω(k−1/2t−1/4). Thus ν(t) is no more than the
volume of Z(k−1/2t−1/4) which is at most Ck−2t−1 by Hypothesis V. Thus

ν(t) ≤ Ck−2t−1.
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On the other hand, certainly ν(t) ≤ Vol(X) so

ν(t) ≤ Cmin(k−2t−1, 1),

which gives
∫ b−2

0

ν(t) ≤ Ck−2 log k.

Now take r > r0 = bk
−1/2 and consider a point in Ωr. Rescaling Theorem

1 we see that |η| ≤ Ck−2r−4 for a universal constant C. Likewise the second
derivative of η is bounded by Ck−2r−6 ≤ Ck−2r−4. Write

(ω + k−1
√
−1∂∂ log ρn = (1 + F1)ω

n,

and ρ
P
= 1+F2. So |F1| and |F2| are both bounded by Ck−2r−4. We apply the

Lemma three times. First consider |IΩ − JΩ|. This is bounded by
∫

Ω

|H| ((1 + F1)− (1 + F2)) dμ ≤ |A|
∫

Ω

|F1|+ |F2|dμ.

So the Lemma immediately gives |I − J | ≤ Ck−2 log k|A|. The other two terms
are a little less obvious. We have

|IZ | ≤ |A|k
−nVol(Z, dμFS),

and hence
|IZ | ≤ |A|(V0 − k

−nVol(Ω, dμFS).

Now

k−nVol(Ω, dμFS) =

∫

Ω

(1 + F1)dμ = Vol(Ω, dμ) +O(k
−2 log k),

by the Lemma, applied to F1. Now the Hypothesis V tells us that the volume
of the complement of Ω is O(k−2) so

k−nVol(Ω, dμFS − V0 = O(k
−2) log k,

and we deduce that |IZ | ≤ C|A|k−2 log k. Similarly we write

|JZ | ≤ |A|P (k)
−1
∫

Z

ρdμ.

Now
∫

Z

ρ

P
dμ =

∫

X

ρ

P
dμ−

∫

Ω

ρ

P
dμ = V0 −

∫

Ω

ρ

P
dμ = V0 −Vol(Ω, dμ)−

∫

Ω

F2dμ,

and we argue as before.
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4 Algebro-geometric discussion

4.1 The basic construction

Suppose we have the following set-up

• a flat family of schemes π : W → Δ over the disc Δ with smooth fibres
Wt = π

−1(t) for t 6= 0 and with central fibre W0 containing a component
B which is reduced at generic points.

• an embedding of the family in a projective space PN such that B is not
contained (as a set) in any proper linear subspace of PN .

Now fixm > 0 so large that the restriction mapH0(PN ,O(m))→ H0(W0,O(m))
is surjective and all the higher cohomology groups Hi(W0,O(m)) vanish. Sup-
pose that s is a non-trivial section of O(m) over W0 and let s be an extension
to a section over a neighbourhood of W0 in W. Then s has a certain order of
vanishing ms on B (which will be 0 if s does not vanish identically on B).

Lemma 2 For a given s there is an m(s) such that ms ≤ m(s) for all extensions
s.

This should follows from the fact that no extension can vanish identically on
the fibres Wt.
Now of course we can define m(s) to be the least such bound. This order-

of vanishing function defines a flag in H0(W0,O(m)) and we choose a basis
adapted to the flag. For each of these basis elements we choose an extension
over a neighbourhood of W0 in W. This defines another projective embedding
of the family in P(U∗) for a fixed subspace U of smH0(W,O(1)). The function
m(s) defines a 1-parameter subgroup λ in GL(U∗), diagonal in our basis. So
we have projective maps λt : P(U

∗) → P(U∗) for t 6= 0. Now we consider the
family of varieties λt(Wt) ⊂ P(U∗) for t 6= 0. By general principles we can fill in
the “missing fibre” over 0 to get a new flat family of schemes π′ :W ′ → Δ. Up
to isomorphism this is independent of the choices made. There is a birational
map from B to the central fibre W ′0 whose image is contained in a component
B′ of W ′0. The crucial feature of the construction is that B

′ does not lie in any
proper linear subspace in P(U∗).
We have been vague above about the correspondence between the weighted

flag and the 1-parameter subgroup. This is best defined by an example. Suppose
that there is just a 1-dimensional subspace Cp in U of polynomials which vanish
on B and that p vanishes to order 1. Choose a basis p = p0, p1, . . . pN ′ of U

and take the dual basis to identify P(U∗) with PN
′

. Then in this case λt acts
as multiplication by diag(t−1, 1, . . . 1). That is to say, when t is small λt moves
points away from the hyperplane p = 0 containing B.
For a simple explicit example consider a family of cubics Wt in P

2 which
degenerate when t = 0 to the union of a line and conic, in general position.
Take B to be the conic and m = 2. Write A for the line. Then in this case U
is the whole space of quadratic polynomials and we have Wt ⊂ P

5. As above,
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there is just a one dimensional subspace Cp vanishing on B and our 1-parameter
subgroup has fixed point set a P4 ⊂ P5, containing B, and an isolated point
P . The central fibre W0 of the original family, viewed as a subvariety of P

5,
is the union B ⊂ P4 and a conic, A, in a P2 ⊂ P5. The P2 and P4 meet
in a line, spanning the two intersection points B ∩ A. Near to one of these
intersection points the family of curves Wt is modelled on the family of plane
curves {xy = t} where x = 0 corresponds to points in P4. The action of the
1-parameter subgroup fixes x and maps y to t−1y so in the model we get the t-
independent family {xy = 1}, after applying the one-parameter subgroup. What
happens is that the in the new central fibre W ′0 the component A disappears
and B′ is a rational curve with an ordinary double point at P .
We want to relate this algebro-geometric construction to the discussion of

Chapter 2. Recall that we had there, for a given k, a sequence Xi of projective
varieties converging to a scheme W . Then the issue is to understand what
happens if we do the same with a larger value k′ = mk and get another scheme
W ′. Suppose it happens that our sequence Xi can be taken to be fibres Wt(i) in
family W as above, for some sequence t(i) → 0. Then for large m, the scheme
W ′ obtained from the differential geometric discussion agrees with W ′0, obtained
from the algebro-geometric construction above. (See below for the proof.)
If W0 is reduced and irreducible then the algebro-construction above is

vacuous–any section vanishing on B vanishes on the whole of W0. This is essen-
tially a restatement of the argument at the end of Chapter 1. Suppose that W0
is irreducible but not reduced. Thus, when m is large, there are polynomials p
such that pα vanishes on W0 but p does not. When we run the construction we
get a new situation in which p does not vanish on W ′0: i.e. there is a smaller
set of nilpotents in the structure sheaf of W ′0. It seems likely that one can show
that for large enough m we get a W ′0 which is reduced and irreducible. Trusting
in this idea we will largely ignore nilpotents in what follows.
The construction above is related to the following. Suppose for simplicity

that the total spaceW is smooth andW0 has two components A,B meeting in a
normal crossing along D = A∩B. We regard these as divisors in W so defining
line bundles LA, LB →W . Then LA ⊗ LB is trivial since it corresponds to the
divisor of the function t onW. Now consider the line bundle L′ = O(m)⊗LwA →
W for w > 0. Restricted to B this is O(m)[wD] i.e. the sections are sections of
O(m) with poles of order m along D. Restricted to A it is O(m)⊗ [−wD], i.e.
sections are forced to have zeros along D. Thus as we increase w we “move”
sections from A to B. For fixed m,w we can use the line bundle L′ to define a
family of rational maps Wt → P(U∗) and hence a new family W ′′ → Δ. This
agrees with W ′ in some cases, but the “weighted flag’ construction seems to be
more general.
Write D ⊂ B for the set where B meets the other components ofW0, N ⊂ B

for the support of the nilpotent elements and Ω = B \ (N ∪D). Then we have
the rational map from B to B′ is an isomorphism on from Ω to its image.
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4.2 The case of an action

Now we restrict attention to the case of a family W which is compatible with a
C∗-action. Thus we can take the base to be C and we suppose that π is a C∗

equivariant map, where the action onW is induced by a linear action on PN with
generator A ∈ End(CN+1). We let λ, λ be the maximal and minimal eigenvalues
of A and Zmax, Zmin ⊂ P

N+1 be the spans of the corresponding eigenvectors.
Our signs are chosen in the following way: for the orbit of a generic point
in C × PN , as the C-component moves towards 0 the PN component moves
towards Zmin. The only points which flow towards Zmax are those which lie in
Zmax, which are of course fixed by the action.
In this situation we have an action on H0(PN ,O(m) with generator A(m)

say. We can choose the subspace U to be invariant. Then it follows from the
definition that the weighted flag in U is C∗-invariant which means that we can
choose the 1-parameter subgroup λ to commute with action exp(A(m)t).

Proposition 7 The family W ′ produced by this construction is compatible with
the C∗ action induced by the product subgroup λ(t) exp(A(m)t).

We want to pay special attention to the points in Zmax.

Lemma 3 Zmax and Zmin both intersect B.

This follows immediately from the fact that B is invariant under the action and
does not lie in any proper linear subspace.
Now say that a point in B ∩ Zmax is an interior maximum if does not lie in

A. Such points may not exist but after performing our construction they do.

Proposition 8 For sufficiently large m there is an interior maximum in B′.

Write U∗ = U∗1 ⊕ U
∗
2 where λ acts trivially on U

∗
1 and with strictly negative

weight on U2. Changing the action by λ only decreases the weights. Let p
be a point in Zmax ∩ B. Since p ∈ B we have p ∈ P(U1)∗. Thus p remains a
maximum when considered as a point of W ′. On the other hand if W ′ = B′∪A′

then it is clear from the construction that any point in the interior of A′ (i.e.
not in the closure of B′) lies in P(U∗2 ). Thus p is in the interior of B

′.
Given this Proposition we can, and will below, suppose without loss of gen-

erality that there is an interior maximum in B.

4.3 More formal treatment

4.3.1 Sequences in a fixed orbit

We will now switch attention to a slightly different problem.
Goal 4
Suppose X∞ is a Fano manifold which is K-stable. If there is a sequence

of Kahler metrics gi on X∞ with ‖Ric(gi)− gi‖C2 → 0 then X∞ has a Kahler-
Einstein metric.
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Now we have a sequence of metrics on a fixed manifold X∞. It is not hard to
see that all the same estimates hold for this sequence as for the actual Kahler-
Einstein metrics considered before. In fact we do not really care about the
detailed hypotheses on the metrics, because we mean the discussion for illustra-
tion rather than actual applications. In Section 5 we will consider a variant of
this set-up which could have such applications.

Now we get a sequence Xi of projective varieties all isomorphic to a fixed
X∗∞ so Xi = gi(X

∗
∞) and we are supposing that the gi diverge. The limit W is

the central fibre of a test-configuration for X∗∞ with a C
∗-action generated by

A. Then we now show more carefully that our algebro-geometric construction
to produce a new W ′ agrees with the differential geometry.
We know that W has a C∗-action. Let us assume that this is the whole of

Aut(W ), i.e. that this is the stabiliser of the point [W ] in the Hilbert scheme. By
Luna’s Theorem, there is a C∗-invariant slice T for the action of the projective
general linear group at W . This means that given our sequence [Xi] → [W ]
there are hi → 1 such that [hi(Xi)] ∈ T and the [hi(Xi)] are in a fixed C

∗-orbit
in T .
Recall that what we have to do is to compare the standard norm on the

sections of Λm →W with that defined by the L2 over Xi, using the cScK metric.
Fix r such that Ωr ⊂ Xi contains at least half the volume. By Additional
Hypothesis 3 and Proposition 1 , the L2 norm of sections over all of Xi is
equivalent, with fixed constants, to that over Ωr. In turn this latter is equivalent
to that defined using the Fubini-Study metric. This is distorted a bounded
amount by the maps hi so we get equivalent norms if we replace our sequence
Xi by hi(Xi). Thus we may as well suppose that Xi lies in the slice T . Then we
are in the situation imagined above, with a family deformation of W over a disc
and the Xi are the fibres corresponding to a sequence of parameters ti → 0. We
follow through the procedure of Section 4.1, so we have a basis sa of the sections
adapted to the flag defined by the order of vanishing on B ⊂W . The Ωr ⊂ Xi
converge to a domain in the smooth part of B. If sa vanishes with multiplicity
ma on B then in local co-ordinates around a typical point of Ωr ⊂ Xi

sa = t
ma
i (fa,0 + tifa,1 + . . .)

with fa,0 not identically zero and m1 ≥ m2 ≥ . . .. Now we claim that the fa,0
are linearly independent. For suppose we have a relation

∑
λafa,0 = 0.

Let a0 be the smallest index with λ0 6= 0, so we can suppose the relation is

−fa0,0 = λa0+1fa0+1,0 + . . . .

Then
sa0 + λa0+1t

ma0−ma0+1 − . . .
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gives an extension of sa0 over W0 which vanishes to strictly higher order along
B contradicting our choices.
Now if consider the sections

s̃a = t
−masa.

The L2 inner product of s̃a, s̃b over Ωr is approximately

Ma,b =

∫

Ωr

fa,0fb,0

The linear independence of the fa,0 implies that the matrix M is bounded
above and below c−1 ≤ M ≤ c. But this precisely says that the embedding
of Xti defined by the L

2 norm differs from λtiXti by a bounded sequence. So
we see that W ′, defined algebro-geometrically is equivalent to the limit of the
embeddings defined by the L2 norm.

4.3.2 Extension of Stoppa’s argument

This subsection is based on the work of J. Stoppa [7]. Suppose as above that
we have a test configuration W with central fibre W which contains a large
component B and there is an interior maximum p in B. If we embed the test
configuration in projective space we can regard p as a fixed point of the action
and hence it defines a section of W → C. Blowing up W along this section
we get a new scheme Ŵ → C. Write Ŵ for the central fibre of Ŵ. Then Ŵ
contains the blow-up W̃ of W at p but in general the two are not equal. Instead
Ŵ = W̃ ∪P where the component P is glued to W̃ along the exceptional divisor
D ⊂ W̃ .

Example Consider the hypersurface M in C4 defined by the equation x4 =
x21 + x

2
2 + x

2
3. Let C

∗ act on C4 by

(x1, x2, x3, x4) 7→ (t
−ax1, t

−ax2, t
−ax3, t

−bx4).

If a, b > 0 then the origin is a repulsive fixed point of the kind we are considering.
We get a family of hypersurfaces Mt with equations

x4 = t
2a−b(x21 + x

2
2 + x

2
3).

If 2a − b > 0 the limiting equation is x4 = 0 which corresponds to a smooth
central fibre. If 2a − b < 0 the limiting equation is x21 + x

2
2 + x

2
3 = 0 so the

central fibre is singular; the product of C with a quadric cone. Now for t 6= 0
the blow-up of Mt at the origin can be regarded as a subset of C

4 ×P3. So we
get a subset V of C4×P3× (C \ {0}) and we need to take the closure of this in
C4 ×P3 ×C. Consider a vector (r1, r2, r3, r4) with r21 + r

2
2 + r

2
3 6= 0. The line

in C4 generated by this vector meets Mt at

tb−2a
r4

r21 + r
2
2 + r

2
3

tb−2a(r1, r2, r3, r4).
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We can make this point as close to the origin as we like by taking t small. It
follows that the closure of V contains the whole P3 factor at (0, 0) ∈ C4 ×C.
Thus in this case P = P3.

However let us suppose for the moment that we have a case where Ŵ = W̃ ,
for example when B is smooth at p.

We have a choice of polarisation of our test configuration Ŵ. We write this
as L−εE. That is, L is the original line bundle onW lifted to Ŵ and ε = γ−1 for
an integer γ. What this really means is that we use sections of Lrγ ⊗ [−rE]. If
γ ≥ γ0 and r is sufficiently large then these sections give a projective embedding
of the test configuration. Eventually we will have to be very careful about the
ranges of the two variables r, γ but we leave that for the moment.
We will always choose γ so large that the blow-up of the original manifold

X∞ with exceptional divisor of size γ
−1 is K-stable. Our basic strategy is this.

Let W ′ be obtained from W by the procedure discussed above. Here we take
m = rγ and without loss of generality are supposing that k0 = 1. Thus W

′ is
embedded P(V ∗) where V is a subspace of H0(W ′,Λ′) say (which could well
be the whole space but we do not know this). The point p lies in the interior of
B ⊂ W so gives a corresponding point p′ in W ′ and a neighbourhood of p′ in
W ′ is isomorphic to a neighbourhood of p in B. Over this neighbourhood the
hyperplane bundle Λ′ is identified with Lrγ . Write Sr for the skyscraper sheaf
at p′ consisting of r-jets of functions. Let us assume for the moment that

1. The evaluation map from V to Sr ⊗ Lrγ is surjective.

2. The kernel of this evaluation map yields a projective embedding of the
blow-up W̃ ′ of W ′ at p′.

Then it follows that we can construct a test-configuration, embedded in projec-
tive space, for the blow up of X∞ and with central fibre W̃ ′.
What we want to do now is to compare the Chow weights of W̃ ′ and W ′,

with a formula involving the parameters r, γ. This is the same general idea as
in Stoppa’s work but the difference is that the scheme W ′ varies. It is given
by performing our basic construction with polynomials of degree m = rγ. It
comes with an embedding in a projective space of “known” dimension dim =
dim(r, γ) say (given by the Hilbert series of the original manifold X). So dim
is a polynomial of degree n in rγ with positive leading term C, say, and all
other co-efficients “known”. We have a circle action on this space and we write
Tr = Tr(r, γ) for the trace of the generator. This function Tr is “uknown” in
that it depends on the details of way we modified the original circle action on
W . Let p be our interior maximum point in W which we can also regard as
a point in W ′ and let w be the weight of the action on the fibre of L → W
at p. As noted above, when we modify the circle action we only decrease the
eigenvalues so we have an upper bound

Tr ≤ wrγ dim .
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Write V for the integral of the volume of W ′ in its given projective embed-
ding. So V is known, in fact V = Crnγn. To simplify notation let us suppose
that V = rnγn. Write I for the integral of the Hamiltonian over W ′. In the
language above, I is “unknown”. By definition the Chow weight is

Ch(W ′) =
Tr

dim
−
I

V
.

Now we compare W ′ with the blow-up W̃ ′. By the assumptions above the
difference in the trace of the actions is given by the action on Sr, tensored with
the fibre of Lrγ . This depends only on a neighbourhood of p ∈W ′, which is the
same as a neighbourhood of p in W . Flatness implies the dimension is the same
as that for a smooth point so we have fixed universal constants (which we can
write down) such that

d(r) = dimSr = d0r
n + d1r

n−1 + . . .

The crucial fact is that d1 > 0. Write

d(r) = d0r
n + d1r

n−1 + η(r),

with η(r) = O(rn−2), We have a similar polynomial f(r) for the trace of the
induced action on Sr, determined once and for all by the action on W at p.
Write

f(r) = f0r
n+1 + ε(r),

where ε(r) = O(rn).
The blow-up W̃ ′ is embedded in a space of dimension dim−d(r) and the

trace of the action on this space is

Tr− f(r)− wrγd(r).

The volume of W̃ ′ is V − d0rn and the integral of the Hamiltonian is

I − (f0 + wγd0)r
n+1.

So the Chow weight Ch(W̃ ′) is

Tr− (f0rn+1 + ε(r) + wrγ(d0rn + d1rn−1 + η(r)))
dim−(d0rn + d1rn−1 + η(r))

−
I − rn+1(f0 + wγd0)

V − d0rn
. (∗∗)

Lemma 4 We have

Ch(W̃ ′) =
1

1− d0γ−n
Ch(W ′)−wd1γ

1−n−
Tr

dim

(
d1r

−1γ−n + α(r, γ)
)
+ β(r, γ),

where
|α(r, γ)| ≤ c(r−2γ−n + r−1γ−n−1)

and |β(r, γ)| ≤ c(r−1γ1−n + γ−n), with a constant c independent of r, γ.
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This is a completely elementary, but slightly complicated, estimate. The con-
stant c depends only on the di, fi the weight w and the Hilbert polynomial of
the original manifold X.
Now we give the proof of Lemma 4. Write the expression in (**) as (1)-(2).
The first step is to see that the terms ε(r), η(r) appearing in the numerator

of (1) can be absorbed in to the term β in the statement of the Lemma.
The second step is to see that the term η(r) in the denominator of (1) can

be absorbed into the term α.
After these two steps we can consider the simpler expression

Tr− (f0rn+1 + wrγ(d0rn + d1rn−1)
dim−(d0rn + d1rn−1)

−
I − rn+1(f0 + wγd0)

V − d0rn
.

The third step is to see that the terms involving f0 in the numerators of (1)
and (2) cancel, modulo terms which we are allowed to absorb in β. The fourth
step is to see similarly that the terms involving d0 in the numerators of (1),(2)
cancel modulo terms in β.
At this point we can consider the simpler expression

Tr− wrγd1rn−1

dim−(d0rn + d1rn−1)
−

I

V − d0rn
.

The fifth step is to see that the term involving d1 in the numerator of (1)
leads to the term wd1γ

1−n in the formula staed in the Lemma, up to terms
which can be absorbed in β. (Recall here that we are assuming V = rnγn and
we know that dim = rnγn +O(rn−1γn−1).)
Thus, setting aside that term, we have to consider

Q =
Tr

dim−(d0rn + d1rn−1)
−

I

V − d0rn
,

and we need to show that

Q =
1

1− d0γ−n

(
Tr

dim
−
I

V

)

−
Tr

dim
(d1r

−1γ−n + α) + β,

using notation in an obvious way. This is an exercise for the reader.

Now set h = w − Tr
dimr

−1γ−1, so h > 0. We claim that

Ch(W̃ ′) ≤ (1− d0γ
−n)−1Ch(W ′)−

d1h

3
γ1−n +O(γ−n) +O(γ1−nr−1).

To see this consider two cases. In the first case suppose that Tr
dim ≥ −10|w|rγ,

say. Thus in view of the upper bound we have

|
Tr

dim
| ≤ 10|w|rγ.
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This means that
Tr

dim
(α) = O(γ−n) +O(r−1γ1−n).

We can absorb the term α in β and we get the inequality with the better
term d1hγ

1−n. In the case when Tr
dim ≤ −10|w|rγ we have h ≥ 9|w| and h ≤

−(11/10)r−1γ−1Tr/ dim. Now we absorb the term α in a different way

(d1r
−1γ−n + α) ≥

d1

2
r−1γ−n,

once r, γ are large enough. Then we get

Ch(W̃ ′) ≤ (1− d0γ
−n)−1Ch(W ′)− Φγ1−n +O(γ−n) +O(r−1γ1−n),

where

Φ = −
h

9
d1 +

10

22
hd1 ≥

34

99
hd1,

as required. (Of course, the constants chosen here are rather arbitrary.)
Let A′ be the generator of the action for W ′ and let A′0 be its trace-free

part. The Chow weights of W ′ with respect to A′ and A′0 are the same. The
following result is proved in the next subsection.

Proposition 9

w −
1

rγ

I

Vol
≥ c
‖A′0‖
rγ

for a fixed c > 0.

It follows that

h ≥ c
‖A′0‖
rγ
−
1

rγ
|Ch(W ′)|.

Since by our basic estimate Ch(W ′) ≤ C(rγ)−2 log(rγ)‖A′0‖ we get

h ≥
c

2

‖A′0‖
rγ
,

say, once rγ is large.
On the other hand the eigenvalue-decreasing property of our algebro-geometric

construction implies that
‖A′0‖ ≥ crγ.

So we deduce that h is bounded below. Since Ch(W ′) > 0 we can find a γ0 such
that for all γ ≥ γ0 and r ≥ r(γ) we have

Ch(W̃ ′) ≤ 2Ch(W ′)− κh,

say, for some κ > 0 depending only on γ. Now choose r so large that the blow-up
of X is Chow stable, then Ch(W̃ ′) > 0. We get

2Ch(W ′, A′0) = 2Ch(W
′, A) ≥ κc

‖A′0‖
rγ
.
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Taking r large, with fixed γ, this contradicts our basic estimate

Ch(W ′, A′0) ≤ C(rγ)
−2 log rγ‖A′0‖.

What remains to be done is to establish the geometric hypotheses (1), (2)
above, and to extend the argument to the case where Ŵ 6= W̃ . We begin with
first of these, so we continue to suppose that Ŵ = W̃ .
First notice that the computations above have in fact nothing to do with the

existence of projective embeddings so we have a fixed γ0 such that if γ > γ0 we
get a good bound on the Chow weight. Now we also choose γ large enough that
on the blow-up W̃ the line bundle λ = Lγ ⊗ L∗E is ample. This means that we
get a projective embedding of W̃ using λr for large enough r. Further we can
assume that H1(λr ⊗ LE) = 0. This means that evaluation of sections of λr

on E is surjective which translates back on W to the fact that sections of Lrγ

generate Sr. We can also suppose, taking r large, that all these sections of Lrγ

are polynomials in the co-ordinate functions of W ⊂ PN . Now γ is fixed and
we are considering any r > r(γ).
The point is that we now want to go from the fixed manifold W toW ′. Since

p lies in the interior of B we can suppose that near p the two varietiesW,W ′ are
arbitrarily close. The condition that the polynomials generate the skyscraper
sheaf is open so since it holds for W it also holds for W ′.
It remains to show that we get a projective embedding of the blow-up of W ′.

We just give the argument for the case when r = 1, so that we are trying to
embed the blow-up by sections vanishing at a point. The simplification is that
since the relevant point p lies in both W and W ′ this is the same in either case.
We consider the projective embedding of W gives by the Veronese map. We

write this as
W ⊂ P(E ⊕ F ⊕G),

where E∗ is the set of polynomials which vanish on B (but not on W ) and
E∗ ⊕ F ∗ is the set which vanish at p. So we denote a point in the projective
space by [e, f, g]. The action of the 1-parameter subgroup defined by the flag in
E∗ is of the form (e, f, g) 7→ φt(e, f, g) = (ε

−1
t (e), f, g) where εt is a contraction

for t < 1. Recall the set-up is that if we have varieties Xt → W as t → 0 and
φtXt → W ′. We want to see first that we get a well-defined map from W̃ ′ to
projective space. This is the statement that there is no point (0, 0, g) in W ′

apart from p. If there were then we have a sequence (ei, fi, gi) ∈ φtiXti with
ti, ei, fi → 0 as i→∞, and gi → g. Thus εtiei, fi, gi ∈ Xti . This latter sequence
has a limit in W but the limit is (0, 0, g), since εti is contractive. Thus the limit
is p. We know that the birational map from B to W ′ is regular near p. Denote
this regular map by f . It follows from the definitions that [0, 0, g] = f(p). But
we know that f(p) = p since all the Xi contain p. This completes the argument.
Now we want to see that this projection map is an embedding ofW ′. We will

just show that this is true as a map of sets. So we want to show that we cannot
have distinct points [z] = [e, f, g], [z′] = [e′, f ′, g′] in W ′ with [e′, f ′] = [e, f ]. As
before we have sequences zi = (ei, fi, gi)→ z, z′i = (e

′
i, f
′
i , g
′
i)→ z

′ representing
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points in φti(Xi). Thus [εtiei, fi, gi] converges to a point of W and likewise for
the primed sequence.
Now suppose f = g = 0. Then f ′ = 0 and [e] = [e′] but g′ 6= 0. The limit of

the sequence [εie
′
i, f
′
i , g
′
i] is [0, 0, g

′]. Since this is a point of W it must be p. As
before it follows from the definitions that [e′, 0, g′] = f(p) and so e′ = 0 which is
a contradiction. Thus one of f, g is non-zero. Likewise one of f ′, g′ is non-zero.
These facts mean that

[εiei, fi, gi]→ [0, f, g] , [εiei, f
′
i , g
′
i]→ [0, f

′, g′].

From this we see that f and f ′ are both non-zero. But now [f ] = [f ′] so these
points [0, f, g], [0, f ′, g′] project to the same point in the embedding of W̃ , again
giving a contradiction.

Now we turn to the general case when Ŵ = W̃ ∪D P . The structure of Ŵ
is determined by the local geometry (of the test configuration) around p, so we
get the same local picture when we form Ŵ ′. The estimates for the change in
the Chow weight, taking due account of the contribution from P , are in the end
identical: this goes just as in Stoppa’s work. To see the projective embedding,
choose r so large that that L−rD is very ample on P and restriction

H0(P,L−rD )→ H
0(D,L−rD )

is surjective. Let K be the kernel of this restriction map. Then we can amalga-
mate our embedding W̃ → P(E⊕F ), discussed above, with the fixed projective
embedding of P to get an embedding of W̃ ∪D P in P(K ⊕ E ⊕ F ).
This completes our outline of an approach to Goal 4.

4.3.3 Bounds on the Hamiltonian

Theorem 3 Suppose Z ⊂ CPN is an n-dimensional variety preserved by a
C∗ action on CPN . Let H be the Hamiltonian and λ, λ be the maximum and
minimum values of H on Z. Then

λ− λ ≤
1

n+ 1
(λ−

1

Vol(Z)

∫

X

H).

We give a proof when Z is smooth, hoping that it can be extended to the
general case. For convenience write n = q+1. Let V be the function supported
on the interval [λ, λ] given by the push forward by H of the volume form on X.
We claim that V 1/q is a concave function on this interval. Away from the critical
values of H we can identify V (t) with the volume of the symplectic quotient
H−1(t)/S1. This is just given by varying the induced symplectic form, so we
can write locally in t

V (t) =

∫

X//S1
(Ω + tθ)q.
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We want to show that the second derivative of V 1/m is negative at a regular
value t which, without loss of generality, can taken to be t = 0. Then the second
derivative is

(q − 1)V (1/q)−2
(∫
θ2ωq−2

∫
ωq −

(∫
θωq−1

) )2
,

and this is negative by the Hodge index Theorem (since ω is a Kahler form and
θ has type (1,1)). Now we just have to check the discontinuities in derivative
of the piecewise polynomial function V . These correspond to codimension 2
components of the fixed set of the action and it is easy to see that the jump in
the derivative is always negative.
Now the proof is finished by the elementary

Lemma 5 Let f be a positive concave function on [0, 1]. Then

∫ 1

0

tf(t)mdt ≥
1

q + 2

∫ 1

0

f(t)mdt.

The extremal case is when f is a multiple of t− 1.
Now return to the situation considered in the previous subsection. We write

m = rγ. We have to estimate w − I
mV
where w is the highest weight for the

action on W , V is the volume (or, better, degree) of W ′ and I is the integral
over W ′ of the Hamiltonian H ′ say. We apply the preceding result to the “big”
component B′ ⊂ W ′. Then λ = mw. It is clear that λ − λ ≥ ‖A′0‖ where
A′0 is the trace-free part of the generator of the C

∗ action on W ′ (since the
maximum and minimum values are attained in B′). Write R′ for the remaining
components of W ′ so V = Vol(B′) + Vol(R′). Write Vol(B′) = θVol(W ′). We
know that actually θ is very close to 1 (when m is large) but all we need is that
θ ≥ 1/2 say. Now

I

V
=

∫

W ′

H ′ = θ
1

VolB′

∫

B′
H ′+(1−θ)

1

VolR′

∫

R′
H ′ ≤ θ

1

VolB′

∫

B′
H ′+(1−θ)mw,

since mw is the maximum value of H ′. Thus

mw −
I

V
≥ θ(mw −

1

VolB′

∫

B′
H ′).

The preceding result states that

mw −
1

VolB′

∫

B′
H ′ ≥ (n+ 1)‖A′0‖,

so we get

mδ ≥ θ(n+ 1)‖A′0‖ ≥
n+ 1

2
‖A′0‖,

as stated in Proposition 9.
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4.4 Goal 1

Now we go back to our original situation, with a sequence of manifolds Xi → X∞
and cscK metrics on Xi satisfying all our differential geometric hypotheses. We
are interested in achieving Goal 1, so we are allowed to suppose that X∞ is a
“generic point” in its moduli space (in a sense we can make more precise later).
As we explained in (2.3.2) this means that the limit W in the Hilbert scheme
(using some power k) is the central fibre of a test configuration for X∞–we do
not encounter “chains”. So, given m, we have on the one hand a differential
geometric procedure (using the L2 norms on sections of Lmk) yielding a scheme
W ′DG say, and on the other an algebro-geometric construction yielding a new
test configuration with central fibreW ′AG, say. If we knew that W

′
DG = W

′
AG

then just the same arguments as before would go through. The complication is
that it is not always true that W ′DG = W

′
AG. What we want to argue now is

that this is true if X∞ is generic, which is the case at hand.
As before, we assume that AutW = C∗. We have a C∗-invariant slice T for

the projective general linear group action on the Hilbert scheme at [W ]. We
choose a representative τ∞ ∈ T for the orbit of X∞ and a sequence τi → τ∞
representing the orbits of Xi. We know that 0 is in the closure of the C

∗ orbit
of τ∞, say lims→0 s(τ∞) = 0. Now the “generic point” condition implies that
for all τ near to τ∞ the limit of s(τ) as s → 0 exists. That is to say, the
weights of the action are all non-negative. For if not the C∗-orbit of τ would
break up as τ → τ∞ which would contradict our assumption about the orbits
in the Hilbert scheme. To fix ideas, consider a case when the weights of the
action are strictly positive so s(τ) → 0 as s → 0 for all τ . That is, W is
the central fibre of a test configuration for every scheme represented by points
τ ∈ T , and in particular for the Xi. For each τ in a neighbourhood of τ∞ we can
define a weighted flag by the order-of-vanishing construction. If these weighted
flags very continuously with τ , in an obvious sense, then the same argument as
before shows that W ′AG = W

′
DG. The problem is that these flags may not vary

continuously, because the order of vanishing can jump upwards in a limit. Now
the key point is that the weighted flags do vary continuously on a Zariski open
set in T so if X∞ is generic we do not encounter this problem. The same line of
argument applies when there are 0 weights in the C∗ action on T . In this case
we have a subset Σ ⊂ T , properly containing the origin, such that for σ ∈ Σ
the corresponding scheme, Wσ say, has a C

∗-action. The Wσ are a deformation
of W among schemes with C∗-action. If the component B of W deforms in
this family then we are in essentially the same situation as before. But it could
be that the Wσ do not contain a component like B. However there is a closed
algebraic subset Σ′ in Σ in which B does deform so there is a closed subset T ′ in
T of points τ such that lim→0 s(τ) lies in Σ

′. Since τ∞ lies in T
′ this must be a

generic property, so all points near τ∞ lie in T
′ and we get around the difficulty.

It seems likely that if one took the analysis further, in the case when X∞ is
not assumed to be generic, one would get an algebro-geometric description of
a chain of orbits from X∞ to W

′
DG and that the relevant “generic” condition

would then be seen to be that involving splitting of orbits in the Hilbert scheme
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of subschemes of H0(X∞,O(mk)).

This completes our outline of a possible route to achieve Goal 1. Note taht
we may seem to only show that the Kahler-Einstein set contains a Zarsiki open
set. But we can apply the same “generic condition” to subvarities and use the
following principle. Suppose U is a subset of an algebraic variety A. Suppose
that for any subvariety P ⊂ A we know that if U ∩ P is non-empty then U ∩ P
contains a subset P \Q, for a subvariety Q ⊂ P . Then U is Zariski open.

5 Metrics with cone singularities

Let 0 < β ≤ 1. The standard cone with cone angle 2πβ is the singular Rieman-
nian metric on R2 written in polar co-ordinates as

ds2 + β2s2dθ2.

If we write s = rβ and z = reiθ then the metric is

β2r2(β−1)(dr2 + r2dθ2) = β2|z|2(β−1)
(
i

2
dzdz

)

.

We write Cβ for C endowed with this singular Kähler metric. Let D be a
smooth divisor in a complex n-manifold X. We can consider Kähler metrics on
X \D which are locally modelled on Cβ ×C

n−1 around points of D. For the
present we omit a precise definition of “locally modelled”. The main case of
interest will be when X is a Fano manifold and D is a divisor in | −KX |.
Now change tack and consider a projective variety X ⊂ CPN and a smooth

divisor D ⊂ X. For λ ∈ [0, 1] and self-adjoint A ∈ EndCN+1 define

Ch(X,D, λ,A) = λ

∫

X

Hdμ+ (1− λ)
∫

D

Hdμ− CTr(A),

where

C =
1

N + 1
(λVol(X) + (1− λ)Vol(D)).

This value of C chosen so that Ch(X,D, λ,A) vanishes when A is a multiple of
the identity. This Chow weight of the pair (X,D) is simply a linear combination
of the Chow weights for the individual varieties X and D. It is the derivative
of the function

FX,D,λ = λI(X) + (1− λ)I(D)− C log deth,

of a Hermitian metric h on CN+1. Clearly FX,D,λ is convex along geodesics in
the space of metrics h. This immediately gives us a notion of Chow stability
of the pair (X,D). The usual proof shows that stability is equivalent to the
existence of a “balanced embedding” of the pair, by which we mean one with
Ch(X,D, λ,A) = 0 for all A. It is also clear that if (X,D) is semistable for some
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parameter λ0 and stable for another parameter λ1 > λ0 then (X,D) is stable
for all λ ∈ (λ0, λ1]. The point here is that the “test configurations” in question
do not depend on λ, only the Chow weight which determines whether they are
destabilising.

To build a bridge between the two discussions above consider first the singu-
lar Kähler manifold Cβ . We can think of this as the complex manifold C with
the trivial holomorphic line endowed with the Hermitian metric exp(−|z|2β).
Thus we have an L2 norm on holomorphic functions f(z)

‖f‖2 = β2
∫

C
|f(z)|2 exp(−|z|2β)|z|2(β−1)dzdz.

It is clear that the powers ep = z
p for p = 0, 1, . . . span a dense subspace of the

corresponding Hilbert space and that they are orthogonal. We have ‖ep‖2 = Ip
where

Ip = β
2

∫ ∞

0

r2p+2β−1 exp(−r2β)dr,

and the density of states function is

ρ =
∑ r2p

Ip
exp(−r2β).

(This discussion ignores some factors of 2π etc., as we have done throughout.)
Now set r2β = t (so t = s2) and write c = β−1. Changing variables we find that

Ip = β

∫ ∞

0

tcpe−tdt = (cp)!,

where we use the notation x! = Γ(x+1) for the extended factorial function. We
define a function f(t) by

f(t) =

∞∑

p=0

1

(cp)!
tcpe−tdt,

so ρ = f(t)/β.

Lemma 6 • f(t)→ β as t→∞,

• ∫ T

0

f(t)− βdt→ (1− β)/2

as T →∞.

To see this take the Laplace transform of f(t)

F (ξ) =

∫ ∞

0

e−ξtf(t)dt.
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Interchanging the integral and sum this is

F (ξ) =
∑

p≥0

(ξ + 1)−(1+cp),

and summing the geometric series we get

F (ξ) =
1

(ξ + 1)− (ξ + 1)1−c
.

Computing the Laurent series about ξ = 0 one finds

F (ξ) =
1

cξ
+
1− β
2
+O(ξ),

and the statements follow from standard Fourier inversion theory.
Write Ω0 for the singular metric, with fixed parameter β. We can define a

new Kahler metric Ω1 on C by using the embedding in the infinite dimensional
projective space endowed with the L2 norm. This is smooth metric, with Kahler
potential

∑ |z|2p

Ip
.

It follows from the first item in the Lemma, together with corresponding
statements about derivatives, that Ω1 is asymptotic to the cone metric Ω0. The
second item in the Lemma asserts that

∫

Cβ
ρ− 1Ω0 =

1− β
2
.

From now on we write α = 1− β. Notice that by Gauss-Bonnet the integral
of the scalar curvature of Ω1 with respect to the area form Ω1 is 2πα.
Now suppose we have a metric ω0 on (X,D) with a cone singularity. We get

an L2 metric on H0(X;Lk) and an induced Fubini Study metric ωFS , which is
a smooth metric on X. We set ω1 = k

−1ωFS , so ω1 is in the same cohoology
class as ω0. We expect that when k is large ω1 is close to ω0 away from D and is
given near D by rounding off the singularity over a neighbourhood N of points
of distance O(k−1/2) from D, modelled transverse to D on a rescaled version
of Ω1. Let F be a smooth function on X and write H = kF . We consider the
integral

χ = kn+1
∫

X

Fρdμ0,

where dμ0 is the volume form of ω0. In the case when, for a given k, H is a
function derived from a self-adjoint matrix A, as in the definition of the Chow
weight, this is the same as the trace of A but here we are turning things round
a bit and considering a fixed function F and varying k.
Away form the divisor D we can write, as usual,

ρ = 1 +
S

2
k−1 +O(k2).
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On the neighbourhood N the function ρ is approximated by a rescaled version
of the model discussed above. Hence

∫

X

Fρdμ0 =

∫

X

Fdμ0 + k
−1
∫

X

F
S

2
dμ0 +

α

2
k−1

∫

D

Fdμ0,

where we are also writing dμ0 for the measure on D induced by ω0. Away from
D the volume form dμ1 of ω1 differs from dμ0 by O(k

−2). We assume the same
is true for the induced volume form on D itself. Thus we get

χ =

∫

X

HdμFS +
α

2

∫

D

HdμFS + k
n

∫

X

S

2
dμ0 +O(k

n−2). (∗)

Now choose λ so that
α

2
=
1− λ
λ
. (∗∗)

Consider the expression

Chλ = λ

∫

X

HdμFS + (1− λ)
∫

D

HdμFS − Cχ,

where C is chosen as before so that Chλ vanishes when H is constant. In the
case when H is derived from a matrix A this coincides with the Chow weight.
Using (*), first for the given function H and second for a constant function and
rearranging we find that

λ−1Chλ = k
n

∫

X

(S − Ŝ)Fdμ0 +O(k
n−1).

where Ŝ is the average value of the scalar curvature. In particular the lead-
ing term, for large k, vanishes for all F precisely when the scalar curvature is
constant.
What this discussion suggests is that the differential geometric theory of

metrics with cone singularities of angle β should be related to the algebro-
geometric theory of stability for pairs (X,D) where the parameter λ is given by
(**). Thus we are concerned with the range 2/3 < λ ≤ 1. Now we restrict to the
Kahler-Einstein case of a Fano manifold X and a smooth divisor D ∈ | −KX |.
The strategy we have in mind runs as follows.

1. Show that for a sufficiently small β0 there is a Kahler-Einstein metric with
cone angle β0. We expect that as β → 0 these metrics converge to the
complete Ricci flat metric on X \D due to Tian and Yau. One approach
to this step is to try to perturb the Tian-Yau metric.

2. Show that if there is a KE metric with cone angle β then for large k the
pair (X,D) is Chow semistable, for the corresponding parameter λ.

3. If X is K-stable then we deduce from the above two steps that (X,D) is
K-stable for λ ∈ (λ0, 1], where λ0 corresponds to β0.
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4. Show that the set of cone angles for which a KE metric exists is open.

5. Now consider an increasing sequence of angles βi > β0 converging to β ≤ 1.
Suppose there are KE metrics ωi with these angles. If the appropriate
volume estimates etc. hold then we can run just the same argument as in
Section 2. But now we are in the simpler situation envisaged in 4.3 above,
of a sequence of varieties in the same SL(N + 1,C) orbit, so we do not
run into the complications with “chains”. If X is actually K-stable we
can use the Stoppa technique to conclude finally that in fact the sequence
of metrics converges.

Remark 1
This method depends on the existence of a smooth divisor in | − KX |. It

seems that this holds for the vast majority of known examples, but if there are
cases where it fails something else will be required.
Remark 2
One can think of this approach as a variant of the standard continuity

method for the Kahler-Einstein equation, by regarding a cone singularity along
D as a metric whose Ricci tensor contains a distributional component α[D].
Likewise we get an algebro-geometric setting for the standard continuity method.
We consider pairs (X,σ) where X ⊂ CPN is a projective manifold and σ is a
closed (1, 1)-form on X. Then define the Chow weight by

Ch(X,σ,A) =

∫

X

HdμFS +

∫

X

Hωn−1FS ∧ σ − CTr(A),

where as usual the constant C is chosen so that Ch(X,σ, I) = 0 where I is the
identity matrix. The same scheme outlined above applies assuming one can has
appropriate results about solutions of the equation Ric(ω) = tω + (1− t)σ.

6 Conclusions

If the algebro-geometric arguments sketched in Section 4 stand up then we
have achieved Goal 1. We fail to achieve Goal 2 because of the difficulty with
“chains” described in Section 2. Of course if the cone singularity theory of
Section 5 can be developed then that gives a route to the stronger Goal 3. On
the other hand for concrete applications Goals 1 and 3 are perhaps more similar
than they appear. In practice, working from the definition, it is very difficult
to determine if a manifold is K-stable, so Goals 1 and 3 each assert that the
set of “Kahler-Einstein points” is some Zariski open subset of moduli space,
but without giving an effective way of describing the set exactly. The difficulty
comes from the fact that the definition of K-stability involves arbitrarily large
powers Lk. In this connection, it is worth pointing out that our proofs give in a
sense rather more that what is asserted in Goals 1,2,3. This is because we detect
the nonexistence of a Kahler-Einstein metric by studying linear systems |k0L|
for some “known” value k0, which could be computed from the constants in the
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volume estimate. The actual value of k0 one would obtain from our analytical
arguments would probably be very large. On the other hand, one suspects that
in reality, for simple specific examples, the algebro-geometric phenomena may
be detected from some small value of k0, say k0 = 1, 2. If that were the case
then one could hope to give a truly explicit description of the Kahler-Einstein
set.
To sum up, there seem to be the three notable directions for further progress:

• Find a way around the difficulty with chains.

• Develop the cone-singularity theory.

• Find useful estimates on a “k0” which will yield explicit results.

Another interesting question is whether in fact the limits W are in fact the
same for large enough k. This should be related to the problem of endowing a
Gromov-Haussdorf limit of Kahler-Einstien manifolds with a complex algebraic
structure.

7 Appendix 1: Review of results for Kahler-
Einstein metrics

Under our hypotheses for one of the manifolds in question, the volume is fixed
and we have an upper bound on the diameter (from Myers’ Theorem. According
to Croke [4], since the Ricci curvature is bounded below we have a uniform
Sobolev inequality, see also [1] Chapter 5, Theorem 7. By the Bishop-Gromov
comparison theorem we have upper and lower bounds on the volume of balls

0 < c0r
2n ≤ Vol(Br) ≤ c1r

2n.

Supplement 2 to Hypothesis V
Suppose B is a unit ball in a complete Riemannian manifold wit centre p

and suppose |Riem| ≤ 1 on B. Then a direct geometric argument [5], Theorem
4.3, shows that there for each ε there is a δ such that if the volume of B exceeds
ε then the injectivity radius at p exceeds δ. Now the statement follows, after
rescaling, from the lower bound on the volume of balls.

Additional hypothesis 2
We reproduce some material from [2]. We work with a manifold M of di-

mension 2n with n > 1, of volume 1 and with Ricci curvature bounded below
by a strictly positive constant. Cheng and Li show that in this situation a
Sobolev-type inequality of the form

‖f‖L2 ≤ C‖∇f‖
α
L2‖f‖

1−α
L1 , (∗)
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holds, with fixed C, for all functions f of integral 0 and with α = n/(n + 1).
Now let K(x, y, t) be the heat kernel on the manifold, so K > 0 and

∫

M

K(x, y, t)dy = 1,

for all y, t and K(x, y, t)→ 1 as t→∞. Set H = K − 1. We have identities

H(x, x, t) =

∫

M

H(x, y, t/2)2dy,

−
∂H

∂t
(x, x, t) =

∫

M

|∇yH(x, y, t/2)|
2.

Applying (*) we get

∫

M

H(x, y, t/2)2dy ≤ C

(∫

M

|∇yH(x, y, t/2)|
2dy

)α(∫

M

|H(x, y, t/2)|dy

)2(1−α)
.

The conditions above on K imply that
∫

M

|H(x, y, t)| ≤ 2.

Using our identities we obtain

H(x, x, t) ≤ C(−
∂H

∂t
(x, , x, t)α.

Integrating this differential inequality gives

H(x, x, t) ≤ Ct−n,

for fixed C. Now writing

H(x, y, t) =
∑

λ

e−λtφλ(x)φλ(y),

we see that

|H(x, y, t)| ≤
1

2
(H(x, x, t) +H(y, y, t)),

so |H(x, y, t)| ≤ Ct−n. Set

G̃(x, y) =

∫ ∞

0

H(x, y, t)dt.

Then G̃ is a Green’s function onM but with a different normalisation from that
considered in the statement in Section 2. By construction

∫

M

G(x, y)dy = 0.
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In terms of G̃, what we need is a lower bound G̃(x, y) ≥ −C, for fixed C and
all x, y. Now, since n > 1, we have

|
∫ ∞

1

H(x, y, t)dt| ≤ C
∫ ∞

1

t−n ≤ C.

On the other hand since K(x, y, t) ≥ 0 we have H(x, y, t) ≥ −1 so
∫ 1

0

H(x, y, t) ≥ −1

which completes the proof.

Additional Hypothesis 3
For a holomorphic section s of Lk we have a Weitzenbock formula ∇∗∇s =

ks. Set f = |s| so −Δf ≤ kf (in a weak sense). Now we apply the Moser
iteration argument. Set σ = n/(n − 1) so we have a Sobolev inequality, for
positive functions F

(∫
F 2σ

)1/σ
≤ C

(∫
|∇F |2 + F 2

)

.

Given p > 1 we have ∫
fp −Δf ≤ k

∫
fp+1

Write p = 2q − 1, integrating by parts and rearrange to get
∫
|∇fq|2 ≤

kq2

2q − 1

∫
f2q.

Now set F = fq in the Sobolev inequality and derive
(∫
f2qσ

)1/σ
≤ C

(
kq2

2q − 1
+ 1

)∫
f2q.

If g = f2 this can be written as

‖g‖Lqσ ≤

(

C(
kq2

2q − 1
+ 1)

)1/q
‖g‖Lq .

Let Iν = ‖g‖Lσν , so

Iν+1 ≤

(

C(
kσ2ν

2σν − 1
+ 1)

)1/σν

Iν .

Then

‖g‖L∞ = lim
ν→∞

Iν ≤
∞∏

ν=0

(

C(
kσ2ν

2σν−1
+ 1)

)1/σν

I0.

Straightforward estimates give

‖g‖L∞ ≤ Ck
(1+σ−1+σ−2+...)I0,

and 1 + σ−1 + σ−2 + . . . = n since σ = n/n− 1. This is the desired result.
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8 Appendix 2: Outline proof of Theorem 1

This amounts to a precis of relevant parts of Lu’s paper [6], and papers by Tian,
Ruan and others. Generalising the O( ), o( ) notation we write ε(k) for any
term which is bounded by Ck−r for all r. Essentially this means exponentially
decaying terms, invisible in any asymptotic expansion in inverse powers of k.
Note that there will be a missing factor of (2π)n in our discussion.
To bring out the main point consider first a case when the metric is actually

flat in the embedded unit ball B ⊂ Z. We then identify this with the standard
ball in Cn. We fix an identification of the fibre of L over the origin with C.
Taking the line bundle Lk we rescale the metric so we work in a large ball
B√k ⊂ C

n, and we are operating with the standard holomorphic Hermitian line

bundle with curvature (
√
−1/2)

∑
dzidzi. Over this ball we have a standard

holomorphic section of σ0 with |σ0| = exp(−|z|2/4). We cut of this section
near the boundary of the ball to get a compactly-supported section σ1 which is
approximately holomorphic in that

‖∂σ1‖ = ε(k).

We can use a spherically symmetric cut-off function to do this, so σ1 is U(n)-
invariant in an obvious sense. We also have ‖σ1‖ = 1 + ε(k) and evidently
σ1(0) = 1.
Now transplant σ1 to a section of L

k over our manifold Z. We work with the
rescaled metric so that Z has large volume O(kn). We project σ1 to the space
of holomorphic sections using the standard Hormander technique which we now
recall. Since the Ricci curvature of the original manifold is bounded that of
the rescaled manifold is O(k−1). The Weitzenbock formula on Lk-valued (0, 1)
forms (for the rescaled metric) takes the shape

Δ
∂
=
1

2
∇∗∇+Ric + 1,

so once k is large enough (depending only on the original bound on the Ricci
curvature) we have Δ

∂
≥ 1
2 say, and the inverse operator G has L

2-operator
norm at most 2. Now

σ2 = σ1 − ∂
∗
G∂σ1

is a holomorphic section. From the identity

‖∂
∗
G∂σ1‖

2 = 〈G∂σ1, σ1〉,

we get
‖σ2 − σ1‖

2 ≤ 2‖σ1‖‖∂σ1‖ = ε(k).

Go back to the unit ball (say) in Cn. Here the difference σ2 − σ1 is holo-
morphic so the L2 bound above gives a pointwise bound and

|σ2(0)− 1| = ε(k).
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Now let τ be any section over Z which vanishes at the origin. The inner
product 〈σ1, τ〉 is an integral over the ball B√k and this obviously vanishes by
symmetry (considering the Taylor series of τ in our given trivialisation). Finally,
for convenience, set σ = σ2/‖σ2‖. What we have achieved is a section σ with
the three properties

1. ‖σ‖ = 1;

2. σ(0) = 1 + ε(k);

3. 〈σ, τ〉 = ε(k)‖τ‖ if τ(0) = 0.

No more analytical input is required. Let η be the section representing
evaluation at 0, i.e.

〈τ, η〉 = τ(0)

for all τ . By definition the Bergman function at 0 is ρk(0) = ‖η‖2. What we
need is

Lemma 7 Let η, σ be two elements of a Hilbert space such that

1. ‖σ‖ = 1;

2. 〈σ, η〉 = 1 + ε(k);

3. 〈σ, τ〉 = ε(k)‖τ‖ for any τ with 〈τ, η〉 = 0.

Then ‖η‖2 = 1 + ε(k).

The proof is an elementary exercise (which takes place in the plane spanned by
σ, η.) In our case the three hypotheses are re-statements of the properties above
and we conclude that, in this flat situation, ρk(0) = 1 + ε(k). The point we
want to bring out is that the only place in which the geometry of the manifold
Z away from the given ball enters into the argument is through the bound on
the Ricci curvature.
Now we go on to the general case. By the same argument as for the Lemma

above if we produce a holomorphic section σ with ‖σ‖ = 1,

σ(0) = 1 + Ak−1 +O(k−2),

and
|〈σ, τ〉| ≤ Ck−1‖τ‖,

for all holomorphic sections τ vanishing at the origin, then ρk(0) = (1+Ak
−1)2+

O(k−2). Consider holomorphic co-ordinates wa centred on the given point in
the manifold. A Kahler potential φ has a Taylor series which we can obviously
suppose begins as

φ(w) =
∑

a

wawa +O(w
3)
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Write the cubic term schematically as (3, 0) + (2, 1) + (1, 2) + (0, 3) in terms of
the degree in wa, wa. By a change of co-ordinates of the form

w̃a = wa + Cabcwbwc

we can reduce to the case when the (2, 1) and (1, 2) terms (which are complex
conjugate) vanish. Then by adding the real part of a holomorphic quartic func-
tion to the Kahler potential we can remove the (3, 0) and (0, 3) terms. Similarly
we can remove all the quartic terms in the Taylor expansion except for (2, 2)
and all the quintic terms except for (2, 3) + (3, 2). So we can suppose that

φ =
∑
wawa+

∑
Pabcdwawbwcwd+(

∑
Qabcdewawbwcwdwe+complexconjugate)+O(w

6).

Next we rescale co-ordinates writing wa = k
−1/2za and setting Φ(z) =

kφ(w). Thus

Φ(z) = |z|2 + k−1P (z) + k−3/2Q(z) +O(k−2),

in an obvious notation. We work over a ball |z| ≤ R where we can take R to
be a very small multiple of k1/4 so that Φ(z)− |z|2, k−1P (z), k−3/2Q(z) are all
very small over the ball. The volume form (

√
−1∂∂Φ)n in these co-ordinate can

be written
J = 1 + k−1p(z) + k−3/2q(z) +O(k−2),

where for example

p(z) = 4
∑

a,b,c

Pabcbzazc.

The choice of a Kahler potential precisely corresponds to the choice of a
local trivialisation of our line bundle and hence a local holomorphic section σ0
with |σ0|2 = e−Φ. Just as before we can modify σ0 to get a global holomorphic
section and this only introduced terms ε(k) which we can ignore. Regard σ0 as
a discontinuous section of the line bundle over the whole manifold, extending
by zero outside our ball. We want to show first that

|〈σ0, τ〉| ≤ Ck
−1,

for all holomorphic sections vanishing at the origin. Second we want to find a
number a such that ‖σ0‖2 = 1+ ak−1 +O(k−2). Then we will have established
what we need with A = −a/2 (since σ0(0) = 1 by construction).
Now

|〈σ0, τ〉| ≤ Ck
−1
∫

|z|≤R
(1 + |z|4)e−|z|

2

τ(z),

where τ(z) is the representative of τ in our local trivialisation. Here we use the
fact that ∫

|z|≤R
τ(z)e−|z|

2

= 0
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when τ(0) = 0. We obtain the desired estimate using the Cauchy-Schwartz
inequality in the weighted norm. So it just remains to compute ‖σ0‖2 which is
∫

|z|≤R
e−|z|

2

(1+k−1P (z)+k−3/2Q(z)+O(k−2)(1+k−1p(z)+k−3/2q(z)+O(k−2).

Here we have used the Taylor series to expand the exponential term e−Φ and
we have skipped over some rather routine estimates.
If zI , zJ are any monomials such that

∫

|z|≤R
zIZ

J
e−|z|

2

is non zero then we must have |I| = |J |. (To see this, consider the action of
multiplication by eıθ .) It follows that the integrals appearing in the k−3/2 terms
above vanish. Extending the range of integration introduces errors ε(k) so we
get

‖σ0‖
2 =

∫

Cn

(
1 + k−1(P (z) + p(z))

)
e−|z|

2

+O(k−2).

The integral here is straightforward to calculate. We can also argue as follows.
The tensor Pabcd is, from an invariant point of view, an element of s

2(V )⊗s2(V )∗

where V is the cotangent space. The symmetric power s2(V ) is an irreducible
representation of U(n) so there is, up to a multiple, just one U(n)-invariant
contraction s2(V )⊗ s2(V )∗ → C. This is given by

c(P ) =
∑

a,b

Pabab.

It is clear that the scalar curvature and the integrals appearing in the O(k−1)
term above are both invariant contractions of P hence multiples of c(P ). This
argument shows that the co-efficient we are after must be some universal mul-
tiple of the scalar curvature and of course we can identify the multiple from the
Hirzebruch-Riemann-Roch formula.
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