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Abstract

We prove that apart from the Suzuki groups, every finite simple
group of Lie type of rank r over a field of q elements can be written as
a product of C(r) subgroups isomorphic to SL2(q) or PSL2(q), where
C(r) is a quadratic function. This has an application to the theory of
expander graphs.

1 Introduction

In this paper we prove that a group G(q) of Lie type of rank r (not a
Suzuki group) over a field of q elements is equal to a product of C(r) of its
subgroups SL2(q) or PSL2(q), where C(r) is a quadratic function of the
rank. This adds to the collection of such “width” results for simple groups.
For example, in [8, Theorem D] it is shown that G(q) is a product of 25 of its
Sylow p-subgroups (where q = pa), later improved to 5 in [2, Theorem 1.16];
in [10] it is shown that every classical group is a product of 200 subgroups of
type SLn for some n (however see Remark 1 below); and in [12] it is proved
that for any nontrivial word w we have w(G)3 = G, where G is a sufficiently
large simple group and w(G) denotes the set of w-values in G.

0The third author acknowledges the support of an EPSRC Visiting Fellowship at Im-
perial College London

02000 Mathematics Subject Classification: 20G40, 05C25

1



However our main motivation comes from [6], where the authors an-
nounce that all finite simple groups except possibly the Suzuki groups 2B2(q)
can be made into expanders uniformly. Let us explain this in a little more de-
tail. A collection F = {Gi}∞i=1 of finite groups is said to be a uniform family
of expanders if there is some k ∈ N, and a set of k generators Si for each Gi,
such that the Cayley graphs Cay(Gi, Si) form a sequence of e-expanders for
some fixed constant e > 0. Here, a graph X is defined to be an e-expander
if, for every subset A of vertices with |A| ≤ 1

2 |X|, we have |δA| ≥ e|A|, where
δA is the set of vertices at distance 1 from A; see [6] for more details. One
of the key arguments in [6] is based on the following observation. Suppose
F is a collection of groups which is a uniform expander family. Let L be
another collection of groups and assume that there is an integer d such that
every group G ∈ L has a product decomposition G = H1 ∙ ∙ ∙Hd with each
Hi ∈ F . Then L is also a family of uniform expanders. Now one of the
major results in [6] is that the groups S = {SL2(q) | q prime power} are
uniform expanders. Hence, to prove the same for families of groups of Lie
type of bounded rank r, it is sufficient to prove that these can be expressed
as products of bounded numbers of subgroups of type SL2. An argument
for this based on model theory was outlined in [6], and has recently been
completed in [9]; but this does not give explicit bounds on the number C(r)
of subgroups SL2 required.

In this paper we give a short proof of this result using group theoretic ar-
guments, which moreover produce explicit and close to best possible bounds
for the function C(r). This also has the advantage of giving explicit lower
bounds for the expansion constants for families of groups of Lie type of
bounded rank, since in the above discussion a lower bound for the expan-
sion constant for the family L can be explicitly calculated in terms of k,d
and the expansion constant for the family F .

We note that, while our arguments are group theoretic, they rely in some
cases on character methods and on a recent result of Gowers [5, 3.3] devel-
oped and applied further by Babai, Pyber and Nikolov [2] – see Theorem 2.4
below.

Here is our result.

Theorem 1.1. Let G = G(q) be a simple group of Lie type over Fq,
not a Suzuki group 2B2(q). Then G is equal to a product of N subgroups
(P )SL2(q), where N is as in Table 1, a quadratic function of the rank of G.

In the first line of the table, |Φ+| denotes the number of positive roots
in the root system of G; a list of these numbers can be found in [3, p.43].
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Table 1:

G(q) N

untwisted 5|Φ+|
2A2m+1(q) 5(m+ 1)(4m+ 1)
2A2m(q), m > 1 5m(4m+ 7), q > 2

30m(4m− 3), q = 2,m > 2
2A2(q), q > 2 55
2Dn(q), n ≥ 4 5(n− 1)(n+ 2)
3D4(q) 105
2E6(q) 300
2G2(q), q ≥ 37 6
2F4(q), q ≥ 27 900

Remarks 1. In fact the result of [10] mentioned in the first paragraph is
not proved there for G = SU3(q), so our result for this group (proved in
Proposition 2.3 below) completes the proof in [10].

2. Since |G(q)| is a polynomial in q of degree f(r), a quadratic in r, our
bounds are best possible, apart from reducing the constants involved.

2. A few groups G(q) are omitted from the table, namely U5(2),
2G2(q) (q =

33, 35) and 2F4(q)
′ (q = 2, 23, 25). For these groups our proof gives upper

bounds 350, 8 and 6060 for N , respectively.

3. Our proof produces subgroups which are in fact all isomorphic to SL2(q)
except when G = 2G2(q) or PSL2(q). When G is of untwisted type they
are all conjugate, but this is not the case for G twisted.

2 Ree groups and SU3

The most difficult cases of Theorem 1.1 are those in which G is a Ree group
2G2(q) or

2F4(q), or U3(q). We handle these in this section.

Proposition 2.1. Let q = 32n+1 with n ≥ 3. The simple Ree group 2G2(q)
is a product of 6 conjugates of a subgroup H ∼= PSL2(q). If q = 33 or 35

then G is a product of 8 conjugates of H.

Proposition 2.2. Let q = 22n+1, n ≥ 3 and G = 2F4(q) be the simple
Ree group of type 2F4. Then G is a product of 900 conjugates of a subgroup
H ∼= SL2(q).
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Proposition 2.3. For q > 2, the group SU3(q) is a product of 55 conjugates
of a subgroup H ∼= SL2(q).

Note that this proposition is false for q = 2 as U3(2) = 3
2Q8.

The following very recent result, relating product decompositions with
group representations, plays a major role in our proofs.

Theorem 2.4 ([2]). Let n > 2 be an integer and let G be a finite group
with a minimal nontrivial representation of degree k. Suppose that Ai ⊆ G,
i = 1, 2, . . . , n are such that |Ai|/|G| ≥ k−(n−2)/n. Then G = A1 ∙A2 ∙ ∙ ∙An.

Proof of Proposition 2.1

Let G = 2G2(q), q = 3
2n+1 ≥ 27. For basic properties of G we refer to

[14]. If t is an involution in G, then CG(t) = 〈t〉 ×H where H ∼= PSL2(q).
Also, there is a conjugate u of t such that tu has order q +

√
3q + 1 and

CG(tu) = 〈tu〉. Hence CG(t) ∩ CG(u) = 1, showing that there are two
conjugates S, T of H in G such that S ∩ T = {1}.

Hence |ST | = |S||T | = q2(q2 − 1)2/4 while |G| = q3(q2 − 1)(q2 − q + 1).
By [14] the minimal degree of a nontrivial complex representation of G is
k = q2 − q + 1. We see that if q ≥ 37 then

|ST |
|G|

=
(q2 − 1)

4q(q2 − q + 1)
>
1

k3/5
.

Therefore by Theorem 2.4 with n = 5 we haveG = (ST )(TS)(ST )(TS)(ST ) =
STSTST . If q = 33 or 35 an easy computation shows that then |ST |/|G| >
k−5/7 and similarly we get G = (ST )4. Proposition 2.1 is proved. �

Proof of Proposition 2.2

Let G = 2F4(q). The root groups and commutator relations in G are de-
scribed in [4, 2.4.5(d)]. We follow the notation in [4, 2.4.5]. The root system
has 16 roots, and correspondingly G has 16 root subgroups X1, . . . , X16. For
even index i the group Xi = {xi(t) | t ∈ Fq} is one-parameter, and together
with its opposite Xi+8 generates a copy of SL2(q). Let H be one of these,
say H = 〈X8, X16〉. On the other hand if i is odd then 〈Xi, Xi+8〉 ∼= 2B2(q)
and Xi is two-parameter. Its centre is a one-parameter subgroup denoted
Yi = {yi(t) | t ∈ Fq}.

By [4, 2.4.5(d)(2)], for i odd we have [xi(1), xi+3(t)] = yi+2(t). This
shows that each Yi is in the product of two conjugates of H.
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Lemma 2.5. Let S be a subgroup 2B2(q) of G as above, and let P and Q
be the centres of its two opposite root subgroups. Then |PQPQ| > (q − 1)4

and S = (PQ)11.

Proof: We use the 4-dimensional representation of S as a subgroup of
Sp4(q), conveniently described in [3, p.246]. Denote by θ the map t → t2

n

on Fq. If P is parametrized by y(t) and Q by z(u) for parameters t, u ∈ Fq,
then

y(t) =







1 0 t2θ t
0 1 t 0
0 0 1 0
0 0 0 1





 , z(u) = y(u)

T .

Now for t, u, a, b ∈ F∗q (= Fq\{0}, define a map f : (F
∗
q)
(4) → Sp4(q) as

follows:

f(t, u, a, b) := y(t)z(u)y(a)z(b) =







∗ ∗ ∗ ∗
∗ ∗ tu2θa

∗ ∗ u2θa

ua2θb ua2θ ua+ 1







where ∗ denote entries we are not interested in.

We claim that f is injective. Indeed, suppose f(t, u, a, b) = f(t0, u0, a0, b0).
Then tu2θa = t0u

2θ
0 a0 and u

2θa = u2θ0 a0, whence t = t0, and similarly b = b0.
The equations u2θa = u2θ0 a0 and ua = u0a0 imply that u

2θ−1 = u2θ−10 , hence
u = u0 and also a = a0. So f is injective as claimed.

Adding the identity to the image of f we conclude that |PQPQ| >
(q − 1)4. Similarly we get |QPQP | > (q − 1)4

Now |S| = q2(q − 1)(q2 + 1) and the minimal degree of a nontrivial
character of S is at least k =

√
q/2(q − 1), by [7]. So we see that when

q ≥ 27

|PQPQ|
|S|

>
(q − 1)3

q2(q2 + 1)
≥ k−5/7.

By Theorem 2.4 again, this time with n = 7, we see that

S = ((PQPQ)(QPQP ))3(PQPQ) = (PQ)11.

Lemma 2.5 is proved. �

Lemma 2.5 and the discussion before it show that each subgroup of type
2B2 in G is contained in a product of 2 × 22 = 44 conjugates of H.
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The positive maximal unipotent subgroup U ofG is a productX1X2 ∙ ∙ ∙X8
of eight root subgroups, half of them of type A1 and the rest of type

2B2.
Therefore U is contained in a product of 4 + 4 × 44 = 180 conjugates of
the subgroup H. The same is true for the negative unipotent subgroup
V = X9 ∙ ∙ ∙X16. Now by [2, Theorem 1.16] we have G = UV UV U . This
shows that G is product of 5 × 180 = 900 conjugates of H and Proposition
2.2 is proved. �

Note that when q = 23 or 25 we need to take n = 50 when applying
2.4 as above at the end of the proof of 2.5, and this leads to the bound in
Remark 2 after the statement of Theorem 1.1.

Proof of Proposition 2.3

It is most convenient to work with matrices for this proof. Let G = SU3(q)
with q = pn (p prime, q > 2), and let G preserve a non-degenerate hermitean
form ( , ) on V = V3(q

2). Choose a basis e, d, f of V such that e, f are
singular vectors orthogonal to d, and (d, d) = (e, f) = 1. Then relative to
this basis, there is a Sylow p-subgroup U of G consisting of the matrices

u(α, β) =




1 α β

1 −ᾱ
1





where α, β ∈ Fq2 , ᾱ = α
q and β+ β̄+αᾱ = 0. Write H for the stabilizer Gd,

so that H ∼= SU2(q) ∼= SL2(q) and the elements u(0, β) in U form a Sylow
p-subgroup U0 of H. Write u = u(0, 1).

Observe that H has a subgroup T consisting of diagonal matrices h(t) =
diag(t−1, 1, t) for t ∈ F∗q , and

u(α, β)h(t) = u(tα, t2β).

The next lemma follows from a more general result in [11, 3.5.2], but we
include a proof for completeness.

Lemma 2.6. For any α ∈ F∗
q2
, there exist four G-conjugates of u = u(0, 1)

having product equal to u(α, β) for some β.

Proof: This is proved by a calculation using the character table of
G, which can be found in [13]. We are grateful to Claude Marion for his
assistance with this calculation.
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It is well known (see for example [1, p.43]) that if Ci (1 ≤ i ≤ d) are
conjugacy classes of a finite group G and gi ∈ Ci, then for g ∈ G, the
number of solutions to the equation x1 ∙ ∙ ∙xd = g with xi ∈ Ci is equal to
aC1,...,Cd,g|C1| ∙ ∙ ∙ |Cd|/|G|, where

aC1,...,Cd,g =
∑

χ∈Irr(G)

χ(g1) ∙ ∙ ∙χ(gd)χ(g−1)
χ(1)d−1

.

taking G = SU3(q) and C = u
G we calculate that

aC,C,C,C,u(α,β) > 0

and this implies the result. (Note that aC,C,C,u(α,β) = 0, so four is the
minimal number of conjugates needed in the lemma.) �

We can now prove Proposition 2.3. Let α1, α2 be a basis for Fq2 over Fq.
By Lemma 2.6, we can write

u(α1, β1) = u
g1 ∙ ∙ ∙ug4 , u(α2, β2) = u

g5 ∙ ∙ ∙ug8

for some β1, β2 and some gi ∈ G. For any α ∈ Fq2 , let α = t1α1 + t2α2 with
ti ∈ Fq. Without loss of generality assume that each ti 6= 0 (otherwise omit
the factor u(ai, bi)

h(ti) below), so that

u(α1, β1)
h(t1)u(α2, β2)

h(t2) = u(α, β)

for some β. Hence

U ⊆ TU g10 ∙ ∙ ∙U
g4
0 TU

g5
0 ∙ ∙ ∙U

g8
0 TU0

⊆ HHg1 ∙ ∙ ∙Hg4HHg5 ∙ ∙ ∙Hg8H,
(1)

a product of 11 conjugates of H. Again using [2, 1.16], it follows that G is
a product of 55 conjugates of H, proving Proposition 2.3. �

3 Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1. This is for the most
part straightforward, given the previous section.

Lemma 3.1. Theorem 1.1 holds for G = G(q) of untwisted type.
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Proof: The assertion is trivial for PSL2(q), so assume thatG 6= PSL2(q).
Let Φ be the root system of G, and for α ∈ Φ let Xα be the corresponding
root subgroup of G. Then 〈Xα, X−α〉 ∼= SL2(q) and G has maximal unipo-
tent subgroups U =

∏
α∈Φ+ Xα and V =

∏
α∈Φ− Xα (see [3, Chapters 5,6]).

Hence U is contained in a product of |Φ+| copies of SL2(q), and the same
holds for V . By [2, 1.16] we have G = UV UV U , so G is equal to a product
of 5|Φ+| copies of SL2(q), as required. �

The twisted groups require a little more effort, using the following result.

Proposition 3.2. Let d ≥ 1, q = pa, G = SL2(qd) and let G0 be a subgroup
SL2(q) of G. If U,U0 are Sylow p-subgroups of G,G0 respectively, then U
is a product of 2d G-conjugates of U0.

Proof: Take U = {u(α) : α ∈ Fqd} and U0 = {u(α) : α ∈ Fq}, where

u(α) =

(
1 α
0 1

)

.

If h(λ) = diag(λ−1, λ) ∈ G, then Uh(λ)0 = {u(λ2α) : α ∈ Fq0}. Choose a
basis λ1, . . . , λd for Fqd over Fq. Now every element of a finite field is a
sum of two squares (since more than half of the field elements are squares).
Expressing each λi as a sum of two squares, it follows that there is a spanning

set α21, . . . , α
2
2d for Fqd over Fq, where αi ∈ Fq. Hence U = U

h(α1)
0 ∙ ∙ ∙Uh(α2d)0 ,

completing the proof. �

Now we embark on the proof of Theorem 1.1 for G = G(q) a twisted
group. Types 2G2,

2F4 and
2A2 were handled in the previous section.

The strategy is similar for all cases. We refer to [3, Chapter 13] for
a description of the root subgroups of G. These are denoted by X1S in [3,
13.5.1]. Here S is an equivalence class in Φ (the root system of the untwisted
group corresponding to G) under the action of the graph automorphism; S
has type A1, A

2
1, A

3
1 or A2, andX

1
S is a Sylow p-subgroup of SL2(q), SL2(q

2),
SL2(q

3) or SU3(q) respectively ([3, 13.6.3]). Moreover U
1 =

∏
X1S is a Sylow

p-subgroup of G, where the product is over equivalence classes S in Φ+, and
there is an opposite Sylow subgroup V 1 which is the product over classes S
in Φ−. By [2, 1.16] we have G = U1V 1U1V 1U1.

First consider G = 2A2m+1(q). Here there are m + 1 classes S of type
A1 and m(m+1) of type A

2
1 (and none of the other types). Hence from the

above, we see that U1 is contained in a product of m+1 copies of SL2(q) and
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m(m+ 1) of SL2(q
2). It follows using Proposition 3.2 that U1 is contained

in a product of m+ 1 + 4m(m+ 1) copies of SL2(q), and similarly for V
1.

The factorization G = U1V 1U1V 1U1 now gives the conclusion in this case.

Next consider G = 2A2m(q) with m > 1. Assume first that q > 2. In this
case there are m classes S of type A2 and m(m−1) of type A21. Hence U

1 is
contained in a product of m copies of SU3(q) and m(m− 1) of SL2(q2). By
(1) in the proof of 2.3, for each S of type A2, the root group X

1
S is contained

in a product of 11 copies of a subgroup SL2(q) of the corresponding group
SU3(q). Hence using 3.2, we see that U1 is contained in a product of K
copies of SL2(q), where

K = 11m+ 4m(m− 1) = 4m2 + 7m,

and the conclusion follows in the usual way.

For q = 2 the above argument does not apply, so we use a different
method. Let G = 2A2m(2) = SU2m+1(2) with m > 2. Pick two nonsingular
vectors v1, v2 with (v1, v2) = 0, and let Hi = Gvi (i = 1, 2). Then Hi

∼=
SU2m(2) and H1 ∩H2 ∼= SU2m−1(2). Hence

|H1H2| =
|SU2m(2)|2

|SU2m−1(2)|
.

The minimal nontrivial character degree of G is at least k = 2(22m − 1)/3
by [7], and we check that |G|/|H1H2| < k3/5 (this uses the assumption that
m > 2 – when m = 2 we need to replace 3/5 here with 2/3, leading to the
bound given in Remark 2 after 1.1). Hence Theorem 2.4 applies with n = 5
to give

G = (H1H2)(H2H1)(H1H2)(H2H1)(H1H2) = H1H2H1H2H1H2,

a product of 6 copies of SU2m(2). By the result already proved for this case,
SU2m(2) is a product of 5m(4m − 3) copies of SL2(2), and the conclusion
follows.

Now consider G = 2Dn(q), n ≥ 4. Here there are (n− 1)(n− 2) classes
S of type A1 and n − 1 of type A21. Hence U

1 is contained in a product of
(n− 1)(n− 2)+4(n− 1) copies of SL2(q) and the result follows in the usual
way.

For G = 3D4(q) there are 3 classes S of type A1 and 3 of type A
3
1; and

for G = 2E6(q) there are 12 classes of type A1 and 12 of type A
2
1. The result

follows as before.

This completes the proof of Theorem 1.1.

9



References

[1] Z. Arad and M. Herzog (eds.), Products of Conjugacy Classes in Groups,
Springer Lecture Notes 1112, Springer-Verlag, Berlin, 1985.

[2] L. Babai, N. Nikolov, L. Pyber, Expansion and product decompositions in
finite groups: variations on a theme of Gowers, preprint.

[3] R. Carter, Simple groups of Lie type, Wiley, 1972.

[4] D. Gorenstein, R. Lyons and R. Solomon, The classification of finite simple
groups, Mathematical Surveys and Monographs, Vol. 40.3, American Mathe-
matical Society, Providence, RI, 1998.

[5] W. T. Gowers, Quasirandom groups, preprint, http://arxiv.org/abs/0710.3877.

[6] M. Kassabov, A. Lubotzky, N. Nikolov, Finite simple groups as expanders,
Proc. Natl. Acad. Sci USA 103 (2006), 6116 - 6119.

[7] V. Landazuri, G. Seitz, On the minimal degrees of projective representations
of the finite Chevalley groups, J. Algebra 32 (1974), 418-443.

[8] M.W. Liebeck and L. Pyber, Finite linear groups and bounded generation,
Duke Math. J. 107 (2001), 159–171.

[9] A. Lubotzky, Simple groups of Lie type as expanders, in preparation.

[10] N. Nikolov, A product decomposition for the classical quasisimple groups, J.
Group Theory 10 (2007), 43–53.

[11] D.M. Rodgers, Covering and generating number for groups, PhD thesis, Uni-
versity of Cambridge, 2001.

[12] A. Shalev, Word maps, conjugacy classes and a non-commutative Waring-type
theorem, Annals of Math., to appear.

[13] W.A. Simpson and J.S. Frame, The character tables for SL(3, q), SU(3, q2),
PSL(3, q), PSU(3, q2), Canad. J. Math. 25 (1973), 486–494.

[14] H.N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121

(1966), 62–89.

10


