A rigid triple of conjugacy classes in G_2

Martin W. Liebeck, Alastair J. Litterick and Claude Marion

Abstract

We produce a rigid triple of classes in the algebraic group G_2 in characteristic 5, and use it to show that the finite groups $G_2(5^n)$ are not (2, 5, 5)-generated.

1 Introduction

Let G be a connected simple algebraic group over an algebraically closed field K, and let C_1, \ldots, C_s be conjugacy classes in G. Let C denote the s-tuple (C_1, \ldots, C_s) , and define

$$\mathbf{C}_0 = \{(x_1, \ldots, x_s) \in C_1 \times \cdots \times C_s : x_1 x_2 \ldots x_s = 1\}.$$

Then G acts on \mathbf{C}_0 by componentwise conjugation. Following [8], we say that the s-tuple $\mathbf{C} = (C_1, \ldots, C_s)$ is rigid in G if \mathbf{C}_0 is non-empty and G is transitive on \mathbf{C}_0 .

For G a classical group, there are many known examples of rigid tuples of classes, such as Belyi triples and Thompson tuples, as defined in [9]. However we are not aware of many examples in the literature for exceptional algebraic groups. In this paper we produce a rigid triple of classes in the algebraic group G_2 in characteristic 5, and use it to answer a question concerning the generation of the finite groups $G_2(5^n)$ raised in [5].

Let $K = \overline{\mathbb{F}}_5$, the algebraic closure of the field \mathbb{F}_5 of 5 elements, and let $G = G_2(K)$. The conjugacy classes of G can be read off from [1]. We pick out two of the classes. The first is the unique involution class: letting $t \in G$ be an involution, we have

$$C_G(t) = A_1 A_1,$$

a central product of commuting SL_2 's, where A_1 (resp. \tilde{A}_1) is generated by long (resp. short) root elements of G. The class t^G has dimension 8.

Adopting the notation of [4, Table B, p.4130], we see that G has three classes of elements of order 5 – the long and short root elements, and the class labelled $G_2(a_1)$, with representative

$$u = x_b(1)x_{3a+b}(1)$$

where a, b are simple roots with a short and b long. The centralizer $C_G(u)$ has connected component U_4 , a unipotent group of dimension 4, and the component group $C_G(u)/C_G(u)^0 \cong S_3$. The class u^G has dimension 10.

Here is our main result. In part (iii), by a (2, 5, 5)-group we mean a group which is generated by elements x, y, z of orders 2,5,5 satisfying xyz = 1.

Theorem (i) The triple of classes $\mathbf{C} = (t^G, u^G, u^G)$ is rigid in $G = G_2(K)$.

(ii) Every triple of elements $(x_1, x_2, x_3) \in \mathbf{C}_0$ generates a subgroup of G isomorphic to the alternating group Alt₅.

(iii) None of the groups $G_2(5^n)$ is a (2,5,5)-group for any n. Neither are $SL_3(5^n)$ or $SU_3(5^n)$.

Remarks 1. Notice that $\dim t^G + 2 \dim u^G = 28 = 2 \dim G_2$. This agrees with Corollary 3.2 of [8], which states that for any rigid tuple $\mathbf{C} = (C_1, \ldots, C_s)$ in G, such that $C_{L(G)}(x_1, \ldots, x_s) = 0$ for $(x_1, \ldots, x_s) \in \mathbf{C}_0$, we have

$$\sum_{i=1}^{s} \dim C_i = 2 \dim G.$$

(We shall see that the subgroup Alt₅ in (ii) of the theorem has zero centralizer in L(G).)

2. Part (iii) of the theorem answers one case of the conjecture posed in [5]. This conjecture asserts that if (p_1, p_2, p_3) is a "rigid" triple of primes for a simple algebraic group X in characteristic p (meaning that the varieties of elements of orders dividing p_1, p_2, p_3 have dimensions adding up to $2 \dim X$), then there are only finitely many values of n such that $X(p^n)$ is a (p_1, p_2, p_3) -group. The only rigid triple of primes for exceptional groups is (2, 5, 5) for G_2 . For this case part (iii) verifies the conjecture in characteristic p = 5.

2 Proof of the Theorem

Let $G = G_2(K)$ with $K = \overline{\mathbb{F}}_5$, and let $t, u \in G$ be as defined in the previous section. If σ is the Frobenius morphism of G induced by the map $x \to x^5$

on K, then

$$G = \bigcup_{n=1}^{\infty} G_{\sigma^n} = \bigcup_{n=1}^{\infty} G_2(5^n).$$

To begin the proof, observe that $u = x_b(1)x_{3a+b}(1)$ is a regular unipotent element in the subgroup $A_2 \cong SL_3(K)$ of G generated by the long root groups $X_{\pm b}, X_{\pm(3a+b)}$. Hence u lies in an orthogonal subgroup $\Omega_3(5) \cong \text{Alt}_5$ of this A_2 . Write A for this Alt₅, so

$$u \in A < A_2 < G. \tag{1}$$

Also $N_{A_2}(A) = SO_3(5) \cong S_5.$

We next calculate $C_G(A)$. Certainly this contains the centre $\langle z \rangle$ of A_2 , and it also contains an outer involution τ in $N_G(A_2) = A_2.2$ (since such an involution centralizes an orthogonal group $SO_3(K)$ in A_2). We claim that

$$C_G(A) = \langle z, \tau \rangle \cong S_3. \tag{2}$$

To see this, take a Klein 4-subgroup $E = \langle t_1, t_2 \rangle < A$. By viewing E inside $C_G(t_1) = A_1 \tilde{A}_1$, we see that E lies in a maximal torus T_2 of G, and $C_G(E) \leq N_G(T_2) = T_2.W(G_2)$. Since $W(G_2) \cong D_{12}$ has order coprime to p = 5, it follows that $C_G(E)$ consists of semisimple elements. But also $C_G(A) \leq C_G(u) = U_4.S_3$, where U_4 is a connected unipotent group. Consequently $C_G(A)$ is isomorphic to a subgroup of S_3 , and hence (2) holds.

Call a triple of elements (a_1, a_2, a_3) in A^3 a (2, 5, 5)-triple if a_1, a_2, a_3 have orders 2,5,5 respectively, and $a_1a_2a_3 = 1$. A simple calculation using the character table of Alt₅ shows that the number of (2, 5, 5)-triples in A^3 is 120, and these are permuted transitively by $N_{A_2}(A) \cong S_5$.

Now let **C** denote the triple of classes (t^G, u^G, u^G) , and define **C**₀ as in the Introduction. Fix any $q = 5^n$, so $G_{\sigma^n} = G_2(q)$, and let $\mathbf{C}_0(q) = \mathbf{C}_0 \cap G_2(q)^3$. Next we show that

$$|\mathbf{C}_0(q)| = |G_2(q)|. \tag{3}$$

To prove this we require the character table of $G_2(q)$, given in [2]. Since $C_G(u) = U_4.S_3$, Lang's theorem shows that $u^G \cap G_2(q)$ splits into three $G_2(q)$ -classes with representatives denoted in [2] by u_3, u_4, u_5 and having respective centralizer orders $6q^4, 2q^4, 3q^4$. For $x, y, z \in G_2(q)$ let $a_{x,y,z}$ be the class algebra constant of the classes with representatives x, y, z. From the character table (and using CHEVIE [3] to assist with the calculations) we find that for $i, j \in \{3, 4, 5\}$,

$$a_{t,u_i,u_j} = \begin{cases} q^4, \text{ if } i = j\\ 0, \text{ if } i \neq j. \end{cases}$$

It follows that

$$|\mathbf{C}_{0}(q)| = \sum_{i=3}^{5} |u_{i}^{G_{2}(q)}| \cdot a_{t,u_{i},u_{i}} = q^{4} |G_{2}(q)| (\frac{1}{2q^{4}} + \frac{1}{3q^{4}} + \frac{1}{6q^{4}}) = |G_{2}(q)|,$$

proving (3).

At this point we can complete the proof of the Theorem. Define \mathbf{C}'_0 to be the set of triples $(x_1, x_2, x_3) \in \mathbf{C}_0$ such that $\langle x_1, x_2, x_3 \rangle$ is a *G*-conjugate of *A*. Since σ centralizes *A*, it acts on \mathbf{C}'_0 . Moreover, *G* acts transitively on \mathbf{C}'_0 : for if (x_1, x_2, x_3) and (y_1, y_2, y_3) are triples in \mathbf{C}'_0 , with $\langle x_1, x_2, x_3 \rangle = A$, $\langle y_1, y_2, y_3 \rangle = A^g$, then (x_1, x_2, x_3) and $(y_1, y_2, y_3)^{g^{-1}}$ are (2, 5, 5)-triples in A^3 , and hence by the observation two paragraphs above, they are conjugate by an element of $N_G(A)$.

Now we apply Lang's theorem in the form of [7, I,2.7] to the transitive action of G on \mathbf{C}'_0 . By (2), a point stabilizer is $C_G(A) = S_3$. Hence Lang's theorem shows that the set $\mathbf{C}'_0(q) = \mathbf{C}'_0 \cap G_2(q)^3$ splits into three $G_2(q)$ orbits, of sizes $|G_2(q)|/r$ for r = 2, 3, 6, and so

$$|\mathbf{C}_0'(q)| = |G_2(q)| \cdot (\frac{1}{2} + \frac{1}{3} + \frac{1}{6}) = |G_2(q)|.$$

It follows by (3) that $\mathbf{C}'_0(q) = \mathbf{C}_0(q)$. Hence

$$\mathbf{C}_0 = \bigcup_{n=1}^{\infty} \mathbf{C}_0(5^n) = \bigcup_{n=1}^{\infty} \mathbf{C}_0'(5^n) = \mathbf{C}_0'.$$

Therefore G is transitive on \mathbf{C}_0 and every triple in \mathbf{C}_0 generates a conjugate of A.

This completes the proof of parts (i) and (ii) of the Theorem. Finally, for part (iii), suppose that $G_2(5^n)$, $SL_3(5^n)$ or $SU_3(5^n)$ is (2,5,5)-generated, with corresponding generators x_1, x_2, x_3 . Now $L(G_2) \downarrow A_2$ is the sum of $L(A_2)$ and two irreducible 3-dimensional A_2 -modules (see for example [6, 1.8]), and hence $C_{L(G_2)}(x_1, x_2, x_3) = 0$. (It also follows that $C_{L(G_2)}(\text{Alt}_5) = 0$ – see Remark 1 in the Introduction.) At this point, the first argument in the proof of [8, 3.2] shows that the generators x_1, x_2, x_3 must lie in classes of dimensions summing to at least 2 dim $G_2 = 28$, hence in the classes t^G, u^G, u^G . But this is impossible by part (ii) of the Theorem.

References

- [1] B. Chang, The conjugate classes of Chevalley groups of type (G_2) , J. Algebra **9** (1968), 190–211.
- [2] B. Chang and R. Ree, The characters of $G_2(q)$, Symposia Mathematica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), pp. 395–413, Academic Press, London, 1974.
- [3] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIE A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, *Appl. Algebra Engrg. Comm. Comput.* 7 (1996), 175-210.
- [4] R. Lawther, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra 23 (1995), 4125–4156.
- [5] C. Marion, On the (p_1, p_2, p_3) -generation of finite groups of Lie type, J. Group Theory, to appear.
- [6] G.M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991), no. 441, iv+197 pp.
- [7] T.A. Springer and R. Steinberg, Conjugacy classes, in: Seminar on algebraic groups and related topics (ed. A. Borel et al.), Lecture Notes in Math. 131, Springer, Berlin, 1970, pp. 167–266.
- [8] K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math. 510 (1999), 57–62.
- [9] H. Völklein, Rigid generators of classical groups, Math. Ann. 311 (1998), 421–438.

Addresses:

Liebeck: Department of Mathematics, Imperial College, London SW7 2AZ, UK, m.liebeck@imperial.ac.uk

Litterick: Department of Mathematics, Imperial College, London SW7 2AZ, UK, alastair.litterick05@imperial.ac.uk

Marion: Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland, claude.marion@epfl.ch