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Abstract

We produce a rigid triple of classes in the algebraic group G2 in
characteristic 5, and use it to show that the finite groups G2(5

n) are
not (2, 5, 5)-generated.

1 Introduction

Let G be a connected simple algebraic group over an algebraically closed
field K, and let C1, . . . , Cs be conjugacy classes in G. Let C denote the
s-tuple (C1, . . . , Cs), and define

C0 = {(x1, . . . , xs) ∈ C1 × ∙ ∙ ∙ × Cs : x1x2 . . . xs = 1}.

Then G acts on C0 by componentwise conjugation. Following [8], we say
that the s-tuple C = (C1, . . . , Cs) is rigid in G if C0 is non-empty and G is
transitive on C0.

For G a classical group, there are many known examples of rigid tuples of
classes, such as Belyi triples and Thompson tuples, as defined in [9]. However
we are not aware of many examples in the literature for exceptional algebraic
groups. In this paper we produce a rigid triple of classes in the algebraic
group G2 in characteristic 5, and use it to answer a question concerning the
generation of the finite groups G2(5

n) raised in [5].

Let K = F̄5, the algebraic closure of the field F5 of 5 elements, and let
G = G2(K). The conjugacy classes of G can be read off from [1]. We pick
out two of the classes. The first is the unique involution class: letting t ∈ G
be an involution, we have

CG(t) = A1Ã1,

a central product of commuting SL2’s, where A1 (resp. Ã1) is generated by
long (resp. short) root elements of G. The class tG has dimension 8.
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Adopting the notation of [4, Table B, p.4130], we see that G has three
classes of elements of order 5 – the long and short root elements, and the
class labelled G2(a1), with representative

u = xb(1)x3a+b(1)

where a, b are simple roots with a short and b long. The centralizer CG(u)
has connected component U4, a unipotent group of dimension 4, and the
component group CG(u)/CG(u)

0 ∼= S3. The class uG has dimension 10.

Here is our main result. In part (iii), by a (2, 5, 5)-group we mean a group
which is generated by elements x, y, z of orders 2,5,5 satisfying xyz = 1.

Theorem (i) The triple of classes C = (tG, uG, uG) is rigid in G = G2(K).

(ii) Every triple of elements (x1, x2, x3) ∈ C0 generates a subgroup of G
isomorphic to the alternating group Alt5.

(iii) None of the groups G2(5
n) is a (2, 5, 5)-group for any n. Neither

are SL3(5
n) or SU3(5

n).

Remarks 1. Notice that dim tG + 2dimuG = 28 = 2dimG2. This
agrees with Corollary 3.2 of [8], which states that for any rigid tuple C =
(C1, . . . , Cs) in G, such that CL(G)(x1, . . . , xs) = 0 for (x1, . . . , xs) ∈ C0, we
have

s∑

i=1

dimCi = 2dimG.

(We shall see that the subgroup Alt5 in (ii) of the theorem has zero central-
izer in L(G).)

2. Part (iii) of the theorem answers one case of the conjecture posed in
[5]. This conjecture asserts that if (p1, p2, p3) is a “rigid” triple of primes for
a simple algebraic group X in characteristic p (meaning that the varieties of
elements of orders dividing p1, p2, p3 have dimensions adding up to 2 dimX),
then there are only finitely many values of n such that X(pn) is a (p1, p2, p3)-
group. The only rigid triple of primes for exceptional groups is (2, 5, 5) for
G2. For this case part (iii) verifies the conjecture in characteristic p = 5.

2 Proof of the Theorem

Let G = G2(K) with K = F̄5, and let t, u ∈ G be as defined in the previous
section. If σ is the Frobenius morphism of G induced by the map x → x5
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on K, then

G =
∞⋃

n=1

Gσn =
∞⋃

n=1

G2(5
n).

To begin the proof, observe that u = xb(1)x3a+b(1) is a regular unipotent
element in the subgroup A2 ∼= SL3(K) of G generated by the long root
groups X±b, X±(3a+b). Hence u lies in an orthogonal subgroup Ω3(5) ∼= Alt5
of this A2. Write A for this Alt5, so

u ∈ A < A2 < G. (1)

Also NA2(A) = SO3(5)
∼= S5.

We next calculate CG(A). Certainly this contains the centre 〈z〉 of A2,
and it also contains an outer involution τ in NG(A2) = A2.2 (since such an
involution centralizes an orthogonal group SO3(K) in A2). We claim that

CG(A) = 〈z, τ〉 ∼= S3. (2)

To see this, take a Klein 4-subgroup E = 〈t1, t2〉 < A. By viewing E inside
CG(t1) = A1Ã1, we see that E lies in a maximal torus T2 of G, and CG(E) ≤
NG(T2) = T2.W (G2). Since W (G2) ∼= D12 has order coprime to p = 5, it
follows that CG(E) consists of semisimple elements. But also CG(A) ≤
CG(u) = U4.S3, where U4 is a connected unipotent group. Consequently
CG(A) is isomorphic to a subgroup of S3, and hence (2) holds.

Call a triple of elements (a1, a2, a3) in A
3 a (2, 5, 5)-triple if a1, a2, a3

have orders 2,5,5 respectively, and a1a2a3 = 1. A simple calculation using
the character table of Alt5 shows that the number of (2, 5, 5)-triples in A
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is 120, and these are permuted transitively by NA2(A)
∼= S5.

Now letC denote the triple of classes (tG, uG, uG), and defineC0 as in the
Introduction. Fix any q = 5n, so Gσn = G2(q), and let C0(q) = C0∩G2(q)3.
Next we show that

|C0(q)| = |G2(q)|. (3)

To prove this we require the character table of G2(q), given in [2]. Since
CG(u) = U4.S3, Lang’s theorem shows that u

G ∩ G2(q) splits into three
G2(q)-classes with representatives denoted in [2] by u3, u4, u5 and having
respective centralizer orders 6q4, 2q4, 3q4. For x, y, z ∈ G2(q) let ax,y,z be
the class algebra constant of the classes with representatives x, y, z. From
the character table (and using CHEVIE [3] to assist with the calculations)
we find that for i, j ∈ {3, 4, 5},

at,ui,uj =

{
q4, if i = j
0, if i 6= j.
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It follows that

|C0(q)| =
5∑

i=3

|uG2(q)i |.at,ui,ui = q
4|G2(q)|(

1

2q4
+
1

3q4
+
1

6q4
) = |G2(q)|,

proving (3).

At this point we can complete the proof of the Theorem. Define C′0 to
be the set of triples (x1, x2, x3) ∈ C0 such that 〈x1, x2, x3〉 is a G-conjugate
of A. Since σ centralizes A, it acts on C′0. Moreover, G acts transitively on
C′0: for if (x1, x2, x3) and (y1, y2, y3) are triples in C

′
0, with 〈x1, x2, x3〉 = A,

〈y1, y2, y3〉 = Ag, then (x1, x2, x3) and (y1, y2, y3)g
−1
are (2, 5, 5)-triples in

A3, and hence by the observation two paragraphs above, they are conjugate
by an element of NG(A).

Now we apply Lang’s theorem in the form of [7, I,2.7] to the transitive
action of G on C′0. By (2), a point stabilizer is CG(A) = S3. Hence Lang’s
theorem shows that the set C′0(q) = C

′
0 ∩ G2(q)

3 splits into three G2(q)-
orbits, of sizes |G2(q)|/r for r = 2, 3, 6, and so

|C′0(q)| = |G2(q)| ∙ (
1

2
+
1

3
+
1

6
) = |G2(q)|.

It follows by (3) that C′0(q) = C0(q). Hence

C0 =
∞⋃

n=1

C0(5
n) =

∞⋃

n=1

C′0(5
n) = C′0.

Therefore G is transitive on C0 and every triple in C0 generates a conjugate
of A.

This completes the proof of parts (i) and (ii) of the Theorem. Finally,
for part (iii), suppose that G2(5

n), SL3(5
n) or SU3(5

n) is (2, 5, 5)-generated,
with corresponding generators x1, x2, x3. Now L(G2) ↓ A2 is the sum of
L(A2) and two irreducible 3-dimensional A2-modules (see for example [6,
1.8]), and hence CL(G2)(x1, x2, x3) = 0. (It also follows that CL(G2)(Alt5) = 0
– see Remark 1 in the Introduction.) At this point, the first argument in the
proof of [8, 3.2] shows that the generators x1, x2, x3 must lie in classes of di-
mensions summing to at least 2 dimG2 = 28, hence in the classes t

G, uG, uG.
But this is impossible by part (ii) of the Theorem.
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