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Topics

• Classical dynamics, synchronous networks.

• Contemporary problems; asynchronous networks.

Caution: SynchronousandAsynchronousmay
not mean what you think...

• Examples of asynchronous networks.

• Dynamics on asynchronous networks and some
outstanding challenges.
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Classical dynamics

x
′ = f(x)

xn+1 = f(xn), n ≥ 0.

Typically, f is assumed to bereal analyticor even a
polynomial.

Examples:

Celestial mechanics (from 1687).

Nonlinear oscillators (1920, Van der Pol)

Chaotic dynamics (1963, Lorenz)
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Networks
In dynamics it is often natural to group variables
together leading to the concept of a network.

Example: N-body problem of celestial mechanics

P4

P1

P3
P2

Network graph for the4-body problem
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Equations
In caseN = 4:

X
′
1 = F1(X1;X2 −X1, · · · ,X4 −X1)

· · · = · · ·
X

′
4 = F4(X4;X1 −X4, · · · ,X3 −X4),

whereXi = (x1, x2, x3, v1, v2, v3) and theFi are real
analytic.
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′
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Equations
In caseN = 4:

X
′
1 = F1(X1;X2 −X1, · · · ,X4 −X1)

· · · = · · ·
X

′
4 = F4(X4;X1 −X4, · · · ,X3 −X4),

whereXi = (x1, x2, x3, v1, v2, v3) and theFi are real
analytic.

• In caseN = 1, can reduce to a constant – zero
dimensional (relative to a rotating coordinate
frame).

• Note implications of analyticity: coherence, node
inter-dependence, no stops.
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Phase oscillator networks
Networks ofN weakly coupled nonlinear oscillators
can sometimes be modelled by networks ofphase
oscillators(Kuramoto, 1984):

θ′i = ωi +
1

N

∑

j 6=i

gij(θj − θi), i = 1, · · · , N.

Hereθi ∈ T = [0, 1]/0=1 and thegij are
trigonometric polynomials.
A popular choice is to assumegij = G, all i, j and

G(θ) = α sin(2πθ) + β sin(4πθ)

Also allow sin(2πθ + γ) etc.
(All-to-all coupled, symmetric network.)
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But why networks?
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But why networks?

• Understanding network dynamics in terms of
network topology?

• Maybe for small networks ... 4 or 5 identical
nodes and perhaps in some statistical sense for
large networks.

• Reductionism. Understand dynamics of
individualnodes and then infer properties about
dynamics of the complete network in terms of the
node dynamics.

• Appropriate (and well-known) forlinear
networks. What about thenonlinearcase?
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Reductionism
N -body problem. Not helpful. Individual nodes have
no dynamics!

Asynchronous Networks – p. 8/60



Reductionism
N -body problem. Not helpful. Individual nodes have
no dynamics!

Phase oscillator systems? Obvious problem – also
occurring withN -body problem – is that nodes in the
network do noteverevolve independently of the other
nodes (analyticity again). However, there is one case
when we can use reductionist logic:
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Reductionism
N -body problem. Not helpful. Individual nodes have
no dynamics!

Phase oscillator systems? Obvious problem – also
occurring withN -body problem – is that nodes in the
network do noteverevolve independently of the other
nodes (analyticity again). However, there is one case
when we can use reductionist logic:

Assume nodes synchronized:θi = θj, ωi = ω, all i, j.
We have a solutionθi(t) = θ0 + tω. That is, we can
replace the network by a single phase oscillator
(compare the1-body problem analysis).
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Properties of classical networks
Fixed connection structure– can assume connected
graph (else network splits into independent connected
components).

=⇒ nodes never evolve independently of one another.
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Properties of classical networks
Fixed connection structure– can assume connected
graph (else network splits into independent connected
components).

=⇒ nodes never evolve independently of one another.

Nodes never stop and then later restart (consequence
of analyticity).

One set of dynamical equations – no switching
between equations.

Global clock– all nodes run on same time
(simultaneous evolution of nodes).
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Global & Local time; Synchronous

dx
dt

= f(x,y) dy
dt

= g(x,y)

dx
ds

= af(x,y) dy
dt

= g(x,y)

t = as, a > 0.

Changing time on one node
Even for linear systems, changing time on a single
node will usually qualitatively change dynamics.
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Global & Local time; Synchronous

dx
dt

= f(x,y) dy
dt

= g(x,y)

dx
ds

= af(x,y) dy
dt

= g(x,y)

t = as, a > 0.

Changing time on one node
Even for linear systems, changing time on a single
node will usually qualitatively change dynamics.

We call networks satisfying the properties listed
previouslysynchronous networks. This should not be
confused with synchronized dynamics – our
terminology comes from computer science.
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Asynchronous networks
In anasynchronous networkwe allow

• Variable connectivity – key property:=⇒
dependency relationships between nodes vary.
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Asynchronous networks
In anasynchronous networkwe allow

• Variable connectivity – key property:=⇒
dependency relationships between nodes vary.

• Switching between dynamical equations.

• Local clocks - no natural global clock (dynamics
not synchronized to global clock).

• Nodes to stop and later restart.

All of these characteristics are typical of networks
encountered in modern technology (eg distributed
networks) and science (especially biology and
neuroscience). One might argue that synchronous
networks areatypical in the 21st century.
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Node clocks

a before b,c,e .. ?d?
b before e .. ?c,d?
c ..?b,e?
d before c,e .. ?a,b?

N1 N2 N3 N4

N
od
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tim
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cr
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ng
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d

a

b
b

c

c

d

e e

N5

Partially ordered time structure
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Examples: computation

Threads need to be synchronized

locks if, for example, other variables
need to be written.

at each barrier. There may also be 

b
ar

ri
er

s

Threaded or parallel computation

Locally Synchronous: GALS]
[Globally Asynchronous +

[Non deterministic process]

[Synchronous]

Single processor computation

Threaded & parallel computation

Asynchronous Networks – p. 13/60



Computation ctd.

Nodes where program is stopped and synchronized

Connection structures – 4 threads

Note: Deadlocks (stop); race conditions (errors)
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Constrained transport: passing loop

T2 T1

Passing loop (barrier)

Single track line with a passing loop; two trains
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Constrained transport: passing loop

T1

T1T2

T2

Passing loop (barrier)

Single track line with a passing loop; two trains
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Constrained transport: passing loop

T1

T1T2

T2

Passing loop (barrier)

Single track line with a passing loop; two trains

Issues:
Deadlocks (or livelocks: convergence to blocking

attractor).
Logic

Note: Order of entry into passing loop irrelevant.
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Passing loop, variation

T2 T1

T3

S1
S2 S3

Passing loop

Single track line with a passing loop and branch; three trains

T1 terminates atS1; T2 atS2; T3 atS3.
Unlike in the previous case,order of entry of trains
into loop is critical– asynchronous logic is now
fragile: an error results in a deadlock or race (ifT2, T3

attempt to enter loop at same time). Simple model –
but very widely applicable.
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Spiking neuron models; switching

C

B

A

0

0

NodesA, B evolve (continuous dynamics). If state of
eitherA orB reaches a threshold, then node fires – a
spike or pulse – towards target nodeC (stopped).
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Spiking neuron models; switching, ctd

C

B

A

0

1

NodeB fires a spike towardsC – receipt registered by
changing input state to1. NodesA andB continue to
evolve, NodeC stopped.
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Spiking neuron models; switching, ctd

C

B

A

1

1

NodeA fires a spike towardsC – Both inputs ofC
are now activated.
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Spiking neuron models; switching, ctd

C

B

A

1

1 ~

Various possibilities: (A) (Shown) With both inputs
filled, C starts and further inputs blocked (inputs set
to zero after fixed time, or decay to zero LIF).
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Spiking neuron models; switching, ctd
(B) Order of filling inputs may matter:C only starts if
B firesbeforeA. Similar to passing loop with branch
example or in distributed production systems. Order
that parts/chemicals/signals are received may be
critical for functionality.
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Spiking neuron models; switching, ctd
(B) Order of filling inputs may matter:C only starts if
B firesbeforeA. Similar to passing loop with branch
example or in distributed production systems. Order
that parts/chemicals/signals are received may be
critical for functionality.

In large complex systems, the asynchronous logic
(handshaking protocols) involved in running a system
where order of inputs matters is likely to make the
system very fragile and susceptible to deadlocks (eg
timetable disruption).
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Spiking neuron models; switching, ctd
(B) Order of filling inputs may matter:C only starts if
B firesbeforeA. Similar to passing loop with branch
example or in distributed production systems. Order
that parts/chemicals/signals are received may be
critical for functionality.

In large complex systems, the asynchronous logic
(handshaking protocols) involved in running a system
where order of inputs matters is likely to make the
system very fragile and susceptible to deadlocks (eg
timetable disruption).

Adaptation and randomness are likely to play a major
role in any complex asynchronous network; in
particular, to avoid deadlocks. Note that spikes avoid
race conditions “a.s.”.
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Asynchronous Networks
A general definition is given in terms of events –
which may be deterministic or stochastic – and local
times (in the non-autonomous case) and continuous or
discrete dynamics. We give a formal definition in the
simplest case: discrete, deterministic and autonomous.
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Asynchronous Networks
A general definition is given in terms of events –
which may be deterministic or stochastic – and local
times (in the non-autonomous case) and continuous or
discrete dynamics. We give a formal definition in the
simplest case: discrete, deterministic and autonomous.

Assume a fixedN set of nodes:N0, · · · , Nn (N0

denotesnull node).
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Asynchronous Networks
A general definition is given in terms of events –
which may be deterministic or stochastic – and local
times (in the non-autonomous case) and continuous or
discrete dynamics. We give a formal definition in the
simplest case: discrete, deterministic and autonomous.

Assume a fixedN set of nodes:N0, · · · , Nn (N0

denotesnull node).

Let C denote the set of all directed connection
structures onN (no self- or multiple connections).
Note that∅ ∈ C.
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Asynchronous Networks
A general definition is given in terms of events –
which may be deterministic or stochastic – and local
times (in the non-autonomous case) and continuous or
discrete dynamics. We give a formal definition in the
simplest case: discrete, deterministic and autonomous.

Assume a fixedN set of nodes:N0, · · · , Nn (N0

denotesnull node).

Let C denote the set of all directed connection
structures onN (no self- or multiple connections).
Note that∅ ∈ C.

Fix a non-empty subsetA of C. EveryC ∈ A gives
N the structure of a directed graph (the connection
matrix is a01matrix with diagonal elements zero).
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Asynchronous Networks ctd
Assume each nodeNi, i 6= 0, has associated phase
spaceMi. SetM =

∏n
i=1Mi
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Asynchronous Networks ctd
Assume each nodeNi, i 6= 0, has associated phase
spaceMi. SetM =

∏n
i=1Mi

Assume that eachC ∈ A determines a smooth
(enough) mapfC : M→M satisfying

• For i ∈ {1, · · · , N}, j 6= i, f i
C

depends on
xj ∈ Nj only if there is an edgeNj→Ni in C.

• If there is an edgeN0→Ni, thenf i
C

is constant
(stopped node).
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Asynchronous Networks ctd
Assume each nodeNi, i 6= 0, has associated phase
spaceMi. SetM =

∏n
i=1Mi

Assume that eachC ∈ A determines a smooth
(enough) mapfC : M→M satisfying

• For i ∈ {1, · · · , N}, j 6= i, f i
C

depends on
xj ∈ Nj only if there is an edgeNj→Ni in C.

• If there is an edgeN0→Ni, thenf i
C

is constant
(stopped node).

Assume given anevent mapE : M→A.

Asynchronous Networks – p. 24/60



Asynchronous Networks ctd
Assume each nodeNi, i 6= 0, has associated phase
spaceMi. SetM =

∏n
i=1Mi

Assume that eachC ∈ A determines a smooth
(enough) mapfC : M→M satisfying

• For i ∈ {1, · · · , N}, j 6= i, f i
C

depends on
xj ∈ Nj only if there is an edgeNj→Ni in C.

• If there is an edgeN0→Ni, thenf i
C

is constant
(stopped node).

Assume given anevent mapE : M→A.

This data defines the structure of a discrete
asynchronous network – synchronous if|A| = 1 .
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Dynamics
Given data for a discrete asynchronous network as
above, we defineF : M→M by

F (X) = (f 1
E(X)(X), · · · , fn

E(X)(X)), X ∈ M.

Provided the event map is not constant (synchronous
case) and we avoid trivial cases (eg the mapsfC are
identical), the operatorF will not be analytic
(switching isforcedin asynchronous networks).

In practice, we add conditions to avoid degeneracies.
In many situations (eg passing loop), the event map
will be constant on an open dense set.

An example of astate dependentdynamical system
(engineers terminology).
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Examples

• Random connection structure (RDD network).◮

• Adaptive network and sloppy asynchronous
logic. ◮

• STDP in a spiking neural network.◮
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Dynamics, Example I
1. Random (in time) connection structure.

2. Discrete phase oscillator dynamics.
Inhomogeneous ‘Poisson neuron’ firing model:
probability of a node firing is state dependent.

p(θ) = 16θ2(1− θ)2, Bell.

p(θ) =















0.05, θ ≤ 0.5− d,

0.05, θ ≥ 0.5 + d,

0.95, θ ∈ (0.5− d, 0.5 + d)

Pulse

1

0
Logistic Cubic Bell Pulse
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Maps
SetN = {1, · · ·N}. Fix ωi > 0, i ∈ N and constants
a, b, c ∈ R. For i 6= j ∈ k, θ ∈ T

N , define

Fij(θ) = aSin(θi − θj) + bSin(2(θi − θj + c))

As iterative scheme, take

θn+1
i = θni + ωi +

1

k

∑⋆

j
Fji(θ

n)

where the sum is over allj such that cellj fired and
there is a connectionj→i.

This system can be modelled as a place dependent
RDS (the number of symbols grows super-
exponentially fast inN : ∼ 2N

2

).
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Visualization of dynamics
Use a system of contractive cocycles forced by
(firing) dynamics.

If the system hasN nodes, regard the nodes as
vertices of a regular polygon, centered at the origin of
R

2 ≈ C. Denote the coordinates ofCj byZj.

Associated to the nodeCj we define a contraction
mappingfj with fixed pointZj by

fj(z) =
1

2
(z + Zj).

Take the initial pointz0 = 0 ∈ C.
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Measurement
Suppose constructed the sequencez0, z1, . . . , zn after
m ≥ n time steps. At the(m+ 1)th step of the
iteration, suppose that the nodesCj1, . . . , Cjk fire (if
no nodes fire, do nothing, go to the next iteration).
Define

zn+1 =
1

k

k
∑

i=1

fji(zn).

At least numerically,(zn) converges (often slowly) to
an attractor with associated invariant measure (and
usuallyDN symmetry!). The attractor and measure
reflect statistical properties of the node dynamics (eg
statistics of synchrony patterns).
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8-node example: Pulse probability

Visualization of clustering and synchronization: random
connection structure,ω = 0.0001, a = 0.1301, b = −0.15, c = 0.
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8-node example: Bell probability

ω = 0.0002, a = 0.16, b = −0.0336, c = 0.
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Example A

ω = 0.0002, a = 0.06, b = −0.0336, c = 0.
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Example B

ω = 0.0002, a = 0.06, b = −0.0336, c = 0.
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Example C

ω = 0.0002, a = 0.06, b = −0.0336, c = 0.
Asynchronous Networks – p. 35/60



Invariant subspaces
We recall that the map used for these examples is

θi 7→ ω+θi+
1

k

∑⋆

0.06 sin 2π(θj −θi)−0.0336 sin 4π(θj −θi),

where the sum is over thek ‘fired’ cells connected to
theθi-cell andω = 0.00002.

In this case the cell states synchronize intoeither two
clusters of4 cells,or one cluster of5 and one of3
cells. So eitherθj = θi or θj − θi = α, where

0.06 sin 2πα− 0.0336 sin 4πα = 0.

(Henceα = 1
2π cos

−1(0.89285) = 0.074.)
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Intermingled basins of attraction
The invariant4 : 4, 3 : 5 subspaces defined by
θj − θi = 0, α can be shown to be normally hyperbolic
attracting (neutral stabilities in the subspace, phase
shift directions). Given any initial point, there is
almost sure convergence to one of the252 different
attractors corresponding to4 : 4 or 5 : 3 clustering.

More precisely, letE denote the set of4 : 4, 3 : 5
subspaces. Forx0 ∈ T

8, ω(x0) exists a.s. Define

B0 = {x0 ∈ T
8 | ω(x0) ⊂ ∪E∈EE},

B1 = {x0 ∈ T
8 | ∃!E ∈ E , ω(x0) ⊂ E}.
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Intermingled basins of attraction ctd.

That is, ifx0 ∈ B1, ω(x0) is always subset ofsameE.
Forx0 ∈ B0, we may get differentE each time
iteration is run (case of intermingled basins of
attraction).

µ(B0) = 1, B0 6= T
8 and0 < µ(B1) < 1.
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Intermingled basins of attraction ctd.

That is, ifx0 ∈ B1, ω(x0) is always subset ofsameE.
Forx0 ∈ B0, we may get differentE each time
iteration is run (case of intermingled basins of
attraction).

µ(B0) = 1, B0 6= T
8 and0 < µ(B1) < 1.

One way of breaking the invariant subspace structure
is by using the termsin(4π(θj − θi − c)), c 6= 0, rather
thansin(4π(θj − θi)). Alternatively, we may assume
thatω = ωi (say with uniform distribution in
[ω − δ, ω + δ], 0 < δ/ω ≪ 1). We show a movie of
the result (either case).◭ ◮
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Dynamics, Example 2
We want to address the problem of asynchronous
logic in large asynchronous networks. We present an
example of a synchronous adaptive network as an
illustration of one way to overcome the problem of the
fragility of and complexity of asynchronous logic.
Two of the illustrations we present are really
asynchronous.

1. All-to-all connection structure.

2. Node dynamics given by odd logistic maps.

fλ(x) = λx(1− x2).

3. Adaptive network – spatial verion of
Spike-Timing Dependent Plasticity (STDP).
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Adaptive network of odd logistic maps

We assumeN nodes whereN ∈ [2, 104] and node
dynamics given odd-logistic maps. We rescale to[0, 1]
and take

Fλ(x) =
λ

2
(1− 18x+ 48x2 − 32x3) +

1

2
, λ ∈ [−1, 1]

Denote weight of connection from nodej to nodei by
wij and assumewij ∈ [0, 2]. State update rule given by

xn+1
i = Fλn(xni ) +

α

N
Wi(x

n),

whereWi(x
n) =

∑

j 6=iw
n
ijx

n
j . In our example, we

takeα = 0.45
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Weight update rule
If at timen states and weights are given byxni , wn

ij,
then

wn+1
ij = max{0,min{2, wn

ij +∆(wn
ij)}},

where
∆(wn

ij) = F (wn
ij, x

n
i , x

n
j ),

andF (w, x, y) = G(w)H(x, y). For our example, we
take

G(w) = w, (Multiplicative)
H(x, y) = 0.2(1− 4.5min{|x− y|, 1− |x− y|}),

(distance onT).
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Notes on adaptation
Observe the adaptation strengthenswij if |xi − xj| is
small. For example ifxni = xnj , then

wn+1
ij = min{2, 1.2wn

ij}.

Conversely if|xi − xj| is large (close to0.5), weights
are weakened. For example, if|xi − xj| = 0.5, then

wn+1
ij = 0.75wn

ij.

In the next two slides we show dynamics and weight
dynamics over about 5600 iterations for a 6000 node
network.
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Dynamics: 6000 nodes
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Weight Dynamics: 6000 nodes
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Dynamics: 6000 nodes
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Weight Dynamics: 6000 nodes
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Dynamics: 6000 nodes
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Dynamics: 6000 nodes
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Weight Dynamics: 6000 nodes

◭ ◮ Asynchronous Networks – p. 49/60



Dynamics: STDP

STDP is short forSpike-Timing Dependant Plasticity.

STDP is a mechanism for adaptivity in (biological)
networks which depends on relative timings. It is an
example of aHebbianlearning rule (unsupervised or
correlation based learning):

Cells that fire together wire together
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Dynamics: STDP

STDP is short forSpike-Timing Dependant Plasticity.

STDP is a mechanism for adaptivity in (biological)
networks which depends on relative timings. It is an
example of aHebbianlearning rule (unsupervised or
correlation based learning):

Cells that fire together wire together

The Barn Owl: Gerstner, Kemptner, Van Hemmen &
Wagner,Nature1996. Rapid direction finding to
within 1− 2 degrees by encoding signals requiring a
time resolution beyond5µs – an order of magnitude
faster than time constants of owl’s neurons.
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Dynamics: STDP

STDP is short forSpike-Timing Dependant Plasticity.

STDP is a mechanism for adaptivity in (biological)
networks which depends on relative timings. It is an
example of aHebbianlearning rule (unsupervised or
correlation based learning):

Cells that fire together wire together

The Barn Owl: Gerstner, Kemptner, Van Hemmen &
Wagner,Nature1996. Rapid direction finding to
within 1− 2 degrees by encoding signals requiring a
time resolution beyond5µs – an order of magnitude
faster than time constants of owl’s neurons.

Proposed mechanism: STDP – based on delays &
interaural time differences.
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STDP: Pattern detection
Image from Masquelier, Guyonneau & Thorpe (2008,
PLoS One)
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Some details

w
S T

Assume the neuronS emits spike train

S(t) =
∑

δ(t− tSi ),

where· · · < tSi < tSi+1 < · · · .
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STDP ctd
Similarly assume the neuronT has spike train

T (t) =
∑

δ(t− tTi ),

where· · · < tSi < tSi+1 < · · · .

Assume the connection is excitatory (w > 0). The
basic idea is that ifT fires just afterS, we regard the
firing as having been ‘caused’ byS and increase the
coupling strengthw; if T fires just beforeS, there is
no causality and we weaken the coupling strengthw.

More formally, we use a functionW (s) that defines a
learning window.
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STDP ctd

s

W(s)

learning window

(0,0)

Note: usually assume
∫

W < 0. If tSi − tTj is in the
learning window, then we changew by

∆(w) = ηH(w)W (tSi − tTj ).
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STDP ctd
Hereη > 0 (typically η ≪ 1) andH(w) = wµ. If
tSi < tTj (causality), then∆(w) > 0.

Assume (simpler) additive case:H(w) = 1. Over a
learning session of timeTℓ, we take

∆(w)(t) = η
∑

tSi ,t
T
j ∈I

W (tSi − tTj ),

whereI = [t− Tℓ, t].

One approach to developing a mean field model of
STDP, due to Burkitt, Gilson, Hemmen et al., is to
assume that firings follow an inhomogeneous Poisson
statistic (‘Poisson neurons’):
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STDP: Mean Field Model
Probability of 1 firing in[t, t+∆t] = λi(t)∆t,
Probability of≥ 2 firings in [t, t+∆t] = o(∆t).
Firings in disjoint intervals independent.

Under appropriate assumptions on the time scales (eg
slow learning compared with firing rates and changes
in λi(t) small in learning session: adiabatic
hypothesis) Burkitt et al develop a mean field model
of STDP for quite general recurrent networks of
spiking neurons subject to inputs from Poisson
neurons (the latter with fixed Poisson rates). Their
model can and does incorporate delays and yields an
ODE model for evolution of weights.
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Adaptation & Dynamics Detection
We consider dynamics detection using STDP.

Q

P

T

Source networks Single node target network

Two source networks connected all-to-1 to a target
network consisting of a single node.
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Dynamics
Both networksP, Q consist of coupled phase
oscillators — in regimes where the oscillators will
eventually frequency synchronize or do something
else “interesting”...

Each time a node state passes through1, the oscillator
fires a spike.

All oscillators are connected to target node – each
connection has weightw ∈ [0, 1].

Sum inputs intoT. If sum exceeds a threshold,T

fires and its state is reset to0. (Various protocols
allowed: SRM_0, SRM & gated.)
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Adaptation: STDP
We adapt weights according to STDP.

If T fires (shortly) after a nodeN ∈ P ∪Q fires, we
regard the firing ofN as having caused the firing ofT
and strengthen the weight of the connection between
N andT. Conversely ifT fires (shortly) before a
nodeN ∈ P ∪Q fires, we regard the events as
uncorrelated and weaken the weight of the connection
betweenN andT.

This form of adaptation is called Spike-Timing
Dependent Plasticity in computational neuroscience.

We illustrate with some numerical examples.◭ ◮
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Mathematical challenges
1. How does asynchronicity impact dynamics?

2. How do we analyze without the assumption that equations

are analytic?

3. Bifurcation theory in adaptive spiking networks (STDP) –

many interesting questions and phenomena already.

4. Understanding how & why asynchronous networks can

work correctly (most of the time) notwithstanding the

fragility and complexity of asynchronous logic. On the

neuro-computation side, the basic mechanisms may not be

so hard to understand – evolution can lend a helping hand.

With stochastic asynchronous networks, analysis may be

much easier than in the deterministic case! Applications to

‘Qualitative Computing’.
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