
7 Continuous time Markov processes

X(t) develops in continuous time (t ≥ 0) (state space still discrete).

Markov Property

P(X(t) = j |X(t1) = i1, X(t2) = i2, . . . , X(tn) = in) = P(X(t) = j |X(tn) = in)

for any n > 1 and 0 ≤ t1 < t2 < . . . < tn < t.

Time Homogeneity

For 0 ≤ s < t,

P(X(t) = j |X(s) = i) = P(X(t− s) = j |X(0) = i).

Define

pij(s, t+ s) = P(X(t+ s) = j |X(s) = i)

pij(0, t) = P(X(t) = j |X(0) = i) = pij(t)

P (t) =









pij(t)









t ≥ 0

pij(0) =






1 i = j

0 i 6= j
P (0) = I (identity matrix)

Continuous time analogue of C-K equations:

pij(0, s+ t) =
∑

k

pik(0, s)pkj(s, s+ t) 0 < s < t,

alternatively,

P (s+ t) = P (s)P (t)

Condition: pij(t) continuous and differentiable.

qij =
d

dt
pij(t)

∣
∣
∣
∣
∣
t=0

right derivatives

= lim
h→0

(
pij(h)− pij(0)

h

)

from above.

Therefore,

pij(h) =






1 + hqii + o(h) i = j

hqij + o(h) i 6= j
small h

60



Check

i = j

d

dt
pii(t)

∣
∣
∣
∣
∣
t=0

= lim
h→0

(
pii(h)− pii(0)

h

)

= lim
h→0

(
1 + hqii + o(h)− 1

h

)

= lim
h→0

(

qii +
o(h)

h

)

= qii

i 6= j

d

dt
pij(t)

∣
∣
∣
∣
∣
t=0

= lim
h→0

(
pij(h)− pij(0)

h

)

= lim
h→0

(
hqij + o(h)− 0

h

)

= lim
h→0

(

qij +
o(h)

h

)

= qij

Let Q be the matrix of qij.

Note

∑

j

pij(t) = 1 ∀i

d

dt

∑

j

pij(t)

∣
∣
∣
∣
∣
∣
t=0

=
d

dt
1

∣
∣
∣
∣
∣
t=0

⇒
∑

j

qij = 0 i.e. rows of Q sum to zero

Also

qii ≤ 0 (pii(h) = 1+ hqii + o(h), h ≥ 0)

qij ≥ 0 i 6= j (pij(h) = hqij + o(h), h ≥ 0)

A continuous time Markov process may be specified by stating its Q matrix.
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Description of process

Let Ti be the time spent in state i before moving to another state.

For any i ≥ 1

P(Ti > t) = P(X(s) = i, 0 ≤ s ≤ t |X(0) = i)

= P
(

X(s) = i, 0 ≤ s ≤
t

n

∣
∣
∣
∣ X(0) = i

)

× P
(

X(s) = i,
t

n
≤ s ≤

2t

n

∣
∣
∣
∣ X

(
t

n

)

= i
)

× . . .× P

(

X(s) = i,
(n− 1)t
n

≤ s ≤ t

∣
∣
∣
∣
∣
X

(
(n− 1)t
n

)

= i

)

By time homogeneity,

P(Ti > t) = P
(

X(s) = i, 0 ≤ s ≤
t

n

∣
∣
∣
∣ X(0) = i

)n
∀n

= lim
n→∞

[

P
(

X(s) = i, 0 ≤ s ≤
t

n

∣
∣
∣
∣ X(0) = i

)]n

= lim
n→∞

[

1 + qii
t

n
+ o

(
t

n

)]n

⇒ P(Ti > t) = etqii

⇒ P(Ti ≤ t) = 1− etqii .

[Recall, X ∼ Exponential(λ) , P(X ≤ t) = 1− exp(−λt),and E(X) = 1/λ]

Thus, Ti is exponentially distributed with mean −1/qii.

Suppose the process is known to change state at time t, where does it jump to?

Probability jump is from i to j is

lim
h→0
P(X(t+ h) = j |X(t) = i,X(t+ h) 6= i)

lim
h→0

P(X(t+ h) = j |X(t) = i)
P(X(t+ h) 6= i |X(t) = i)

(j 6= i)

= lim
h→0

pij(h)
∑
k 6=i pik(h)

=
qij

∑
k 6=i qik

= −
qij

qii

[As
∑
k qik = 0; qii = −

∑
k 6=i qik]

Therefore, the process acts like this:

It remains in state i for a period exponentially distributed with mean −1/qii , and

then jumps to another state. The state is j ( 6= i) with probability −qij/qii .

It then stays in this state for a period exponentially distributed with mean −1/qjj

etc.

Thus the process only depends on the Q matrix.
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7.1 Embedded Markov Chain

If the process is observed only at jumps, then a Markov chain is observed with

transition matrix

P =













. . . − qij
qii
− qij
qii
. . .

− qij
qii

0 − qij
qii
. . .

... − qij
qii

0
. . .

...
...

. . . . . .













known as the Embedded Markov Chain.

States of a Markov process may be defined (as persistent, transient etc) in accor-

dance with their properties in the embedded Markov chain (with the exception of

periodicity, which is not applicable to continuous processes).

7.2 Forward and Backward Equations

Given Q, how do we get P (t), t ≥ 0?

1. t, h ≥ 0 P (t+ h) = P (t)P (h) (C-K equations).

P (t+ h)− P (t)
h

=
P (t)P (h)− P (t)

h

= P (t)

(
P (h)− I
h

)

= P (t)

(
P (h)− P (0)

h

)

d

dt
P (t) = P (t)

(

lim
h→0

(
P (h)− P (0)

h

))

= P (t)

(
d

dt
P (t)

∣
∣
∣
∣
∣
t=0

)

= P (t)Q

Giving a set of Forward Differential Difference equations:

d

dt
pij(t) =

∑

k

pik(t)qkj ∀i, j

2. t, h ≥ 0 P (t+ h) = P (h)P (t) (C-K equations).

P (t+ h)− P (t)
h

=
P (h)P (t)− P (t)

h

=

(
P (h)− P (0)

h

)

P (t)

⇒
d

dt
P (t) = QP (t)
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Giving a set of Backward Differential Difference equations:

d

dt
pij(t) =

∑

k

qikpkj(t) ∀i, j

Can in principle solve these equations to obtain P (t). (which we will for various

processes in due course!)

7.3 Stationary Distributions

Suppose π satisfies

π = πP (t),
∑

j

πj = 1, πj ≥ 0 ∀t

then π is a stationary (equilibrium) distribution.

So if P(X(0) = i) = πi then

P(X(t) = i) = πi ∀i.

Note:

πP (t) = π ∀t

⇒
d

dt
(πP (t)) =

d

dt
(π)

⇒ π

(
d

dt
P (t)

)

= 0 ∀t.

In particular,

π

(
d

dt
P (t)

∣
∣
∣
∣
∣
t=0

)

= 0

πQ = 0

So, we can find π from
∑

j

πj = 1, πQ = 0

Theorem For an irreducible process, the stationary distribution π is unique if it

exists. If it exists the process is POSITIVE PERSISTENT and all rows of

P (t) converge to π.
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7.4 The Poisson Process

Recall Axioms of the Poisson process:

P(1 event in [t, t+ δt)) = λδt+ o(δt)

P(2 or more events in [t, t+ δt)) = o(δt)

giving,

P(0 event in [t, t+ δt)) = 1− λδt+ o(δt).

Let X(t) = number of events by time t, then we have

P(X(t+ δt) = i+ 1 |X(t) = i) = λδt+ o(δt)

P(X(t+ δt) = i |X(t) = i) = 1− λδt+ o(δt)

We have,

pij(δt) =






1− λδt+ o(δt) j = i

λδt+ o(δt) j = i+ 1

o(δt) otherwise

So, Q is given by

Q =




















−λ λ 0

0 −λ λ 0

0 −λ λ 0

0 −λ λ 0
. . . . . .




















We calculate p0j(t), 0 < j, by solving

d

dt
P (t) = P (t)Q

i.e.










d
dtpij(t)









=









pij(t)





























−λ λ 0

0 −λ λ 0

0 −λ λ 0

0 −λ λ 0
. . . . . .



















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Consider first row,

d

dt
p00(t) = −λp00(t)

d

dt
p0j(t) = −λp0j(t) + λp0,j−1(t) j ≥ 1

Let p0j(t) = pj(t), multiply by s
j and sum over j:

d

dt






∞∑

j=0

sjpj(t)





= −λ

∞∑

j=0

pj(t)s
j + λ

∞∑

j=1

pj−1(t)s
j

= λ(s− 1)
∞∑

j=0

pj(t)s
j

so,

∂Π(s, t)

∂t
= λ(s− 1)Π(s, t)

⇒ log Π(s, t) = λ(s− 1)t+ A(s)

Π(s, t) = A∗(s) exp(λ(s− 1)t)

Initial conditions: P(X(0) = 0) = 1⇒ Π(s, 0) = 1⇒ A∗(s) = 1. So,

Π(s, t) = exp[−λt(1− s)],

which is the pgf of Poisson(λt).

7.5 Birth and death process

X(t) = size of population at t

pn,n+1(δt) = βnδt+ o(δt) βn = overall birth rate at size n

pn,n−1(δt) = νnδt+ o(δt) νn = overall death rate at size n

ν0 = 0 by definition,

pn,n(δt) = 1− βnδt− νnδt+ o(δt).

So,

Q =




















−β0 β0 0

ν1 −(ν1 + β1) β1 0

0 ν2 −(ν2 + β2) β2 0

νi −(νi + βi) βi




















66



We calculate p0j(t), 0 < j, by solving

d

dt
P (t) = P (t)Q

i.e.










d
dtpij(t)









=









pij(t)





























−β0 β0 0

ν1 −(ν1 + β1) β1 0

0 ν2 −(ν2 + β2) β2 0

νi −(νi + βi) βi




















From first row and putting poj(t) = pj(t):

d

dt
p0(t) = −β0p0(t) + ν1p1(t)

d

dt
pj(t) = βj−1pj−1(t)− (βj + νj)pj(t) + νj+1pj+1(t) j ≥ 1

i.e. differential difference equations for general birth and death process.

In general, P (t) too complicated to derive (though we will study simplifications in

due course). However, we may be able to find a stationary distribution.

7.5.1 Stationary distribution

We need to solve,

πQ = 0,
∑

j

πj = 1

−β0π0 + ν1π1 = 0

βi−1πi−1 − (νi + βi)πi + νi+1πi+1 = 0 i ≥ 1

⇒ νi+1πi+1 − βiπi = νiπi − βi−1πi−1

= νi−1πi−1 − βi−2πi−2

= νi−2πi−2 − βi−3πi−3
...

= ν1π1 − β0π0 = 0
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Therefore,

πi+1 =
βi

νi+1
πi ∀ i ≥ 0

We have,

πn =
βn−1

νn
πn−1 = . . . =

βn−1βn−2 . . . β0

νn . . . ν1
π0

Also,
∞∑

n=0

πn = π0

(

1 +
∞∑

n=1

βn−1βn−2 . . . β0

νn . . . ν1

)

The stationary distribution exists iff

∞∑

n=1

βn−1βn−2 . . . β0

νn . . . ν1
<∞.

If this sum converges then

π0 =

(

1 +
∞∑

n=1

βn−1βn−2 . . . β0

νn . . . ν1

)−1

πn =
βn−1βn−2 . . . β0

νn . . . ν1
π0 n ≥ 1

7.5.2 Linear birth and death process

If νn = nν and βn = nβ, we have a linear birth and death process.

i.e. the probability of each individual in the population giving birth in an interval

of length δt is

βδt+ o(δt)

similarly for a death.

So, we have,

pn,n+1(δt) = βnδt+ o(δt) βn = βn = overall birth rate at size n

pn,n−1(δt) = νnδt+ o(δt) νn = νn = overall death rate at size n

pn,n(δt) = 1− βnδt− νnδt+ o(δt).
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Let Xi(t) = number in population at time t given X(0) = i.

We have both ν0 = β0 = 0, once Xi(t) reaches zero, it stays there forever.

Q =




















0 0 0 . . .

ν −(ν + β) β 0

0 2ν −(2ν + 2β) 2β 0

0 0 3ν −(3ν + 3β) 3β
. . . . . . . . .




















We have
d

dt
P (t) = P (t)Q

Giving

d

dt
pi0(t) = νpi1(t)

d

dt
pij(t) = (j − 1)βpi,j−1(t)− j(ν + β)pij(t) + (j + 1)νpi,j+1(t) j ≥ 1

Apply general method:

1. multiply by sj.

2. sum over 0 ≤ j ≤ ∞.

3. find differential equation for pgf Πi(s, t) of Xi(t):

Πi(s, t) =
∞∑

j=0

pij(t)s
j

To give,

∂

∂t

∞∑

j=0

pij(t)s
j = β

∞∑

j=1

(j − 1)pi,j−1(t)s
j − (ν + β)

∞∑

j=1

jpij(t)s
j + ν

∞∑

j=0

(j + 1)pi,j+1(t)s
j

Note that,
∂

∂s
Πi(s, t) =

∂

∂s

∞∑

j=0

pij(t)s
j =

∞∑

j=1

jpij(t)s
j−1.

∂

∂t

∞∑

j=0

pij(t)s
j = βs2

∞∑

j=1

jpij(t)s
j−1 − (ν + β)s

∞∑

j=1

jpij(t)s
j−1 + ν

∞∑

j=1

jpij(t)s
j−1

∂

∂t
Πi(s, t) = (βs2 − (ν + β)s+ ν)

∂

∂s
Πi(s, t).
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A partial differential equation involving both ∂
∂t
Πi(s, t), and

∂
∂s
Πi(s, t).

Excursus on Lagrange’s equation

f(s, t,Π)
∂Π

∂s
+ g(s, t,Π)

∂Π

∂t
= h(s, t,Π)

Step 1: Write down the auxiliary equations

ds

f
=
dt

g
=
dΠ

h

Step 2: Solve these, writing solutions in the form

c1 = φ1(s, t,Π) c2 = φ2(s, t,Π).

Step 3: Write down the arbitrary functional equation

c2 = Ψ(c1) (or c1 = Ψ(c2))

and rewrite it to give Π(s, t) on one side.

Step 4: Find a particular solution for given initial conditions by identifying Ψ using

initial conditions and substituting for Ψ in general solution.
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Recall, for the linear birth and death process:

∂

∂t
Πi(s, t) = (βs

2 − (ν + β)s+ ν)
∂

∂s
Πi(s, t),

We have,

f(s, t,Πi) = −(βs
2 + ν − (β + ν)s) g(s, t,Π) = 1 h(s, t,Πi) = 0

Auxiliary equations:

ds

−(βs2 + ν − (β + ν)s)
=
dt

1
=
dΠi
0

Let’s first suppose β 6= ν.

From last pair: c1 = Πi [
∫
0 dt =

∫
1 dΠi]

From first pair:

∫ −1
βs2 + ν − (β + ν)s

ds =
∫

1 dt

∫ 1

β − ν

(
1

1− s
−

β

ν − βs

)

ds =
∫

1 dt

⇒
1

β − ν
(− ln(1− s) + ln(ν − βs)) = t+ const

⇒ ln

(
ν − βs
1− s

)

= (β − ν)t+ const

⇒ c2 =
ν − βs
1− s

e−(β−ν)t

Hence the general solution is

Πi(s, t) = Ψ

(
ν − βs
1− s

e−(β−ν)t
)

Question: If there is 1 individual in the population at time 0, and assuming β 6= ν,

what is Π1(s, t)?

Answer: Putting t = 0 in the general solution:

Π1(s, 0) = Ψ

(
ν − βs
1− s

)

also,

Π1(s, 0) =
∞∑

j=1

p1j(0)s
j = s
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So,

s = Ψ

(
ν − βs
1− s

)

Putting x = (ν − βs)/(1− s) ⇒ s = (ν − x)/(β − x)

⇒ Ψ(x) =
ν − x
β − x

So that,

Π1(s, t) =
ν(1− s)− (ν − βs)e(ν−β)t

β(1− s)− (ν − βs)e(ν−β)t

Note, with X(0) = i, the initial condition is

Πi(s, 0) =
∞∑

j=1

pij(0)s
j = si

so that,

Πi(s, t) =

(
ν(1− s)− (ν − βs)e(ν−β)t

β(1− s)− (ν − βs)e(ν−β)t

)i

When β = ν, with i individuals at t = 0, we find

Πi(s, t) =

(
βt− sβt+ s
βt− sβt+ 1

)i

7.5.3 Expected population size

Recall the pgf for Xi(t) = number in population when we start with i (X(0) = i).

Πi(s, t) =
∞∑

j=0

pij(t)s
j

Expected size at t, given X(0) = i:

∂

∂s
Π(s, t)

∣
∣
∣
∣
∣
s=1

For the linear birth and death process this is:

Π′i(1, t) =






ie(β−ν)t β 6= ν

i β = ν
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7.5.4 Extinction probabilities

When s = 0

Πi(0, t) = pi0(t) = P(Xi(t) = 0)

i.e. P(extinct by time t) = Πi(0, t).

For β 6= ν, this is

Πi(0, t) =

(
ν − νe(ν−β)t

β − νe(ν−β)t

)i

Now let t→∞

lim
t→∞
Πi(0, t) =






(
ν
β

)i
β > ν

1 β < ν

i.e. ultimate extinction is certain if death rate > birth rate, but not if reverse holds.

For β = ν

Πi(0, t) =

(
βt

βt+ 1

)i

and as t→∞

lim
t→∞
Πi(0, t) = 1,

so that extinction is certain eventually.

7.5.5 Embedded process

Recall the irreducible Markov chain for the process observed at the jumps with

transition matrix P with elements

pij =






0 i = j

− qij
qii
i 6= j

For the linear birth and death process this is

P =




















1 0 0 . . .

ν
ν+β

0 β
ν+β

0

0 ν
ν+β

0 β
ν+β

0

0 0 ν
ν+β

0 β
ν+β

0
. . . . . . . . .




















73



Recognise the form?

This is the transition matrix of a simple random walk with an absorbing barrier

at zero with p = β/(β + ν) (gambler’s ruin when playing a casino). To determine

extinction probabilities for the birth and death process, we can use results for the

embedded process:

Recall: p = probability A wins each game

q = 1− p

stake = $1 on each game

We found that the probability of ultimate ruin (qj) if A starts with $j is

qj =






1 when p ≤ q
(
q
p

)j
when p > q

So, putting p = β/(β + ν), q = ν/(β + ν) and j = i,

P(ultimate extinction) =






1 when β ≤ ν
(
ν
β

)i
when β > ν

But note: the embedded process tells us nothing about the development of the

process in time.

7.6 Immigration

• births and deaths occur as before,

• in addition, new arrivals occur according to a Poisson process with rate λ.

Proceed as usual:

1. Find Q and use the forward or backward equations to obtain the differential

difference equations for {pij(t)}.

2. Obtain a partial differential equation for Πi(s, t).

3. Solve this to find properties of Xi(t).
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7.7 Immigration-birth-death process

Consider a linear birth and death process with immigration (rate λ). We have

P(X(t+ δt) = n+ 1 |X(t) = n) = (λ+ nβ)δt+ o(δt).

So,

pn,n+1(δt) = (λ+ nβ)δt+ o(δt)

pn,n−1(δt) = nνδt+ o(δt)

pn,n(δt) = 1− (λ+ nβ + nν)δt+ o(δt).

So,

Q =




















−λ λ 0

ν −(λ+ β + ν) λ+ β 0

0 2ν −(λ+ 2β + 2ν) λ+ 2β 0

iν −(λ+ iβ + iν) λ+ iβ




















i.e. general birth and death process with βn = nβ + λ and νn = nν.

We have
d

dt
P (t) = P (t)Q

Giving

d

dt
pi0(t) = −λpi0(t) + νpi1(t)

d

dt
pij(t) = (λ+ (j − 1)β)pi,j−1(t)− (λ+ j(β + ν))pij(t) + (j + 1)νpi,j+1(t) j ≥ 1

Apply general method:

1. multiply by sj.

2. sum over 0 ≤ j ≤ ∞.

3. find differential equation for pgf Πi(s, t) of Xi(t)
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Find,

(1− s)(ν − βs)
∂Πi(s, t)

∂s
−
∂Πi(s, t)

∂t
= λ(1− s)Πi(s, t)

Note: this includes, as special cases all processes involving any combination of

immigration-birth-death (just set β, ν or λ = 0).

Case 1: β 6= ν Lagrange form, auxiliary equations

⇒ c1 =
ν − βs
1− s

e(ν−β)t

c2 = Πi(s, t)(ν − βs)
(λ/β)

If X(0) = 0 then

Π0(s, t) =

(
(ν − β)e(ν−β)t

(ν − βs)e(ν−β)t − β(1− s)

)λ/β

Note: λ only occurs as index, if λ = 0 (i.e. no immigration),

then Π0(s, t) = 1 = 1 ∙ s0 + 0 ∙ s1 + 0 ∙ s2 + . . .

(so p0j(t) = 0 ∀ j – that is the population size remains at 0).

Now, setting p = (ν − β)e(ν−β)t/(νe(ν−β)t − β), we have

Π0(s, t) =

(
p

1− qs

)λ/β

which is the pgf of a negative binomial distribution,with

E(X0(t)) =
λq

βp

var(X0(t)) =
λq

βp2

Could also get these directly from pgf.

Case 2: β = ν

Π0(s, t) = (1 + βt− sβt)−λβ

=

(
1/(1 + βt)

1− sβt/(1 + βt)

)λ/β

=

(
p

1− qs

)λ/β

with p = 1/(1 + βt) – again the pgf of a negative binomial distribution.
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