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Note: throughout this paper {εt} is a sequence of uncorrelated random vari-
ables having zero mean and variance σ2

ε , unless stated otherwise.

1. a) What is meant by saying that a stochastic process is second-order
stationary?

b) Let {Xt} be a stationary autoregressive process of order one, i.e.,

Xt = φ1,1Xt−1 + εt,

with the initial condition X−∞ = 0.

(i) What condition on φ1,1 guarantees that {Xt} will be stationary?

(ii) Show that {Xt} can be written as a linear combination of εt,

εt−1, . . . .

(iii) What does (ii) say about the mean of Xt?

(iv) Show that the autocorrelation sequence of {Xt} is given by

ρτ = φ
|τ |
1,1, τ = 0,±1,±2, . . .

(v) Suppose now that {Xt} is observed with additive error, i.e., we
observe

Yt = Xt + at,

where {at} is a white noise process having mean zero and constant
finite variance σ2

a, and is uncorrelated with {εt}. Derive the autocor-
relation sequence of {Yt}. How does it differ from the autocorrelation
sequence of {Xt}?
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2. Let {Ut} be a zero mean second-order stationary process having an
autocovariance sequence {sU,τ} and a spectral density function SU (f).

a)

(i) Show that the first-order backward difference process

Vt = Ut − Ut−1

has the spectral density function SV (f) given by

SV (f) = 4 sin2 (πf)SU (f) .

(ii) Does a first-order backward difference filter resemble a low-pass
or high-pass filter?

(iii) If the process {Wt} is the second-order backward difference of
{Ut} given by

Wt = Ut − 2Ut−1 + Ut−2,

deduce the form of SW (f), the spectral density function of {Wt}, in
terms of SU (f).

b) Consider the sum of a linear trend and the stationary process {Ut}
defined by

Xt = a + b t + Ut,

where a and b are real-valued non-zero constants. Show that

(i) {Xt} is a non-stationary process,

(ii) the first-order backward difference of {Xt}, the process {Yt} say,
is a stationary process with mean b, and give the form of the autoco-
variance sequence {sY,τ} in terms of {sU,τ}, and

(iii) the second-order backward difference of {Xt}, the process {Zt}
say, is a stationary process with mean zero, and give the form of the
autocovariance sequence {sZ,τ} in terms of {sU,τ}.
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3. Let {Xt} be a zero mean stationary stochastic processes, with spectral
density function SX(f).

a) Specify the three conditions which must be satisfied by a linear
time-invariant (LTI) digital filter.
b) Suppose we define the zero mean stationary process {Yt} as

Yt = Xt −Xt−K , where Xt =
1
K

K−1∑
j=0

Xt−j .

Demonstrate that Yt = L{Xt} defines a LTI digital filter L{·}.
c) Show that

K−1∑
j=0

ei2πfj =
{

Kei(K−1)πfD(f), if f �= 0,±1,±2, ..;
K, if f = 0,±1,±2,..

where D(f) is Dirichlet’s kernel defined by

D(f) =
sin(Kπf)
K sin(πf)

.

d) Deduce that SY (f) = |G(f)|2SX(f), where

|G(f)|2 =
{

4 sin4(Kπf)
K2 sin2(πf)

if f �= 0,±1,±2, ..;
0, if f = 0,±1,±2,..

where SY (f) is the spectral density function of {Yt}.
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4. Let X1, . . . , XN be a sample of size N from a stationary process
with mean µ and spectral density function S(f). At lag τ = 0 both
the unbiased and biased estimators of the autocovariance sequence
reduce to

ŝ0 ≡
1
N

N∑
t=1

(
Xt −X

)2
.

a) Show that E{ŝ0} = s0 − var {X}, where s0 = var {Xt}.

b) Define the spectral estimator where the exact mean is known and
subtracted as

Ŝ(f) =
1
N

∣∣∣∣∣
N∑

t=1

(Xt − µ)e−i2πft

∣∣∣∣∣
2

.

Use the spectral representation Xt − µ =
∫ 1/2

−1/2
ei2πftdZ(f) , to show

that the mean of the spectral estimator Ŝ(f) is given by

E{Ŝ(f)} =
∫ 1/2

−1/2

F(f − f ′)S(f ′)df ′ ,

where F(f) denotes Fejer’s kernel given by F(f) = (1/N)
∣∣∣∑N

t=1 e−i2πft
∣∣∣2 .

c) Demonstrate that

var {X} = (1/N)E{Ŝ(0)},

and hence that

E{ŝ0} =
∫ 1/2

−1/2

(
1− 1

N
F(f)

)
S(f) df.
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5. a) Give one advantage and one disadvantage accruing from the use
of a single data taper in spectrum analysis. What benefits arise from
multitapering?

b) Let {ht,0}, {ht,1}, ..., {ht,N−1} be N real-valued orthonormal data
tapers, each of length N , of the type used in multitaper spectrum
estimation, so that

N∑
t=1

ht,jht,k =
{

1, if j = k;
0, if j �= k.

Let V be the N ×N orthonormal matrix with jth column {ht,j}. By
considering the matrix V show that

N−1∑
k=0

ht,khu,k =
{

1, if u = t;
0, if u �= t.

c) Let {Xt} be a zero mean stationary process with variance σ2
X and

spectral density function S(f). Consider a multitaper spectrum esti-
mator of S(f) which uses all N orthonormal tapers:

Ŝ(mt)(f) =
1
N

N−1∑
k=0

Ŝ
(mt)
k (f) with Ŝ

(mt)
k (f) =

∣∣∣∣∣
N∑

t=1

ht,k Xt e−i2πft

∣∣∣∣∣
2

.

Show that
E{Ŝ(mt)(f)} = σ2

X .

d) Since

E{Ŝ(mt)(f)} =
∫ 1/2

−1/2

H(f − f ′)S(f ′)df ′,

where H(f) = (1/N)
∑N−1

k=0 Hk(f) and Hk(f) =
∣∣∣∑N

t=1 ht,ke−i2πft
∣∣∣2 ,

what does the result in (c) tell us about H(f)?
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Soln. 1.
a) {Xt} is second-order stationary if E{Xt} is a finite constant for all t,

var{Xt} is a finite constant for all t, and cov{Xt,Xt+τ} = sτ , a finite
quantity depending only on τ and not on t.

b)

(i) We have
Xt − φ1,1Xt−1 = εt.

The characteristic polynomial for this AR(1) process is

Φ(z) = 1− φ1,1z.

The root is z = 1/φ1,1 and is outside the unit circle provided |φ1,1| <
1, whence the process is stationary.

(ii) By repeated substitution we obtain

Xt =
∞∑

k=0

φk
1,1εt−k + term in X−∞,

and the last term is zero because of the initial condition. Hence Xt is
a linear combination of εt, εt−1, . . .

(iii) Since

E{Xt} =
∞∑

k=0

φk
1,1E{εt−k},

we have that E{Xt} = 0. (Alternatively we could observe that by
taking expectations in the defining equation we get

(1− φ1,1)µX = E{εt} = 0,

and since this must be true for any |φ1,1| < 1, then µX = 0. Also since
E{X−∞} = 0, for stationarity the mean must be zero everywhere.)

(iv) Take τ > 0, and multiply through the defining equation by
Xt−τ . Since Xt−τ is a function of εt−τ , εt−τ−1, . . . (part (ii)) we have
E{Xt−τ εt} = 0, and hence we obtain

sX,τ = φ1,1sX,τ−1,
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which when iterated gives

sX,τ = φτ
1,1sX,0

and hence, since the autocovariance is symmetric about 0, the auto-
correlation is given by

ρX,τ = φ
|τ |
1,1, τ = 0,±1,±2, . . .

(v) Now E{YtYt−τ} = E{(Xt + at)(Xt−τ + at−τ )} and since Yt, Xt

and at all have mean zero, and the processes {at} and {Xt} are un-
correlated, (since Xt is a linear combination of εt, εt−1, . . . and {at}
and {εt} are uncorrelated) we get

sY,τ = sX,τ + sa,τ ,

so that

sY,τ = sX,τ , for τ �= 0; σ2
Y = σ2

X + σ2
a for τ = 0.

Hence

ρY,τ =


sX,τ

σ2
X

(
1+

σ2
a

σ2
X

)
,

if τ �= 0;

1, if τ = 0.

Since {Xt} is AR(1),

ρY,τ =

{
φ
|τ |
1,1

(
1 + σ2

a

σ2
X

)−1

, if τ �= 0;
1, if τ = 0.

Assuming σ2
a > 0, the effect of the term in brackets is to attenuate

the autocorrelation of {Xt}, namely ρX,τ = φ
|τ |
1,1.
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Soln. 2.
a) (i) The filter is defined by L{Ut} = Ut − Ut−1. The transfer function

is obtained by inputing Ut = exp(i2πft):

L{ei2πft} = ei2πft − ei2πf(t−1) = ei2πft
(
1− e−i2πf

)
= ei2πftG(f),

where G(f) ≡ 1− exp(−i2πf) is the transfer function. Now

|G(f)|2 =
∣∣1− e−i2πf

∣∣2 =
∣∣e−iπf (eiπf − e−iπf )

∣∣2 =
∣∣e−iπf2i sin(πf)

∣∣2 = 4 sin2(πf).

Hence, SW (f) = 4 sin2(πf)SU (f).

(ii) Now |G(f)|2 increases from 0 to Nyquist (1/2) so that the first
difference filter resembles a high-pass filter.

(iii) Second differencing is the same as applying first differencing twice.
Hence SW (f) = 4 sin2(πf)SV (f) = 16 sin4(πf)SU (f).

b)
(i) Since E{Ut} = 0 for all t, it follows that

E{Xt} = E{a + b t + Ut} = a + b t,

which is not independent of t, so {Xt} is a nonstationary process.

(ii) Let {sU,τ} denote the acvs for {Ut}. Note that the first order
backward difference

Yt ≡ Xt−Xt−1 = a + b t + Ut− (a + b (t− 1) + Ut−1) = b + Ut−Ut−1

has mean value

E{Yt} = E{b + Ut − Ut−1} = b + E{Ut} − E{Ut−1} = b �= 0

and covariance between Yt and Yt+τ of

sY,τ = cov {Yt, Yt+τ} = E{(Yt − b)(Yt+τ − b)}
= E{(Ut − Ut−1)(Ut+τ − Ut+τ−1)}
= E{UtUt+τ} − E{UtUt+τ−1}
− E{Ut−1Ut+τ}+ E{Ut−1Ut+τ−1}

= sU,τ − sU,τ−1 − sU,τ+1 + sU,τ

= 2sU,τ − sU,τ−1 − sU,τ+1.
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Since E{Yt} and cov {Yt, Yt+τ} are both independent of t and finite,
the process E{Yt} is stationary with a nonzero mean.

(iii) Let {Zt} be the first backward difference of {Yt}, which is the
same as the second backward difference of {Xt}. We have

E{Zt} = E{Yt − Yt−1} = E{Yt} − E{Yt−1} = 0,

and we can use the same argument as above to establish that

sZ,τ = cov {Zt, Zt+τ} = 2sY,τ − sY,τ−1 − sY,τ+1

= 2(2sU,τ − sU,τ−1 − sU,τ+1)

− (2sU,τ−1 − sU,τ−2 − sU,τ )

− (2sU,τ+1 − sU,τ − sU,τ+2)

= 6sU,τ − 4sU,τ−1 − 4sU,τ+1 + sU,τ−2 + sU,τ+2,

which depends on τ , but not t. Thus {Zt} is a stationary process with
mean zero.
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Soln. 3.
a ) A digital filter L that transforms an input sequence {Xt} into an

output sequence {Yt} is called a linear time-invariant digital filter if
it has the following three properties:
[1] Scale preservation:

L{αXt} = αL{Xt}.

[2] Superposition:

L{Xt,1 + Xt,2} = L{Xt,1}+ L{Xt,2}.

[3] Time invariance:

if L{Xt} = {Yt}, then L{Xt+τ} = {Yt+τ},

where τ is integer-valued and the notation {Xt+τ} refers to the se-
quence whose tth element is Xt+τ .

b ) We can write Yt = (1/K)
∑K−1

j=0 (Xt−j −Xt−K−j). Then,
[1]

L{αXt} = (1/K)
K−1∑
j=0

(αXt−j − αXt−K−j) = αL{Xt}.

[2]

L{Xt,1 + Xt,2} = (1/K)
K−1∑
j=0

(Xt−j,1 + Xt−j,2 −Xt−K−j,1 −Xt−K−j,2)

= (1/K)
K−1∑
j=0

(Xt−j,1 −Xt−K−j,1) + (1/K)
K−1∑
j=0

(Xt−j,2 −Xt−K−j,2)

= L{Xt,1}+ L{Xt,2}.

[3] Let Yt = L{Xt} and let Xt;τ ≡ Xt+τ , Yt;τ ≡ Yt+τ . Then

L{Xt;τ} = (1/K)
K−1∑
j=0

(Xt+τ−j −Xt+τ−K−j) = Yt+τ = Yt;τ .

c ) If f �= 0,±1,±2, .., then

K−1∑
j=0

ei2πfj = (1− ei2πfK)/(1− ei2πf )

= [eiKπf (e−iKπf − eiKπf )]/[eiπf (e−iπf − eiπf )]

= ei(K−1)πf sin(Kπf)/ sin(πf) = Kei(K−1)πfD(f).
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If f = 0,±1,±2, .. then
∑K−1

j=0 ei2πfj = K.

d ) Letting Xt = exp(i2πft), we get

Yt =
1
K

K−1∑
j=0

ei2πf(t−j) −
K−1∑
j=0

ei2πf(t−K−j)

 = ei2πft 1
K

(
1− e−i2πfK

) K−1∑
j=0

e−i2πfj ,

so the transfer function is

G(f) =
1
K

(
1− e−i2πfK

) K−1∑
j=0

e−i2πfj .

The summation may be reduced using the result in part c) so that

G(f) =
{

1
K

(
1− e−i2πfK

)
e−iπf(K−1) sin(Kπf)

sin(πf) if f �= 0,±1,±2, ..;
0, if f = 0,±1,±2,..

i.e.,

G(f) =
{

1
K

(
eiπfK − e−iπfK

)
e−iπf(2K−1) sin(Kπf)

sin(πf) if f �= 0,±1,±2, ..;
0, if f = 0,±1,±2,..

giving

G(f) =
{

2i
K e−iπf(2K−1) sin2(Kπf)

sin(πf) if f �= 0,±1,±2, ..;
0, if f = 0,±1,±2,..

Hence, as required,

|G(f)|2 =
{

4 sin4(Kπf)
K2 sin2(πf)

if f �= 0,±1,±2, ..;
0, if f = 0,±1,±2,..

Walden 2000 M3S8/M4S8 Solutions Q3



Soln. 4.
a ) Here {Xt} is a stationary process with mean value µ = E{Xt}, and

variance s0. By definition,

ŝ0 =
1
N

N∑
t=1

(Xt −X)2 =
1
N

N∑
t=1

([Xt − µ]− [X − µ])2

=
1
N

N∑
t=1

(
[Xt − µ]2 − 2[Xt − µ][X − µ] + [X − µ]2

)
=

1
N

N∑
t=1

[Xt − µ]2 − 2[X − µ][X − µ] + [X − µ]2

=
1
N

N∑
t=1

[Xt − µ]2 − [X − µ]2.

Taking the expectation of both sides and noting that E{X} = µ yields

E{ŝ0} =
1
N

N∑
t=1

E{[Xt − µ]2} − E{[X − µ]2}

= var {Xt} − var {X} = s0 − var {X},

the desired result.
b ) Let

J(f) ≡ (1/
√

N)
N∑

t=1

(Xt − µ)e−i2πft.

By the spectral representation theorem

Xt − µ =
∫ 1/2

−1/2

ei2πf ′t dZ(f ′),

where {Z(·)} is a process with orthogonal increments, and E{dZ(f)} =
0. Thus

J(f) = (1/
√

N)
N∑

t=1

(∫ 1/2

−1/2

ei2πf ′t dZ(f ′)

)
e−i2πft

= (1/
√

N)
∫ 1/2

−1/2

N∑
t=1

e−i2π(f−f ′)t dZ(f ′)

=
∫ 1/2

−1/2

F (f − f ′) dZ(f ′),
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where

F (f) = (1/
√

N)
N∑

t=1

e−i2πft

Now it is given that,

Ŝ(f) ≡ |J(f)|2 = (1/N)

∣∣∣∣∣
N∑

t=1

(Xt − µ)e−i2πft

∣∣∣∣∣
2

.

Because {Z(·)} has orthogonal increments, we therefore have

E{Ŝ(f)} =
∫ 1/2

−1/2

F(f − f ′)S(f ′) df ′,

where

F(f) ≡ |F (f)|2 = (1/N)

∣∣∣∣∣
N∑

t=1

e−i2πft

∣∣∣∣∣
2

.

c ) Now
var {X} = E{(X − µ)2}

= (1/N2)E


(

N∑
t=1

(Xt − µ)

)2


= (1/N)E{Ŝ(0)},

and from b) E{Ŝ(0)} =
∫ 1/2

−1/2
F(f)S(f) df (by symmetry of spectral

density function), and of course s0 =
∫ 1/2

−1/2
S(f) df, so that the result

follows from part a), i.e.,

E{ŝ0} = s0 − var {X} =
∫ 1/2

−1/2

(
1− 1

N
F(f)

)
S(f) df.
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Soln. 5.
a ) The main point of data tapering in spectrum analysis is to reduce

sidelobe leakage by changing the default Fejér blurring kernel into
something with smaller sidelobes. There are two disadvantages: (i)
the main lobe of the blurring kernel is made wider, reducing resolu-
tion, and (ii) some good data at the ends is downweighted relative to
that in the middle of the series. Multitapering is useful in that each
orthogonal taper catches some of the data deleted by the previous
tapers. The result is that the variance of a multitaper spectral esti-
mator is reduced by a factor equal to the number of tapers, compared
to using a single taper: also the estimator is consistent.

b ) The matrix V is orthonormal. Hence VT = V−1. The fact that
VT V = I gives us

N∑
t=1

ht,jht,k =
{

1, if j = k;
0, if j �= k.

But the orthonormality also means that VVT = I, so that
N−1∑
k=0

ht,khu,k =
{

1, if u = t;
0, if u �= t.

c ) The multitaper spectrum estimator which uses N orthonormal ta-
pers is given by

Ŝ(mt)(f) =
1
N

N−1∑
k=0

∣∣∣∣∣
N∑

t=1

ht,k Xt e−i2πft

∣∣∣∣∣
2

=
1
N

N−1∑
k=0

(
N∑

t=1

ht,k Xt e−i2πft

) (
N∑

u=1

hu,k Xu ei2πfu

)

=
1
N

N∑
t=1

N∑
u=1

Xt Xu

(
N−1∑
k=0

ht,khu,k

)
e−i2πf(t−u).

But from the result in (a),
∑N−1

k=0 ht,khu,k is unity if t = u and zero
otherwise. Hence,

E{Ŝ(mt)(f)} =
1
N

E{
N∑

t=1

X2
t } = σ2

X .

d ) Since the integral of the spectrum is equal to σ2
X and the result in

c) is true for all f , we must have that H(f) = 1 for all f, a result that
can easily be verified directly.
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