- 1. (a) Let X be a random variable with density $f(x) = \alpha \beta x^{\alpha-1} \exp(-\beta x^{\alpha}), x > 0$, with $\alpha > 0, \beta > 0$. Show how to generate X from $U \sim U(0, 1)$. Let X_1, \ldots, X_n be independent, identically distributed with density f as above, and let $Z = \max\{X_1, \ldots, X_n\}$. Show how to generate Z from a *single* U(0, 1) random variable U.
 - (b) Describe in detail the steps of the rejection sampling algorithm for generating random variables from a density f(x), using U(0,1) random variables and random variables generated from an envelope density g(x). How is the algorithm modified if the density f(x) is only specified up to a constant of proportionality, $f(x) \propto f^*(x)$? Let X have density $f(x) \propto x^{\alpha-1}(1-x)^{\beta-1}, 0 < x < 1$, where $0 < \alpha < 1, \beta > 1$. Devise an algorithm for generating X by rejection sampling, using an envelope g(x) proportional to $x^{\alpha-1}$. Find the acceptance probability for the algorithm. What
 - (c) Describe in detail what is meant by a *congruential pseudo-random number generator*. Write brief notes on the properties of such a generator.
- 2. (a) Let h be a non-negative function with $\int h(x)dx < \infty$, and define

happens to the acceptance probability as β increases?

$$C_h = \left\{ (u, v): \ 0 \le u \le \sqrt{h(v/u)} \right\}.$$

Let (U, V) be uniformly distributed on C_h . Derive the density function of X = V/U. Show that, under appropriate conditions on h(x), the region C_h may be bounded within a rectangle, which you should specify. Describe the steps of the 'ratio of uniforms' method for generating random variables with density proportional to h(x). Let X be generated by the following algorithm:

- (1) Generate $U_1, U_2 \sim U(0, 1)$, set $V = 2U_2 1$.
- (2) If $U_1^2 + V^2 > 1$, go to (1).
- (3) Return $X = V/U_1$.

What is the distribution of X? Justify your answer carefully.

(b) Let U be uniformly distributed on (0,1). Show that for any monotonic function g on (0,1), g(U) and g(1-U) are negatively correlated.

Explain how this result is relevant to application of the *antithetic variates* method of variance reduction, which you should describe.

(c) Given a probability density function f(x) and a function $\phi(x)$, explain what is meant by an *importance sampling estimator* of $\theta = \int \phi(x) f(x) dx$, which uses sampling from another density g(x).

Show that the importance sampling estimator is unbiased, and find an expression for its variance. What choice for the density g minimises this variance?

3. (a) Let X_1, \ldots, X_n be independent, identically distributed from a population F and let $\hat{\theta}(X_1, \ldots, X_n)$ be an estimator of the population parameter $\theta \equiv \theta(F)$. Describe in detail both the *jackknife* and *bootstrap* estimators of the variance of $\hat{\theta}$, assuming a non-parametric problem.

Let $\theta = \mu$, where μ is the mean of F, and let the estimator $\hat{\theta}$ be $\hat{\theta} = \bar{X}$, where $\bar{X} = n^{-1} \sum_{i=1}^{n} X_i$. Obtain the form of the jackknife and bootstrap variance estimators. Which estimator do you prefer, and why?

- (b) Write brief notes on bootstrap procedures for constructing non-parametric confidence intervals for a population parameter θ .
- (c) Explain what is meant by a Monte Carlo test of size α of a null hypothesis H_0 , where under H_0 the test statistic T is a random variable with continuous distribution function F, not depending on any unknown parameters.

Let the Monte Carlo test be based on drawing m random variates from F. Let $\beta^{(m)}(\alpha)$ be the power of the Monte Carlo test, and let $\beta(\alpha)$ be the power of the corresponding conventional significance test, under the alternative hypothesis $T \sim F_{\theta}$. Show that

$$\beta^{(m)}(\alpha) = \int_0^1 \beta(\xi) b(\xi) d\xi,$$

where $b(\xi)$ is the density of a particular beta distribution, which you should specify.

 4. (a) What is meant by a Markov chain Monte Carlo method? Describe in detail the Gibbs sampler and the Metropolis-Hastings algorithms, as used in Bayesian inference. Show that the Gibbs sampler may be viewed as a special case of the Metropolis-Hastings algorithm.

(b) Suppose that, given μ and τ , X is distributed as a $N(\mu, 1/\tau)$ random variable. Suppose further the prior assumptions that τ is distributed as a gamma random variable, with density proportional to $\tau^{\alpha-1} \exp(-\beta \tau)$, and that, given τ , μ is distributed as $N(\nu, 1/\tau)$, where α, β, ν are known constants.

Find the form of the posterior distribution of (μ, τ) , given the observation x of X. Explain how to apply the Gibbs sampler to simulate from this posterior distribution.