UNIVERSITY OF LONDON
 IMPERIAL COLLEGE LONDON

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY-JUNE 2003

This paper is also taken for the relevant examination for the Associateship.

M3S8/M4S8 (SOLUTIONS) TIME SERIES
DATE: Tuesday, 27th May 2003 TIME: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used. Statistical tables will not be available.

1. a) $\left\{X_{t}\right\}$ is second-order stationary if $E\left\{X_{t}\right\}$ is a finite constant for all $t, \operatorname{var}\left\{X_{t}\right\}$ is a finite constant for all t, and $\operatorname{cov}\left\{X_{t}, X_{t+\tau}\right\}$, is a finite quantity depending only on τ and not on t.
b) We can write the $\operatorname{AR}(p)$ process as

$$
\begin{aligned}
X_{t}-\phi_{1, p} X_{t-1}-\phi_{2, p} X_{t-2}-\ldots-\phi_{p, p} X_{t-p} & =\epsilon_{t} \\
\left(1-\phi_{1, p} B-\phi_{2, p} B^{2} \ldots \phi_{p, p} B^{p}\right) X_{t} & =\epsilon_{t}
\end{aligned}
$$

The condition for stationarity is that the roots of the characteristic polynomial

$$
1-\phi_{1, p} z-\phi_{2, p} z^{2} \ldots \phi_{p, p} z^{p}=\Phi(z)
$$

lie OUTSIDE the unit circle.
c) i)

$$
\begin{aligned}
X_{t}-\phi_{1} X_{t-1}-\phi_{2} X_{t-2} & =\epsilon_{t} \\
\left(1-\phi_{1} B-\phi_{2} B^{2}\right) X_{t} & =\epsilon_{t} \\
\left(1-\rho_{1} B\right)\left(1-\rho_{2} B\right) X_{t} & =\epsilon_{t} \\
X_{t} & =\frac{1}{\left(1-\rho_{1} B\right)\left(1-\rho_{2} B\right)} \epsilon_{t} \\
\frac{1}{\left(1-\rho_{1} B\right)\left(1-\rho_{2} B\right)} & =\frac{A}{1-\rho_{1} B}+\frac{C}{1-\rho_{2} B}
\end{aligned}
$$

from which we obtain,

$$
\begin{aligned}
A+C=1 & \Rightarrow A \rho_{2}=(1-C) \rho_{2} \\
-\left(A \rho_{2}+C \rho_{1}\right)=0 & \Rightarrow(1-C) \rho_{2}=-C \rho_{1} \\
& \Rightarrow C=\rho_{2} /\left(\rho_{2}-\rho_{1}\right)
\end{aligned}
$$

Hence, $A=1-C=-\rho_{1} /\left(\rho_{2}-\rho_{1}\right)$. Thus

$$
\frac{1}{\left(1-\rho_{1} B\right)\left(1-\rho_{2} B\right)}=\left(\frac{1}{\rho_{2}-\rho_{1}}\right)\left[\frac{\rho_{2}}{1-\rho_{2} B}-\frac{\rho_{1}}{1-\rho_{1} B}\right]
$$

and hence,

$$
X_{t}=\sum_{k=0}^{\infty} \frac{\rho_{2}^{k+1}-\rho_{1}^{k+1}}{\rho_{2}-\rho_{1}} \epsilon_{t-k}
$$

ii) Using the MA representation, and properties of the zero-mean white noise process, we have

$$
E\left\{X_{t}\right\}=0, \quad \operatorname{var}\left\{X_{t}\right\}=\frac{1}{\left(\rho_{2}-\rho_{1}\right)^{2}} \sum_{k=0}^{\infty}\left(\rho_{2}^{k+1}-\rho_{1}^{k+1}\right)^{2} \sigma_{\epsilon}^{2}
$$

and

$$
\begin{aligned}
s_{\tau} & =E\left\{X_{t} X_{t+\tau}\right\}=\frac{1}{\left(\rho_{2}-\rho_{1}\right)^{2}} E\left\{\sum_{k=0}^{\infty}\left(\rho_{2}^{k+1}-\rho_{1}^{k+1}\right) \epsilon_{t-k} \sum_{j=0}^{\infty}\left(\rho_{2}^{j+1}-\rho_{1}^{j+1}\right) \epsilon_{t+\tau-j}\right. \\
& =\frac{1}{\left(\rho_{2}-\rho_{1}\right)^{2}} \sum_{k=0}^{\infty}\left(\rho_{2}^{k+1}-\rho_{1}^{k+1}\right)\left(\rho_{2}^{\tau+k+1}-\rho_{1}^{\tau+k+1}\right) \sigma_{\epsilon}^{2}
\end{aligned}
$$

as $E\left\{\epsilon_{t-k} \epsilon_{t+\tau-j}\right\}$ is only non-zero when $j=\tau+k$. For stationarity, the above variance and covariance terms must be finite, this occurs when the modulus of the multipliers in the geometric progressions are less than one, this is equivalent to

$$
\left|\rho_{1}\right|<1 \quad \text { and } \quad\left|\rho_{2}\right|<1
$$

The condition in part b) is that the roots of $\Phi(z)$ lie outside the unit circle, i.e.

$$
\begin{aligned}
& \Phi(z)=\left(1-\phi_{1} z-\phi_{2} z^{2}\right)=\left(1-\rho_{1} z\right)\left(1-\rho_{2} z\right)=0 \\
& \Rightarrow z=\frac{1}{\rho_{1}}, \quad z=\frac{1}{\rho_{2}} \\
& |z|>1 \Rightarrow\left|\rho_{1}\right|<1 \quad \text { and } \quad\left|\rho_{2}\right|<1,
\end{aligned}
$$

as required.
2. a)

$$
\begin{aligned}
Z_{t} & =\Delta^{2} X_{t}=(1-B)^{2} X_{t}=\left(1-2 B+B^{2}\right) X_{t}=X_{t}-2 X_{t-1}+X_{t-2} \\
& =\left(\alpha+\beta t+Y_{t}\right)-2\left(\alpha+\beta(t-1)+Y_{t-1}\right)+\left(\alpha+\beta(t-2)+Y_{t-2}\right) \\
& =Y_{t}-2 Y_{t-1}+Y_{t-2}=\Delta^{2} Y_{t} .
\end{aligned}
$$

which does not depend on α or β, as required.
If we can show that taking first differences of a stationary process produces a stationary process, then we will have shown that $\left\{Z_{t}\right\}$ is also stationary (as $Z_{t}=\Delta^{2} Y_{t}=\Delta\left(\Delta Y_{t}\right)$ and Y_{t} is stationary). $\left\{Y_{t}\right\}$ is second-order stationary, therefore

$$
E\left\{Y_{t}\right\}=\mu, \quad \operatorname{var}\left\{Y_{t}\right\}=\sigma_{Y}^{2}, \quad \operatorname{cov}\left\{Y_{t}, Y_{t+\tau}\right\}=s_{Y, \tau} .
$$

are finite constants, not depending on t. Let $X_{t}=\Delta Y_{t}$,

$$
\begin{aligned}
E\left\{X_{t}\right\} & =E\left\{Y_{t}-Y_{t-1}\right\}=0 \\
\operatorname{var}\left\{X_{t}\right\} & =E\left\{\left(Y_{t}-Y_{t-1}\right)^{2}\right\}=\sigma_{Y}^{2}-2 s_{Y, 1}+\sigma_{Y}^{2}=2\left(\sigma_{Y}^{2}-s_{Y, 1}\right) \\
\operatorname{cov}\left\{X_{t}, X_{t+\tau}\right\} & =E\left\{\left(Y_{t}-Y_{t-1}\right)\left(Y_{t+\tau}-Y_{t+\tau-1}\right\}\right. \\
& =s_{Y, \tau}-s_{Y, \tau-1}-s_{Y, \tau+1}+s_{Y, \tau}=2 s_{Y, \tau}-s_{Y, \tau-1}-s_{Y, \tau+1}
\end{aligned}
$$

so, the mean and variance of the first difference of a stationary process are also finite constants and the covariances are finite quantities which do not depend on t
$\Rightarrow X_{t}$ is second-order stationary $\Rightarrow Z_{t}\left(=\Delta X_{t}\right)$ is second-order stationary.
b) i) A digital filter L that transforms an input sequence $\left\{x_{t}\right\}$ into an output sequence $\left\{y_{t}\right\}$ is called a linear time-invariant (LTI) digital filter if it has the
following three properties:
[1] Scale-preservation:

$$
L\left\{\left\{\alpha x_{t}\right\}\right\}=\alpha L\left\{\left\{x_{t}\right\}\right\} .
$$

[2] Superposition:

$$
L\left\{\left\{x_{t, 1}+x_{t, 2}\right\}\right\}=L\left\{\left\{x_{t, 1}\right\}\right\}+L\left\{\left\{x_{t, 2}\right\}\right\} .
$$

[3] Time invariance:
If

$$
L\left\{\left\{x_{t}\right\}\right\}=\left\{y_{t}\right\}, \quad \text { then } L\left\{\left\{x_{t+\tau}\right\}\right\}=\left\{y_{t+\tau}\right\} .
$$

Where τ is integer-valued, and the notation $\left\{x_{t+\tau}\right\}$ refers to the sequence whose t-th element is $x_{t+\tau}$.
ii) Let

$$
\begin{gathered}
L\left\{Y_{t}\right\}=Y_{t}-2 Y_{t-1}+Y_{t-2}, \\
L\left\{e^{i 2 \pi f t}\right\}=e^{i 2 \pi f t}\left(1-2 e^{-i 2 \pi f}+e^{-i 4 \pi f}\right)=e^{i 2 \pi f t} G(f)
\end{gathered}
$$

So, the transfer function

$$
|G(f)|^{2}=\left|1-2 e^{-i 2 \pi f}+e^{-14 \pi f}\right|^{2} .
$$

We have

$$
\begin{aligned}
S_{Z}(f) & =|G(f)|^{2} S_{Y}(f)=\left|1-2 e^{-i 2 \pi f}+e^{-14 \pi f}\right|^{2} S_{Y}(f) \\
& =\left|\left(1-e^{-i 2 \pi f}\right)^{2}\right|^{2} S_{Y}(f)=\left|\left(e^{-i \pi f}\left(e^{i \pi f}-e^{-i \pi f}\right)\right)^{2}\right|^{2} S_{Y}(f) \\
& =\left|(2 \sin (\pi f))^{2}\right|^{2}=16 \sin ^{4}(\pi f) S_{Y}(f) .
\end{aligned}
$$

iii)

$$
Y_{t}=\epsilon_{t}-\theta_{1,2} \epsilon_{t-1}-\theta_{2,2} \epsilon_{t-2},
$$

We have

$$
S_{Y}(f)=\left|G_{\theta}(f)\right|^{2} S_{\epsilon}(f),
$$

where $G_{\theta}(f)$ is the transfer function of

$$
\begin{aligned}
L\left\{\epsilon_{t}\right\} & =\epsilon_{t}-\theta_{1,2} \epsilon_{t-1}-\theta_{2,2} \epsilon_{t-2} \\
L\left\{e^{i 2 \pi f t}\right\} & =e^{i 2 \pi f t}\left(1-\theta_{1,2} e^{-i 2 \pi f}-\theta_{2,2} e^{-i 4 \pi f}\right)=e^{i 2 \pi f t} G_{\theta}(f) .
\end{aligned}
$$

So,

$$
S_{Y}(f)=\left|1-\theta_{1,2} e^{-i 2 \pi f}-\theta_{2,2} e^{-i 4 \pi f}\right|^{2} \sigma_{\epsilon}^{2},
$$

and

$$
S_{Z}(f)=16 \sin ^{4}(\pi f)\left|1-\theta_{1,2} e^{-i 2 \pi f}-\theta_{2,2} e^{-i 4 \pi f}\right|^{2} \sigma_{\epsilon}^{2} .
$$

3. a) A stochastic process is invertible if it can be written in autoregressive form. i.e., consider,

$$
X_{t}=\sum_{k=0}^{\infty} g_{k} \epsilon_{t-k}=\sum_{k=0}^{\infty} g_{k} B^{k} \epsilon_{t}=G(B) \epsilon_{t}
$$

so $\epsilon_{t}=G^{-1}(B) X_{t}$, the expansion of $G^{-1}(B)$ in powers of B gives the required AR form, provided $G^{-1}(B)$ admits a power series expansion, $G^{-1}(z)=\sum_{k=0}^{\infty} h_{k} z^{k}$.
b) Assume $\left\{X_{t}\right\}$ is stationary $\operatorname{AR}(p)$, then

$$
X_{t}=\sum_{j=1}^{p} \phi_{j, p} X_{t-j}+\epsilon_{t} \Rightarrow X_{t}\left(1-\sum_{j=1}^{p} \phi_{j, p} B^{j}\right)=\epsilon_{t}
$$

Therefore $G^{-1}(z)=\sum_{j=0}^{p} \phi_{j, p} z^{j}$, where $\phi_{0, p}=1$, and so $G^{-1}(z)$ admits a power series expansion, therefore $\left\{X_{t}\right\}$ is invertible.
c) We can write the $\mathrm{MA}(q)$ process as,

$$
\begin{aligned}
X_{t} & =\epsilon_{t}-\theta_{1, q} \epsilon_{t-1}-\theta_{2, q} \epsilon_{t-2}-\ldots-\theta_{q, q} \epsilon_{t-q} \\
& =\left(1-\theta_{1, q} B-\theta_{2, q} B^{2}-\ldots-\theta_{q, q} B^{q}\right) \epsilon_{t}
\end{aligned}
$$

The condition for stationarity is that the roots of the characteristic polynomial

$$
1-\theta_{1, q} z-\theta_{2, q} z^{2} \ldots \theta_{q, q} z^{q}=\Theta(z)
$$

lie OUTSIDE the unit circle.
d) i)

$$
\begin{aligned}
s_{\tau} & =\operatorname{cov}\left\{X_{t}, X_{t-\tau}\right\}=E\left\{\left(\epsilon_{t}-\theta_{1,1} \epsilon_{t-1}\right)\left(\epsilon_{t-\tau}-\theta_{1,1} \epsilon_{t-\tau-1}\right)\right\} \\
& =E\left\{\epsilon_{t} \epsilon_{t-\tau}\right\}-E\left\{\epsilon_{t} \theta_{1,1} \epsilon_{t-\tau-1}\right\}-E\left\{\theta_{1,1} \epsilon_{t-1} \epsilon_{t-\tau}\right\}+E\left\{\theta_{1,1} \epsilon_{t-1} \theta_{1,1} \epsilon_{t-\tau-1}\right\}
\end{aligned}
$$

Therefore, s_{τ} will be non-zero when $\tau=0$ or $\tau= \pm 1$, giving,

$$
s_{\tau}=\left\{\begin{array}{cl}
\sigma_{\epsilon}^{2}\left(1+\theta_{1,1}^{2}\right) & \tau=0 \\
-\sigma_{\epsilon}^{2} \theta_{1,1} & \tau= \pm 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

ii)

$$
s_{0}=\sigma_{\epsilon}^{2}\left(1+\theta_{1,1}^{2}\right)=5.0 \quad s_{1}=-\sigma_{\epsilon}^{2} \theta_{1,1}=2.0
$$

So,

$$
\begin{gathered}
\frac{s_{0}}{s_{1}}=\frac{1+\theta_{1,1}^{2}}{-\theta_{1,1}}=\frac{5}{2} \\
\Rightarrow 2 \theta_{1,1}^{2}+5 \theta_{1,1}+2=0 \\
\left(2 \theta_{1,1}+1\right)\left(\theta_{1,1}+2\right)=0 \\
\Rightarrow \theta_{1,1}=-1 / 2 \quad \text { or } \quad \theta_{1,1}=-2 .
\end{gathered}
$$

i.e., there is more than one process with $s_{0}=5.0$ and $s_{1}=2.0$.

For invertibility the roots of $\left(1-\theta_{1,1} z\right)$ must lie outside the unit circle, i.e. $\left|\theta_{1,1}\right|<1$, this is satisfied when $\theta_{1,1}=-1 / 2$, but not when $\theta_{1,1}=-2$, so only one of these processes is invertible.
4. a)

$$
Z_{t}-0.99 Z_{t-3}=\epsilon_{t}
$$

Let $L\left\{Z_{t}\right\}=Z_{t}-0.99 Z_{t-3}$, then

$$
L\left\{e^{i 2 \pi f t}\right\}=e^{i 2 \pi f t}\left(1-0.99 e^{-i 6 \pi f}\right)=e^{i 2 \pi f t} G_{Z}(f)
$$

So,

$$
\begin{aligned}
\left|G_{Z}(f)\right|^{2} & =\left|1-0.99 e^{-i 6 \pi f}\right|^{2} \\
& =(1-0.99 \cos (6 \pi f))^{2}+0.99^{2} \sin ^{2}(6 \pi f) \\
& =1-1.98 \cos (6 \pi f)+0.99^{2}=1.9801-1.98 \cos (6 \pi f) \\
\left|G_{Z}(f)\right|^{2} S_{Z}(f) & =S_{\epsilon}(f) \\
\Rightarrow S_{Z}(f) & =\frac{\sigma_{\epsilon}^{2}}{1.9801-1.98 \cos (6 \pi f)}
\end{aligned}
$$

From the form of $S_{Z}(f)$, the maximum value will occur when the denominator is at its smallest, this will occur when $\cos (6 \pi f)$ takes the value 1 , i.e. when $f=0$ or $f=1 / 3$. Alternatively,

$$
\frac{d}{d f} S_{Z}(f) \propto \frac{\sin (6 \pi f)}{(1.9801-1.98 \cos (6 \pi f))^{2}}
$$

t.p.s occur when $\sin (6 \pi f)=0$, i.e. when $f=0(\max), f=1 / 6$ (min) and $f=1 / 3$ (max). Indicating periodic behaviour with $f=1 / 3$.

b) For $\tau=0$,

$$
\begin{aligned}
s_{\tau} & =\int_{-1 / 2}^{1 / 2} S(f) d f=\int_{-1 / 2}^{1 / 2} 4 \sigma^{2}\left(\frac{1}{2}-|f|\right) d f \\
& =8 \sigma^{2} \int_{0}^{1 / 2}\left(\frac{1}{2}-f\right) d f=8 \sigma^{2}\left[\frac{f}{2}-\frac{f^{2}}{2}\right]_{0}^{1 / 2} \\
& =8 \sigma^{2}\left(\frac{1}{4}-\frac{1}{8}\right)=\sigma^{2}
\end{aligned}
$$

For $\tau \neq 0$,

$$
\begin{aligned}
s_{\tau} & =\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f \tau} S(f) d f \\
& =\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f \tau} 4 \sigma^{2}\left(\frac{1}{2}-|f|\right) d f \\
& =\frac{4 \sigma^{2}}{2} \int_{-1 / 2}^{1 / 2} e^{i 2 \pi f \tau}-4 \sigma^{2} \int_{-1 / 2}^{1 / 2}|f| e^{i 2 \pi f \tau} d f \\
& =0-4 \sigma^{2}\left\{\int_{-1 / 2}^{0}-f e^{i 2 \pi f \tau} d f+\int_{0}^{1 / 2} f e^{i 2 \pi f \tau} d f\right\} \\
& =-4 \sigma^{2} \int_{0}^{1 / 2} f\left(e^{-i 2 \pi f \tau}+e^{i 2 \pi f \tau}\right) d f \\
& =-4 \sigma^{2} \int_{0}^{1 / 2} 2 f \cos (2 \pi f \tau) d f \\
& =-4 \sigma^{2}\left\{\left[\frac{f \sin (2 \pi f \tau)}{\pi \tau}\right]_{0}^{1 / 2}-\int_{0}^{1 / 2} \frac{\sin (2 \pi f \tau)}{\pi \tau} d f\right\} \\
& =\frac{2 \sigma^{2}}{(\pi \tau)^{2}}[-\cos (2 \pi f \tau)]_{0}^{1 / 2}=\frac{2 \sigma^{2}}{(\pi \tau)^{2}}\{1-\cos (\pi \tau)\}
\end{aligned}
$$

Therefore,

$$
s_{\tau}=\left\{\begin{array}{cl}
\sigma^{2} & \tau=0 \\
\frac{4 \sigma^{2}}{(\pi \tau)^{2}} & |\tau|=1,3,5, \ldots \\
0 & \text { otherwise }
\end{array}\right.
$$

as required.
5. a) i) We know from the spectral representation theorem that,

$$
X_{t}=\int_{-1 / 2}^{1 / 2} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)
$$

so that,

$$
\begin{aligned}
J(f) & =\sum_{t=1}^{N}\left(\int_{-1 / 2}^{1 / 2} \frac{1}{\sqrt{N}} e^{i 2 \pi f^{\prime} t} d Z\left(f^{\prime}\right)\right) e^{-i 2 \pi f t} \\
& =\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi\left(f-f^{\prime}\right) t} d Z\left(f^{\prime}\right)
\end{aligned}
$$

We find that,

$$
\begin{aligned}
\mathrm{E} & \left\{\widehat{S}^{(p)}(f)\right\}=\mathrm{E}\left\{|J(f)|^{2}\right\}=\mathrm{E}\left\{J^{*}(f) J(f)\right\} \\
& =\mathrm{E}\left\{\int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{i 2 \pi\left(f-f^{\prime}\right) t} d Z^{*}\left(f^{\prime}\right) \int_{-1 / 2}^{1 / 2} \sum_{s=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi\left(f-f^{\prime \prime}\right) s} d Z\left(f^{\prime \prime}\right)\right\} \\
& =\int_{-1 / 2}^{1 / 2} \int_{-1 / 2}^{1 / 2} \sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{i 2 \pi\left(f-f^{\prime}\right) t} \sum_{s=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi\left(f-f^{\prime \prime}\right) s} \mathrm{E}\left\{d Z^{*}\left(f^{\prime}\right) d Z\left(f^{\prime \prime}\right)\right\} \\
& =\int_{-1 / 2}^{1 / 2} \mathcal{F}\left(f-f^{\prime}\right) S\left(f^{\prime}\right) d f^{\prime},
\end{aligned}
$$

where \mathcal{F} is Féjer's kernel defined by

$$
\mathcal{F}(f)=\left|\sum_{t=1}^{N} \frac{1}{\sqrt{N}} e^{-i 2 \pi f t}\right|^{2} .
$$

ii) The periodogram is likely to be biased if the process has a large dynamic range, i.e., when

$$
10 \log _{10} \frac{\max _{f} S(f)}{\min _{f} S(f)}
$$

is large.
The expected value of the periodogram is the true spectrum convolved with Féjer's kernel. Féjer's kernel has a broad central lobe and $N-2$ sidelobes, if a process has a large dynamic range then power can "leak" from parts of the spectrum where $S(f)$ is large via the sidelobes to other frequencies where $S(f)$ is small
b) i) We can construct a direct spectral estimator, $\widehat{S}^{(d)}(f)$ as

$$
\widehat{S}^{(d)}(f)=\left|\sum_{t=1}^{N} h_{t} X_{t} e^{-i 2 \pi f t}\right|^{2}
$$

In this case, we will have

$$
\mathrm{E}\left\{\widehat{S}^{(d)}(f)\right\}=\int_{-1 / 2}^{1 / 2} \mathcal{H}\left(f-f^{\prime}\right) S\left(f^{\prime}\right) d f^{\prime}
$$

(c) 2003 University of London M3S8/M4S8 (SOLUTIONS) Page 10 of 11
where the kernel, $\mathcal{H}(f)$ is now,

$$
\mathcal{H}(f)=\left|\sum_{t=1}^{N} h_{t} e^{-i 2 \pi f t}\right|^{2}
$$

Careful choice of taper can lead to a kernel with lower sidelobes and thus reduce the bias due to sidelobe leakage.
ii)

$$
\begin{aligned}
E\left\{\widehat{S}^{(d)}(0)\right\} & =\int_{-1 / 2}^{1 / 2} \mathcal{H}\left(-f^{\prime}\right) S\left(f^{\prime}\right) d f^{\prime},=\int_{-1 / 2}^{1 / 2} \mathcal{H}(f) \sigma_{X}^{2} d f \\
& =\sigma_{X}^{2} \int_{-1 / 2}^{1 / 2}\left|\sum_{t=1}^{N} h_{t} e^{-i 2 \pi f t}\right|^{2} d f \\
& =\sigma_{X}^{2} \int_{-1 / 2}^{1 / 2}\left(\sum_{t=1}^{N} h_{t} e^{-i 2 \pi f t}\right)\left(\sum_{s=1}^{N} h_{s} e^{i 2 \pi f s}\right) d f \\
& =\sigma_{X}^{2} \sum_{t=1}^{N} \sum_{s=1}^{N} h_{t} h_{s} \int_{-1 / 2}^{1 / 2} e^{-i 2 \pi f(t-s)} d f
\end{aligned}
$$

Now,

$$
\int_{-1 / 2}^{1 / 2} e^{-i 2 \pi f(t-s)}= \begin{cases}1 & \text { if } t=s \\ 0 & \text { otherwise }\end{cases}
$$

So,

$$
E\left\{\widehat{S}^{(d)}(0)\right\}=\sigma_{X}^{2} \sum_{t=1}^{N} h_{t}^{2}
$$

As $\left\{X_{t}\right\}$ is white noise, then $S_{X}(f)=\sigma_{X}^{2}$ for all f. To ensure that the $\widehat{S}^{(d)}(0)$ is unbiased, we need the constraint,

$$
\sum_{t=1}^{N} h_{t}^{2}=1
$$

