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ABSTRACT

While considerable advance has been made to account for statistical uncertainties in astronomical analyses,
systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation
of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it
can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such
uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we
present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy
data. We first present a method based on multiple imputation that can be applied with any fitting method, but is
necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov
chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail
a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible
calibration files. This method is implemented using recently codified Chandra effective area uncertainties for
low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for

incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.
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1. INTRODUCTION

The importance of accounting for statistical errors is well
established in astronomical analysis: a measurement is of little
value without an estimate of its credible range. Various strate-
gies have been developed to compute uncertainties resulting
from the convolution of photon count data with instrument cali-
bration products such as effective area curves, energy redistribu-
tion matrices, and point-spread functions. A major component
of these analyses is good knowledge of the instrument charac-
teristics, described by the instrument calibration data. Without
the transformation from measurement signals to physically in-
teresting units afforded by the instrument calibration, the ob-
servational results cannot be understood in a meaningful way.
However, even though it is well known that the measurements
of the instrument’s properties (e.g., quantum efficiency of a
CCD detector, point-spread function of a telescope, etc.) have
associated measurement uncertainties, the calibration of instru-
ments is often taken on faith, with only nominal estimates used
in data analysis, even when it is recognized that these uncer-
tainties can cause large systematic errors in the inferred model
parameters.” In many subfields (exceptions include, e.g., gravi-

9 However, in ground-based observations, it is customary to describe
non-instrumental systematics as calibration uncertainty, especially
time-variable and foreground effects, and incorporate them in the final
uncertainties. These are included in, e.g., atmospheric absorption effects on

tational wave astrophysics, VIRGO Collaboration 2011, LIGO
Collaboration 2010, and references therein; cosmic microwave
background (CMB) analyses, Mather et al. 1999, Rosset et al.
2010, Jarosik et al. 2011, and references therein; and extra-solar
planet/planetary disk work, e.g., Butler et al. 1996, Maness et al.
2011, and references therein), instrument calibration uncertainty
is often ignored entirely, or in some cases, it is assumed that the
calibration error is uniform across an energy band or an image
area. This can lead to erroneous interpretation of the data.
Calibration products are derived by comparing data from
well-defined sources obtained in strictly controlled conditions
with predictions, either in the lab or using a particularly well-
understood astrophysical source. Parameterized models are
fit to these data to derive best-fit parameters that are then
used to derive the relevant calibration products. The errors on
these best-fit values carry information on how accurately the
calibration is known and could be used to account for calibration

photometry, flat fielding, and astrometric calibration, as in Taris et al. (2011)
and Aguirre et al. (2011); calibrating brightness of distant objects in the
presence of foreground dust (Conley et al. 2011; Kim & Miquel 2006; Mandel
et al. 2009), as well as uncertainties associated with the basic physics, such as,
e.g., specific stellar absorption lines (Thomas et al. 2011), or other
model-mismatch uncertainties, such as intrinsic supernova (SN) light-curve
variations (Conley et al. 2011; Kim & Miquel 2006; Mandel et al. 2009), can
also be referred to as calibration uncertainties in the literature. In this paper, we
specifically concentrate on instrumental calibration uncertainties, although the
formalisms introduced could in principle handle other kinds of systematic
errors.
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uncertainty in model fitting. Unfortunately, however, the errors
on the fitted values are routinely discarded. Even beyond the
errors in these fitted values, calibration products are subject to
uncertainty stemming from differences between the idealized
calibration experiments and the myriad of complex settings in
which the products are used. Suspected systematic uncertainty
cannot be fully understood until suitable data are acquired or
cross-instrument comparisons are made (David et al. 2007).
Prospectively, this source of uncertainty is difficult to quantify
but is encompassed to a certain extent in the experience of the
calibration scientists. Different mechanisms have been proposed
to quantify this type of uncertainty, ranging from adopting ad
hoc distributions such as a truncated Gaussian (Drake et al.
2006) to uniform deviations over a specified range. As long as
it can be characterized even loosely, statistical theory provides a
mechanism by which this information can be included to better
estimate the errors in the final analysis.

Users and instrument builders agree that incorporating cali-
bration uncertainty is important (see Davis 2001; Drake et al.
2006; Marshall 2006; Grimm et al. 2009). For example, Drake
et al. (2006) demonstrated that error bars on spectral model pa-
rameters are underestimated by as much as a factor of five (see
their Figure 5) for high-count data when calibration uncertainty
is ignored (3>10* counts for typical CCD resolution spectra).
Such underestimations can lead to incorrect interpretations of
the analysis results. Despite this, calibration uncertainties are
rarely incorporated because only a few ad hoc techniques ex-
ist and no robust principled method is available. In short, there
is no common language or standard procedure to account for
calibration uncertainty.

Historically, at the International Congress of Radiology and
Electricity held in Brussels in 1910 September, MMe. Curie was
asked to prepare the first standard based on high-energy photon
emission (X-/y-ray): 21.99 mg of pure radium chloride in a
sealed glass tube, equivalent to 1.67 x 1072 Curies of radioactive
radium (e.g., Brown 1997, p. 9 ff., and references therein).
The problem then became how to measure other samples, in
reference to this standard. Although the sample preparation was
done by very accurate chemistry techniques, the tricky part
was designing and building the instrument to quantify the high-
energy photon emission. At the next International Committee
meeting (1912, Paris), calibrating the standard was done by
specialized electroscopes balancing the “ionization current”
from two sources. This instrument was deemed to have an
uncertainty of 1 part in 400 (Rutherford & Chadwick 1911).
The original paper also describes a method for calibrating the
detector. Although these measurements were quite carefully
done, and complex for their time, the result was a single value
(the intensity) and had a single number quantifying its error
(ﬁ; Rutherford & Chadwick 1911). In this case, the effect
of this original unavoidable measurement error on one’s final
measurement of a source intensity (in Curies) is straightforward
to propagate, such as by the delta method.

Nowadays, meetings about absolute standards and measuring
instruments are much more complex, incorporating multiple
kinds of measurements for a single standard (e.g., CODATA;
Mohr et al. 2008). Further, in the general literature, one finds
increasingly complex methods dealing with, e.g., multivariate
data and calibration (Sundberg 1999; Osbourne 1991), and even
methods for “traceability” back to known standards (Cox &
Harris 2006). These approaches formulate their complexities
in terms of cross-correlations of parameters. This methodology
has also been successfully used in modern astrophysics, such as
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in combining optical observations of SNe for cosmological pur-
poses (e.g., Kim & Miquel 2006). Initially, J. Drake and other
coauthors did try formulating the dependencies and anticorre-
lations of the final calibration-product uncertainties in terms
of correlation coefficients. However, after considerable explo-
ration, they found this approach unable to capture the complex-
ities of spacecraft calibration, especially at high energies. First,
each part of a modern instrument such as the Chandra obser-
vatory is measured at multiple energies and multiple positions,
as well as calibrating the whole system on the ground. Second,
interestingly, the instrument is modeled by a complex physics-
based computer code. The original calibration measurements are
not used directly, but are benchmarks for the physical systems
modeled therein. High-energy astrophysics brings a third diffi-
culty: the previous papers assumed a Gauss-normal distribution
for the calibration-product uncertainties; this certainly does not
hold for most real instruments in the high energy regime. Hence,
expanding beyond Drake et al. (2006), in this paper we describe
how to “short-circuit” tracing back to the original calibration
uncertainties by using the entire instrument-modeling code as
part of statistical computing techniques. We see this in the con-
text of the movement toward “uncertainty quantification” (UQ)
of large computer codes (see, e.g., Christie et al. 2005).

Until recently, the best available general strategy in high-
energy astrophysics was to compute the root mean square of
the measurement errors and the calibration errors and then to fit
the source model using the resulting error sum (see Bevington
& Robinson 1992). Unfortunately, the use and interpretation
of the standard deviation relies on Gaussian errors, that the
calibration errors are uncorrelated, and that the uncertainty on
the calibration products can be uniquely translated to an uncer-
tainty in each bin in data space. None of these assumptions are
warranted. Furthermore, this method, equivalent to artificially
inflating the statistical uncertainty on the data, will lead to biased
fits, error bars without proper coverage, and incorrect estimates
of goodness of fit. Individual groups have also tried various
instrument-specific methods. These range from bootstrapping
(Simpson & Mayer-Hasselwander 1986) to raising and lower-
ing response “wings” by hand (Forrest 1988; Forrest etal. 1997),
and in one case, analytical marginalization over a particular kind
of instrumental uncertainty (Bridle et al. 2002). In general and
in important cross-instrument comparisons, however, all but the
crudest methods (e.g., multiplying each instrument’s total ef-
fective area by a fitted “uncertainty factor” as in Hanlon et al.
1995; Schmelz et al. 2009) are very difficult to handle.

Methods for handling systematic errors exist in other fields
such as particle physics (Heinrich & Lyons 2007 and references
therein) and observational cosmology (Bridle et al. 2002). In
their review of systematic errors, Heinrich & Lyons (2007) ad-
vocate parameterizing the systematics into statistical models and
marginalizing over the nuisance parameters of the systematics.
They described various statistical strategies to incorporate sys-
tematic errors which range from simple brute force x 2 fitting to
fully Bayesian hierarchical modeling. Unfortunately, these an-
alytical methods rely on Gaussian model assumptions that are
inappropriate for high-energy astrophysics and are also highly
case specific.

Accounting for calibration uncertainty is further compli-
cated by complex and large scale correlation in the calibra-
tion products. The value of the calibration product at one
point can depend strongly on far away values and even
data collected using a different instrument. For example,
the Chandra Low Energy Transmission Grating Spectrometer
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(LETGS) + High Resolution Camera-Spectroscopic readout
(HRC-S) effective area is calibrated using the power-law source
PKS 2155-304. Because the high-order contributions to the
spectrum cannot be disentangled, the index of the power law
depends strongly on an analysis of the same source with data
obtained contemporaneously with the High Energy Transmis-
sion Grating Spectrometer (HETGS) + AXAF CCD Imaging
Spectrometer (ACIS-S). Thus, changes in the HETGS+ACIS-S
effective area will affect the longer-wavelength LETGS+HRC-
S effective area. The complex correlations can result in a diverse
set of plausible effective area curves. The choice among these
curves can strongly affect the final best fit in day-to-day anal-
yses. The nominally better strategy of folding the calibration
uncertainty through to the final statistical errors on fitted model
parameters is unfortunately unfeasible: the complex correlations
make it difficult to quantify the effect on the final analysis of
uncertainty in the calibration product.

Drake et al. (2006) proposed a strategy that accounts for
these correlations by generating synthetic data sets from a
nominal effective area and then fitting a model separately
using each of a number of instance of a simulated effective
area and then estimating the effect of the calibration error
via the variance in the resulting fitted model parameters.
This procedure can be implemented using standard software
packages such as XSPEC (Arnaud 1996) and Sherpa (Freeman
et al. 2001; Doe et al. 2007) and demonstrates the importance
of including calibration errors in data analysis. However, in
practice there are some difficulties in implementing it with real
data where the true parameters are not known a priori. The ad hoc
nature of the bootstrapping-type procedure means its statistical
properties are not well understood, requiring the sampling
distributions to be calibrated on a case-by-case basis. That is,
the procedure requires verification whenever different models
are considered or different parts of the parameter space are
explored. The large number of fits required also imposes a heavy
computational cost. Most importantly, it requires numerous
simulated calibration products that must be supplied to end users
either directly through a comprehensive database or through
instrument-specific software for generating them. In general,
both these strategies impose a heavy burden on calibration or
analysis software maintainers.

The primary objective of this article is to propose well-defined
and general methods to incorporate complex calibration uncer-
tainty into spectral analysis in a manner that can be replicated in
general practice without precise calibration expertise. Although
we develop a general framework for incorporating calibration
uncertainty, we limit our detailed discussion to accounting for
uncertainty in the effective area for Chandra/ACIS-S in spectral
analysis. We propose a Bayesian framework, where knowledge
of calibration uncertainties is quantified through a prior prob-
ability. In this way, information quantified by calibration sci-
entists can be incorporated into a coherent statistical analysis.
Operationally, this involves fitting a highly structured statisti-
cal model that does not assume the calibration products are
known fixed quantities, but rather incorporates their uncertainty
through a prior distribution. We describe two statistical strate-
gies below for incorporating this uncertainty into the final fit.
Multiple imputation fits the model several times using stan-
dard fitting routines, but with a different value of the calibration
product used in each fit. Alternatively, using an iterative Markov
chain Monte Carlo (MCMC) sampler allows us to incorporate
calibration uncertainty directly into the fitting routine by updat-
ing the calibration products at each iteration. In either case, we
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advocate updating the calibration products based solely on in-
formation provided by calibration scientists and not on the data
being analyzed (i.e., not updating products given the data being
analyzed; see also discussion about computational feasibility in
Section 6.1). This strategy leads to simplified computation and
reliance on the expertise of the calibration scientists rather than
on the idiosyncratic features of the data. We adopt the strategy
of Drake et al. (2006) to quantify calibration uncertainty us-
ing an ensemble of simulated calibration products that we call
the calibration sample. We use principal component analysis
(PCA) to simplify this representation. A glossary of the terms
and symbols that we use is given in Table 1.

In Section 2, we describe the calibration sample and illustrate
the importance of properly accounting for calibration uncer-
tainty in spectral analysis. Our basic methodology is outlined
in Section 3, where we describe how the calibration sampler
can be used to generate the replicates necessary for multiple
imputation or can be incorporated into an MCMC fitting algo-
rithm. We also show how PCA can provide a concise summary
of the complex correlations of the calibration uncertainty. Spe-
cific algorithms and strategies for implementing this general
framework for spectral analysis appear in Section 4. Our pro-
posed methods are illustrated with a simulation study and an
analysis of 15 radio loud quasars (Siemiginowska et al. 2008) in
Section 5. In Section 6, we discuss future directions and a gen-
eral framework for handling calibration uncertainties from astro-
physical observations with similar form as our X-ray examples.
We summarize the work in Section 7.

2. THE CALIBRATION SAMPLE AND THE EFFECT OF
CALIBRATION UNCERTAINTY

To coherently and conveniently incorporate calibration un-
certainty into spectral fitting, we follow the suggestion of Drake
et al. (2006) to represent it using a randomly generated set of
calibration products that we call the calibration sample. In this
section, we begin by describing this calibration sample, and how
it can be used to represent the inherent systematic uncertainty.
The methods that we discuss in this and the following sections
are quite general and in principle can be applied to account for
systematic uncertainty in any calibration product. For clarity,
we illustrate their application to instrument effective areas.

2.1. Representing Uncertainty

We begin with a simple model of telescope response that
assumes position and time invariance. In particular, suppose the
response of a detector to an incident photon spectrum S(E; 0),

M(E™; 0) = ZS(E;9)A(E)P(E)R(E*; E), 6]
E

where E* represents the detector channel at which a photon
of energy E is recorded, 6 represents the parameters of the
source model, and A, P, and R are the effective area, point-
spread function, and energy redistribution matrix of the detector,
respectively. We aim to develop methods to estimate 6 and
compute error bars that properly account for uncertainty in A. Of
course, P and R are also subject to uncertainty and in Section 6.2
we discuss extensions of the methods described here to handle
more general sources of calibration uncertainty.

As an illustration, we consider observations obtained us-
ing the spectroscopic array of the Chandra ACIS-S detector.
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Table 1
Glossary of Symbols used in the Text
Symbol Description
A Effective area or Ancillary Response Function (ARF) curve
A Replicate A generated from PCA representation of the calibration sample
Ag The default effective area curve
Aj The observation-specific effective area curve
A Effective area curve [ in the calibration sample
A Set of effective areas, the calibration sample
SA Average offset of .4 from Ao
B The between imputation (or systematic) variance of 6
B Diagonal element m of B
E Energy of incident photon
E* Energy channel at which the detector registers the incident photon
e Random variate generated from the standard Normal distribution
fi Fractional variance of component / in the PCA representation
1 Number of inner iterations in pyBLoCXS, typically 10
J Number of components used in PCA analysis, here 17
J Principal component number or index
® The superscript indicates the running index of random draws
K An MCMC kernel
Koy The MCMC kernel used in PyBLoCKS
L Number of replicate effective area curves in calibration sample
1 Replicate effective area number or index, or principal component number
m Imputation number or index
M Number of imputations
M Response of a detector to incident photons, see Equation (1)
p Objective function (posterior distribution, likelihood, or perhaps x2)
P Point-spread function (PSF)
R Energy redistribution matrix (RMF)
r,2 Eigenvalue or PC coefficient of component / in the PCA representation
S Astrophysical source model
T Total variance of 6.
i Eigenvector or feature vector for component / in the PCA representation
w The within imputation (or statistical) variance of 9.
W Diagonal elements m of W
X True sky location of photons
x* Locations of incident photons as registered by detector
Y Data, typically used here as counts spectra in detector PI bins
V4 Data and physical calculations used by calibration scientists
0 Model parameter of interest
6 Estimate of 6
. Estimate of 6 corresponding to imputed effective area m
Var(ém) Estimates variance of é,,,
Otat VW, representing the statistical error on 6
Otot JT, representing the total error on 6
& A sum of the smaller components, J + 1 to L in the PCA representation

According to Drake et al. (2006), it is possible to generate a
calibration sample of effective area curves for this instrument
by explicitly including uncertainties in each of its subsystems
(UV /ion shield transmittance, CCD quantum efficiency, and the
telescope mirror reflectivity). The result is a set of simulations
of the effective area curves. These encompass the range of its
uncertainty, with more of the simulated curves similar to its most
likely value, and fewer curves that represent possible but less
likely values. In principle, some may be more likely than others,
in which case weights that indicate the relative likelihood are
required. In this article, we assume that all of the simulations in
the set are equally likely, that is, the simulations are represen-
tative of calibration uncertainty. The set of L simulations is the
calibration sample and denoted A = {A;, ..., AL}, where A; is
one of the simulated effective area curves.

The complicated structure in the uncertainty for the true
effective area is illustrated in Figure 1 using the calibration

sample of size L = 1000 generated by Drake et al. (2006). A
selection of six of the A; from A is plotted as colored dashed lines
and compared with the default effective area, Ag that is plotted
as a solid black line. The second panel plots the differences,
A; — Ay for the same selection. The light gray area represents
the full range of A and the dark gray area represents intervals
that contain 68.3% of the A; at each energy. The complexity of
the uncertainty of A is evident. We use the calibration sample
illustrated in Figure 1 as the representative example throughout
this article.

2.2. The Effect of the Uncertainty

We discuss here the effect of the uncertainty represented by
the calibration sample on fitted spectral parameters and their
error bars. We employ simulated spectra representing a broad
range in parameter values. In particular, we simulated four data
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Figure 1. Uncertainty in ACIS-S effective area. In the upper panel, the light gray area covers all 1000 effective area curves in the calibration sample of Drake et al.
(2006) and the darker gray area covers the middle 68% of the curves in each energy bin. In addition six randomly selected curves are plotted as colored dashed curves
and Ay is plotted as a solid black curve. The bottom panel is constructed in the same manner, but using A; — Ao, in order to magnify the structure in .A. The curves in
A form a complex tangle that appears to defy any systematic pattern. As we shall see, we can use principle component analysis to form a concise summary of .A.

(A color version of this figure is available in the online journal.)

Table 2
The Eight Simulations used to Compare the Four Algorithms Described in Section 4
Effective Area Nominal Counts Spectral Model
Default Extreme 10° 10* Hard? Soft®
SIMULATION 1 X X X
SIMULATION 2 X X X
SIMULATION 3 X X X
SIMULATION 4 X X X
SIMULATION 5 X X X
SIMULATION 6 X X X
SIMULATION 7 X X X
SIMULATION 8 X X X

Notes.
2 An absorbed power law with ' = 2, Ny = 108 cm™2.
b An absorbed power law with ' = 1, Ny = 102! em™2.

sets of an absorbed power-law source with three parameters
(power-law index I, absorption column density Ny, and normal-
ization) using the fakeit routine in XSPECv12. The data sets
were all simulated without background contamination using the
XSPEC model wabs*powerlaw, nominal default effective area
Ay from the calibration sample of Drake et al. (2006), and a de-
fault (RMF) for ACIS-S. The power-law parameter (I"), column
density (Ny), and nominal counts for the four simulations (see
also Table 2) were

SIMULATION 1: T' =2, Ny = 102 cm™2, and 10’ counts;

SIMULATION 2: T = 1, Ny = 10*' cm™2, and 10’ counts;

SIMULATION 3: T = 2, Ny = 102 cm™2, and 10* counts;
and

SIMULATION 4: T = 1, Ny = 10> cm™2, and 10* counts.

To illustrate the effect of calibration uncertainty, we selected
the 15 curves in A; € A with the largest maximum values
and the 15 curves with the smallest maximum values. In some
sense, these are the 30 most extreme effective area curves in
A. They are plotted as A; — Ay in the first panel of Figure 2,
along with a horizontal line at zero that represents the default

(Ap—Ap). We used the Bayesian method of van Dyk et al. (2001)
to fit SIMULATION 1 and SIMULATION 2 31 times each, using
each of the 31 curves of A; plotted in Figure 2. The resulting
marginal and joint posterior distributions for I" and Ny appear
in rows 2—4 of Figure 2; the contours plotted in the third row
correspond to a posterior probability of 95% for each fit.!” The
figure clearly shows that the effect of calibration uncertainty
swamps the ordinary statistical error. The scientist who assumes
that the true effective area is known to be Ay may dramatically
underestimate the error bars, and may miss the correct region
entirely.

Asasecond illustration we fit SIMULATION 1 and SIMULATION
3 each 31 times, using the same A; as in Figure 2 and with
Ap, again using the method of van Dyk et al. (2001). The
resulting posterior distributions of I" and Ny are plotted in
Figure 3. Comparing the two columns of the figure, the relative

10 The contours in Figure 2 were constructed by peeling (Green 1980) the
original Monte Carlo sample. This involves removing the most extreme
sampled values which are defined as the vertices of the smallest convex set
containing the sample (i.e., the convex hull). This is repeated until only 95% of
the sample remains. The final hull is plotted as the contour. This is a reasonable
approximation because the posterior distributions appear roughly convex.
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Figure 2. Effect of calibration uncertainty on fitted parameters and error bars. The first panel plots the 15 effective area curves in A with the largest maximum in
blue and the 15 curves with the smallest maximum in red, each with A subtracted off. The solid black horizontal line at zero represents Ag. The two columns in the
six lower panels correspond to SIMULATIONS 1 and 2, respectively, and plot the posterior distributions of I" and Ny using each of the 31 effective area curves in the
first panel. The rows of the bottom six panels correspond to the posterior distribution of I", the 95.4% contour of the joint posterior distribution, and the posterior
distribution of Ny. The colors of the plotted posterior distributions indicate the effective area curve that was used to generate the distribution. The solid vertical black
lines in the second and fourth rows indicate the values of the parameters used with Ag to generate SIMULATIONS 1 and 2. The effect of the choice of effective area

curves on the posterior distributions is striking.
(A color version of this figure is available in the online journal.)

contribution of calibration uncertainty to the total error bars
appears to grow with counts. For this reason, accounting for
calibration uncertainty is especially important with rich high-
count spectra. In fact, in our simulations there appears to be a
limiting value where the statistical errors are negligible and the
total error bars are due entirely to calibration uncertainty. The
total error bars do not go below this limiting value regardless of
how many counts are observed.

We must emphasize, however, that we are assuming that the
observed counts are uninformative as to which of the calibration
products in the calibration sample are more or less likely. If we
were not to make this assumption, however, and if a data set
were so large that we were able to exclude a large portion of the
calibration sample as inconsistent with the data, the remaining
calibration uncertainty would be reduced and its effect would
be mitigated. In this case, the default effective area and effective
area curves similar to the default could potentially be found
inconsistent with the data and thus the fitted model parameters
could be different from what we would get if we simply
relied on the default curve. In this article, however, we assume
that either the data set is not large enough to be informative
for the calibration products or that we do not wish to base
instrumental calibration on the idiosyncrasies of a particular
data set.

Both Figures 2 and 3 suggest that while the fitted values
depend on the choice of A € A, the statistical errors for the
parameters given any fixed A € A are more-or-less constant.
The systematic errors due to calibration uncertainty shift the
fitted value but do not affect its variance. Of course, in practice
we do not know A and must marginalize over it, so the total error
bars are larger than any of the errors bars that are computed given
a particular fixed A. How to coherently compute error bars that
account for calibration uncertainty is our next topic.

3. SPECTRAL ANALYSIS USING A CALIBRATION
SAMPLE OF THE EFFECTIVE AREA

In this section, we outline how the calibration sample can
be used in principled statistical analyses and describe how the
complex calibration sample can be summarized in a concise and
complete manner using PCA.

3.1. Statistical Analysis with a Calibration Sample
3.1.1. Marginalizing over Calibration Uncertainty

In a standard astronomical data analysis problem, as repre-
sented by Equation (1), it is assumed that A = A and that 0 is
estimated using p(6]Y, Ap), where Y is the observed counts and
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Figure 3. Interaction between total counts and calibration uncertainty. The four panels plot the marginal posterior distributions of I' (row 1) and Ny (row 2) when
fitting SIMULATION 3 (Column 1 with 10* counts) and SIMULATION 1 (Column 2 with 10° counts). The replicates in each panel correspond to 30 effective area curves
randomly selected from A. The posterior distributions plotted with solid lines were constructed using Ag. The statistical errors are smaller with the larger data set so

that calibration errors are relatively more important.

p is an objective function used for probabilistic estimation and
calculation of error bars. Typical choices of p are the Bayesian
posterior distribution, the likelihood function, the Cash statistic,
or a x?2 statistic. We use the notation p(6|Y, Ag) because we
generally take a Bayesian perspective, with p(-) representing a
probability distribution and the notation “|” referring to condi-
tioning, e.g., p(U|V) is to be read as “the probability of U given
that V is true.”

When A is unknown, it becomes a nuisance parameter”
in the model, and the appropriate objective function becomes
p(modelparameters, A|data). Using Bayesian notation,

PO, AlY, Z) = p(0lY, Z, A)p(AlY, 2),

where the primary source of information for A is not the
observation counts, Y, but the large data sets and physical
calculations used by calibration scientists, and which we denote
here by Z. Generally speaking, we expect the information for 6
to come from Y rather than Z, at least given A, and we expect
the information for A to come from Z rather than Y. This can
be expressed mathematically by two conditional independence
assumptions:

1. @Y, Z, A) = p(6]Y, A), and
2. p(AlY, Z) = p(A|Z).
We make these conditional independence assumptions, and

implicitly condition on Z throughout this article. In this case,
we can rewrite the above equation as
p@, AlY) = p@|Y, A)p(A), (@)

which effectively replaces the posterior distribution p(A|Y) with
the prior distribution p(A). Finally, we can focus attention on 6

1" A nuisance parameter is simply an unknown but necessary parameter in the
model that is not of direct interest. Its presence in the model may complicate
inference, which can be a nuisance.

by marginalizing out A,

p@Y)~ /p(GIY, A)p(A)dA
L

1
~ o) PO, Ap.

=1

3

That is, the objective function is simply the average of the
objective functions used in the standard analysis, but with Ag
replaced by each of the A; € A. Thus, the marginalization in
Equation (2) does not necessarily involve estimating p(A|Y)
nor specifying a parametric prior or posterior distributions for
A. When this marginalization is properly computed, systematic
errors from calibration uncertainty are rigorously combined with
statistical errors without need for Gaussian quadrature.

Of course, when L is large as in the calibration sample of
Drake et al. (2006), evaluating and optimizing Equation (3)
would be a computationally expensive task. In this section,
we outline two strategies that aim to significantly simplify
the necessary computation. The first is a general purpose but
approximate strategy that can be used with any standard model
fitting technique and the second is a simple adaptation that can be
employed when Monte Carlo is used in Bayesian model fitting.
Details and illustrations of both methods appear in Section 4.

3.1.2. Multiple Imputation

The first strategy takes advantage of a well-established sta-
tistical technique known as multiple imputation that is designed
to handle missing data (Rubin 1987; Schafer 1997). Multiple
imputation relies on the availability of a number of Monte Carlo
replications of the missing data. The replications are called the
imputations and are designed to represent the statistical un-
certainty regarding the unobserved values of the missing data.
Although the calibration products are not missing data per se,
the calibration sample provides exactly what is needed for us to
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apply the method of multiple imputation: a Monte Carlo sample
that represents the uncertainty in an unobserved quantity.

With the calibration sample in hand, it is straightforward to
apply multiple imputation. A subset of A of size M <« L is
randomly selected and called the multiple imputations or the
multiple imputation sample. The standard data analysis method
is then applied M times, once with each of the M imputations
of the calibration products. This produces M sets of param-
eter estlmates along with their estimated variance—covariance
matrices,'2 which we denote 6,, and Var(6,,), respectively, for
m =1,..., M. In the simplest form of the method of multiple
1mputat10n we assume that each 9,,1 follows a multivariate nor-
mal distribution with mean 6. The final fitted values and error
bars are computed using a set of simple moment calculations
known as the multiple imputation combining rules (e.g., Harel
& Zhou 2005). The parameter estimate is computed simply as
the average of the individual fitted values,

M
2: )

m=1

To compute the error bars, we must combine two sources of un-
certainty: the statistical uncertainty that would arise even if the
calibration product were known with certainty and the system-
atic uncertainty stemming from uncertainty in the calibration
product. Each of the M standard analyses is computed as if the
calibration product were known and therefore each Var(@ ) is
an estimate of the statistical uncertainty. Our estimate of the
statistical uncertainty is simply the average of these individual
estimates,

(.
= = > Var@,). ®)
m=1

The systematic uncertainty, on the other hand, is estimated by
looking at how changing the calibration product in each of the
M analyses affects the fitted parameter. Thus, the systematic
uncertainty is estimated as the variance of the fitted values,

o — O — ). (©6)

M=
D

Finally, the two components of variance are combined for the
total uncertainty

1
T=W+(1+M>B, 7)

where the ﬁ term accounts for small number M of imputations.
If M is small relative to the dimension of 8, T will be unstable,
and more sophisticated estimates should be used (e.g., Li et al.
1991). Here, we focus on univariate summaries and error bars
which depend only on one element of § and the corresponding
diagonal element of 7.

When computing the error bars for one of the univariate
fitted parameters in 6, say component of 4, it is generally
recommended that the number of sigma used be 1nﬂated to adjust
for the typically small value of M. That is, rather than using 1o

12 The variance—covariance matrix is a matrix that has the square of the error
bars along its diagonal and the covariance terms as off-diagonal elements.
Recall that the covariance is the correlation times the product of the error bars:
Cov(X, Y) = Correlation(X, Y)o,oy.
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and 20 for 68.3% and 95.4% intervals as is appropriate for the
normal distribution, a #-distribution should be used, requiring a
larger number of sigma to obtain 68.3% and 95.4% intervals. In
the univariate case, the degrees of freedom of the t-distribution
determine the degree of inflation and can be estimated by

MW \° ®)
M+ 1)B,,, ’

where W,,,, and B,,,, are the mth diagonal terms of W and B.

The method of multiple imputation is based on a number
of assumptions. First, it is designed to give approximate error
bars on 6 that include the effects of the imputed quantity,
but if a full posterior distribution on 6 is desired, then a
more detailed Bayesian calculation must be performed (see
below). It will provide an approximately valid answer in general
when the imputation model is compatible with the estimation
procedure, i.e., when 6 is the posterior mode from essentially
the same distribution as is used for the imputation (Meng 1994).
Furthermore, the computed standard deviations /T can be
identified with 68% credible intervals only when the posterior
distributions are multivariate normal. Additionally, when M is
small, the coverage must be adjusted using the #-distribution
(Equation (8)).

degrees of freedom = (M — 1) <1 +

3.1.3. Monte Carlo in a Bayesian Statistical Analysis

Multiple imputation offers a simple general strategy for
accounting for calibration uncertainty using standard analysis
methods. Because this method is only approximate, however,
our preferred solution is a Monte Carlo method that is robust,
reliable, and fast. In principle, Monte Carlo methods can handle
any level of complexity present in both the astrophysical models
and in the calibration uncertainty. Monte Carlo can be used to
construct powerful methods that are able to explore interesting
regions in high-dimensional parameter spaces and, for instance,
determine best-fit values of model parameters along with their
error bars. In this context, it is used as a fitting engine,
similar to the Levenberg—Marquardt, Powell, Simplex, and other
minimization algorithms. One of its main advantages is that it is
highly flexible and can be applied to a wide variety of problems.
A single run is sufficient to describe the variations in the model
parameters that arise due to both statistical and systematic
errors, which therefore leads to reduced computational costs.'?
Consider a Monte Carlo sample obtained by sampling the model
parameters 6 given the data, Y, and the calibration product,
A = Ay,

6" ~ p(@61Y, Ap),

where k is the iteration number and #®) are the values of the
parameters at iteration k. The set of parameter values thus
obtained is used to estimate the best-fit values and the error
bars. When calibration uncertainty is included, we can no longer
condition on Ay as a known value of the calibration product.
Instead we add a new step that updates A according to the
calibration uncertainties. In particular, 8% is updated using the
same iterative algorithm as above, with an additional step at
each iteration that updates A. Suppose at iteration k, A% is the

13 In most cases, MCMC rather than simple Monte Carlo is required to
explore complicated parameter spaces. Unfortunately, the use of MCMC in
this situation raises certain technical complications. In this section, we avoid
these complications by focusing on the simple case of direct Monte Carlo
sampling. More realistic MCMC samplers and associated complications are
discussed in Section 4.2.
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realization of the calibration product. Then the new algorithm
consists of the following two steps:

AW is sampled from p(A|Y) and
6™ is sampled from p(0|Y, A®).

Under the conditional independence assumptions of
Section 3.1.1, we can simplify this sampler by replacing p(A|Y)
with p(A) in the first step:

A® is sampled from p(A) and )

6™ is sampled from p(0|Y, A®). (10)

This independence assumption gives us the freedom not to esti-
mate the posterior distribution p(A|Y) and simplifies the struc-
ture of the algorithm. It effectively separates the complex prob-
lem of model fitting in the presence of calibration uncertainties
into two simpler problems: (1) fitting a model with known cal-
ibration and (2) the quantification of calibration uncertainties
independent of the current data Y.

3.2. Simple Summaries of a Complex Calibration Sample

The methods that we propose so far require storage of a large
number of replicates of A € A. Since calibration products can
be observation specific this requires a massive increase in the
size of calibration databases. This concern is magnified when we
consider uncertainties in the energy redistribution matrix, R, and
point-spread function, P, and combining multiple observations,
each with their own calibration products. Although in principle
this could be addressed by developing software that generates
the calibration sample on the fly, we propose a more realistic
and immediate solution that involves statistical compression of
A. Compression of this sort takes advantage of the fact that
many of the replicates in A differ very little from each other and
in principle we can reduce the sample’s dimensionality from
thousands to only a few with little loss of information. Here
we describe how PCA can accomplish this for the Chandra/
ACIS-S calibration sample generated by Drake et al. (2006) and
illustrated in Figure 1.

PCA is a commonly applied linear technique for dimension-
ality reduction and data compression (Jolliffe 2002; Anderson
2003; Ramsay & Silverman 2005; Bishop 2007). Mathemati-
cally, PCA is defined as an orthogonal linear transformation of
a set of variables such that the first transformed variable defines
the linear function of the data with the greatest variance, the
second transformed variable defines the linear function orthog-
onal to the first with the greatest variance, and so on. PCA aims
to describe variability and is generally computed on data with
mean zero. In practice, the mean of the data is subtracted off
before the PCA and added back after the analysis. Computation
of the orthogonal linear transformation is accomplished with the
singular value decomposition of a data matrix with each vari-
able having mean zero. This generates a set of eigenvectors that
correspond to the orthogonal transformed variables, along with
their eigenvalues that indicate the proportion of the variance cor-
related with each eigenvector. The eigenvectors with the largest
values are known as the principal components. By selecting a
small number of the largest principal components, PCA allows
us to effectively summarize the variability of a large data set
with a handful of orthogonal eigenvectors and their correspond-
ing eigenvalues.
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Our aim is to effectively compress A using PCA. Using the
singular vector decomposition of a matrix with rows equal to
the A; — A with A = % >, A;, we compute the eigenvectors

(v1, -..vy) and corresponding eigenvalues (r12, ... rz), ordered
such that ry > r, > --- > rp. The fraction of the variance of
A in the direction of v; is
Gzt (11)
1= 5
> j=1"j

In practice, this gives us the option of using a smaller number
of components, J < L in the reconstruction, that is sufficient
to account for a certain fraction of the total variance. A large
amount of compression can be achieved because very few
components are needed to compute the effective area to high
precision. For example, in the case of ACIS effective areas, 8—10
components (out of 1000) can account for 95% of the variance,
and ~20 components can account for 99% of the variance. Note
that this approximation is valid only when considered over the
full energy range; small localized variations in .4 that contribute
little to the total variance, even if they may play a significant
role in specific analyses (the depth of the C-edge, for example)
may not be accounted for.

With the PCA representation of .4 in hand, we wish to
generate replicates of A that mimic A. In doing so, however,
we must account for the fact that calibration products typically
vary from observation to observation to reflect deterioration
of the telescope over time and other factors that vary among
the observations. However, even though the magnitudes of the
calibration products may change, the underlying uncertainties
are less variant and are comparable across different regions
of the detector at different times. We thus suppose that the
differences among the calibration samples can be represented
by simply changing the default calibration product, at least in
many cases. That is, we assume that the distribution in the
calibration samples differ only in their (loosely defined) average
and that differences in their variances can be ignored. Under this
assumption, we can easily generate calibration replicates based
on the first J principal components as

J
Arep:A_+(A8—A0)+Zejrjvj+gej+lv (12)
j=1

J
= Ap+8A+) ejrjvj+Ees, (13)

Jj=1

where Aj is the observation-specific effective area that would
currently be created by users, Ay is the nominal default effective
area from calibration, A = A — Ag, &€ = Z?:JH rivj,
and (e, ...,ey41) are independent standard normal random
variables. In addition to the first J principal components, this
representation aims to improve the replicates by including the
residual sum of the remaining L—J components. Equation (12)
shows how we account for Aj. If Aj were equal to Ao,
Equation (12) would reduce to the standard PCA representation.
To account for the observation-specific effective area, we add the
offset Aj; — Ao. Equation (13) rearranges the terms to express
A™P as the sum of calibration quantities that we propose to
provide in place of A. In particular, using Equation (13), we can
generate any number of Monte Carlo replicates from A, using
only 8A, Ag, (rivi, ..., rrvr), and &. In this way, we need only
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Figure 4. Summarizing the calibration sample using PCA. The gray regions in the upper left panel are identical to those in the second panel of Figure 1 and give
intervals for each energy bin that contain 100% and 68.3% of the calibration sample. The dashed and dotted lines outline intervals for each energy bin containing
100% and 68.3% of 1000 PCA replicates of the effective area, sampled using Equation (12). The correspondence between the calibration sample and the PCA sample
is quite good, especially for the 68.3% intervals. The solid horizontal line is A and dotted line near it is the almost identical A. The other three panels give histograms
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of the calibration sample (gray) and the PCA sample (solid line) in each of three energy bins, represented by “x” signs in the first panel.

provide instrument-specific and not observation-specific values
of (rivy,...,rpvr), and €.

Figure 4 illustrates the use of PCA compression on the cali-
bration sample generated by Drake et al. (2006) and illustrated
in Figure 1. We generated 1000 replicate effective areas using
Equation (13) with A9 = Aj; and J = 8. The dashed and dotted
lines in the upper left panel, respectively, superimpose the full
range and 68.3% intervals of these replicates on the correspond-
ing intervals for the original calibration sample, plotted in light
and dark gray. In this case, using J = 8 captures 96% of the
variation in A, as computed with Equation (11). The remaining
three panels give cross sections at 1.0, 1.5, and 2.5 keV. The dis-
tributions of the 1000 replicates generated using Equation (13)
appear as solid lines, and those of the original calibration sample
as a gray regions. The figure shows that PCA replicates gener-
ated with J = 8 are quite similar to the original calibration
sample.

Although the PCA representation cannot be perfect (e.g., it
does not fully represent uncertainty overall or in certain energy
regions) it is much better than not accounting for uncertainty at
all.

4. ALGORITHMS ACCOUNTING FOR
CALIBRATION UNCERTAINTY

In this section, we describe specific algorithms that incorpo-
rate calibration uncertainty into standard data analysis routines.
In Section 4.1, we show how multiple imputation can be used
with popular scripted languages like HEASARC/XSPEC and
CIAO/Sherpa for spectral fitting, and in Section 4.2 we describe
some minor changes that can be made to sophisticated MCMC
samplers to include the calibration sample. In both sections, we
begin with cumbersome but precise algorithms and then show
how approximations can be made to simplify the implemen-

tation. Our recommended algorithms appear in Sections 4.1.2
and 4.2.2. In Section 5, we demonstrate that these approxima-
tions have a negligible effect on the final fitted values and error
bars.

4.1. Algorithms for Multiple Imputation
4.1.1. Using the Full Calibration Sample

Multiple imputation is an easy to implement method that
relies heavily on standard fitting routines. An algorithm for
accounting for calibration uncertainty using multiple imputation
can be described by

Step 1: Form =1, ..., M, repeat the following:

STEP 1A: Randomly sample A,, from A.

StEP 1B: Fit the spectral model (e.g., using Sherpa) in the
usual way, but with effective area set to A,,.

STEP 1c: Record the fitted values of the parameters as O

StEP 1D: Compute the variance-covariance matrix of the

fitted values and record the matrix as Var(ém). (In
Sherpa this can be done using the covariance
function.)

StEeP 2: Use Equation (4) to compute the fitted value, 6 of 6.

Step 3: Use Equations (5)—(7) to compute the variance-
covariance matrix, Var(é) =T,of 6. The square root of the
diagonal terms of Var(é ) = T are the error bars of individual
parameters.

STEP 4: Use Equation (8) to compute the degrees of freedom

for each component of 6 which are used to properly calibrate
the error bars computed in STEP 3.
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Asymptotically, =10 error bars correspond to equal-tail 68.3%
intervals under the Gaussian distribution. When the number of
imputations is small, +z4;0 error bars should be used instead,
where t4;, a number >1, can be looked up in any standard #-
distribution table using “df” equal to the degrees of freedom
computed in STEP 4; see Section 5.1 for an illustration.

If the correlations among the fitted parameters are not needed,
the error bars of the individual fitted parameters can be computed
one at a time using Equations (5)-(7) with 6,, and Var(6,,)
replaced by the fitted value of the individual parameter and the
square of its error bars, both computed using A,,.

4.1.2. Using the PCA Approximation

Using the PCA approximation results in a simple change to
the algorithm in Section 4.1.2: STEP 1A is replaced by (see
Equation (13))

STEP 1A: Set A,, = A} +8A + Z,J:l ejrjv; +£ey.1, where
(ei,...,eyy1) are independent standard normal random
variables.

The choice between this algorithm and the one described in
Section 4.1.1 should be determined by the availability of a
sample of size M from A (in which case the algorithm in
Section 4.1.1 should be used) or of the PCA summaries of
A required for the algorithm in this section.

4.2. Algorithms for Monte Carlo in a Bayesian Analysis

In Section 3.1.3, we considered simple Monte Carlo methods
that simulate directly from the posterior distribution, #% ~
p@|Y, Ag). More generally, MCMC methods can be used
to fit much more complicated models. (Good introductory
references to MCMC can be found in Gelman et al. 2003
and Gregory 2005.) A Markov chain is an ordered sequence
of parameter values such that any particular value in the
sequence depends on the history of the sequence only through its
immediate predecessor. In this way, MCMC samplers produce
dependent draws from p(6]Y, Ap) by simulating 0® from a
distribution that depends on the previous value of 6 in the
Markov chain, 6% ~ K£(0]0%~D; Y, Ag). That is, K is designed
to be simple to sample from, while the full p(6|Y, Ap) may
be quite complex. The price of this, however, is that the 6%
may not be statistically independent of the #%~D; and in
fact may have appreciable correlation with 8%~ (that is, an
autocorrelation of length d). The distribution K is derived using
methods such as the Metropolis—Hastings algorithm and/or the
Gibbs sampler that ensures that the resulting Markov chain
converges properly to p(6]Y, Ap). Van Dyk et al. (2001) show
how Gibbs sampling can be used to derive K in high-energy
spectral analysis. Their method has recently been generalized in
a Sherpa module called pyBLoCXS (Bayesian Low Count X-ray
Spectral analysis in Python, to be released).'* In this section, we
show how pyBLoCXS can be modified to account for calibration
uncertainty. For clarity, we use the notation

0% ~ Kpyp(0]0%D; ¥, A) (14)
to indicate a single iteration of pyBLoCXS run with the effective
area set to A.

14 http://cxc.harvard.edu/sherpa. The pyBLoCXS routine uses a different
choice of K that relies more heavily on Metropolis—Hastings than on Gibbs
sampling and can accommodate a larger class of spectral models.
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4.2.1. A Pragmatic Bayesian Method

In Section 3.1.3, we describe how a Monte Carlo sampler
can be constructed to account for calibration uncertainly under
the assumption that the observed counts carry little informa-
tion as to the choice of effective area curve. In particular, we
must iteratively update A% and 6% by sampling them as de-
scribed in Equations (9) and (10). Sampling A® from p(A)
can be accomplished by simply selecting an effective area curve
at random from .A. Updating 6 is more complicated, however,
because we are using MCMC. We cannot directly sample 6%
from p(0|Y, AW) as stipulated by Equation (10). The pyBLoCXS
update of % depends on the previous iterate, #%~1. Thus,
we must iterate STEP 2 of the fully Bayesian sampler several
times before it converges and delivers an uncorrelated draw from
p(01Y, AP). In this way, we iterate STEP 2 in the following sam-
pler until the dependence on 8%~V is negligible. To simplify no-
tation, we display iteration k + 1 rather than iteration &; note that
after I repetitions, STEP 2 returns #%*_ In practice, we expect
that a relatively small value of I (~10 or fewer) will be sufficient;
see Section 5.2. The MCMC step for a given k is as follows:

STEP 1: Sample A*D ~ p(A).
Step2: Fori=1,...,1,
Sample 9®+/D ~ [, 5 (0]0*HI=D/D; y, Ak+D).

Once the MCMC sampler run is completed, the “best-fit” and
confidence bounds for each parameter are typically determined
from the mean and widths of the histograms constructed from
the traces of {#*}, or mean and widths of the contours (for
multiple parameters), as in Figures 2 and 7 (see Park et al. 2008
for discussion).

4.2.2. A Pragmatic Bayesian Method with the PCA Approximation

Using the PCA approximation results in a simple change to
the algorithm in Section 4.2.1: STEP 1 is replaced by

T J

Step 1: Set A®D = §A + Aj + ijl ejrjv; + Eeyy,
where (e, ..., ey41) are independent standard normal
random variables.

Because of the advantages in storage that this method confers,
and the negligible effect that the approximation has on the result
(see Section 5.3), this is our recommended method when using
MCMC to account for calibration uncertainty with data sets with
ordinary counts.

5. NUMERICAL EVALUATION

In this section, we investigate optimal values of the tuning pa-
rameters needed by the algorithms and compare the performance
of the algorithms with simulated and with real data. Throughout,
we use the absorbed power-law simulations described in Table 2
to illustrate our methods and algorithms. The eight simulations
represent a 2 x 2 x 2 design with the three factors being (1)
data simulated with Ay and with an extreme effective area curve
from A, (2) 10° and 10* nominal counts, and (3) two power-law
spectral models. These simulations include the four described
in Section 2.2. We investigate the number of imputations re-
quired in multiple imputation studies in Section 5.1, and the
number of subiterations required in MCMC runs in Section 5.2.
We compare the results from the different algorithms (multiple
imputation with sampling and with PCA, and pyBLoCXS with
sampling and PCA) in detail in Section 5.3, and apply them to
a set of quasar spectra in Section 5.4.
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Figure 5. Sensitivity of the error estimates on the number of imputations, M. We show the result of varying M on fits carried out for spectra from SIMULATION 1 (left
column) and SIMULATION 2 (right column). For each M = m, we generate m effective area curves {A;ep, i =1,...,m}using Equation (13), and carry out separate fits
for each using Sherpa, and combine the results of the fits using the multiple imputation combining rules (Equations (4)—(7)). This gives us one value for the combined
(statistical and systematic) error bar. We repeat this process 200 times for each m to investigate the variability of the computed error bar. The average computed errors
(filled symbols) are shown for the power-law index I' (top row) and the absorption column density Ny (second row) as a function of m along with the uncertainty on
the errors due to sampling (thin vertical bars). The total error is grossly underestimated for m = 1 (computed for only the default effective area), and the uncertainty
on the error decreases for m > 1. Typically, M ~ 20 is sufficient to obtain a reasonably accurate estimate of the total error. We also show the coverage fraction for the
derived error bars for I" (third row from the top) and Ny (bottom row). The coverage is small for small m because the degrees of freedom is small (see Equation (8))

but asymptotically approaches a Gaussian coverage of 0.683 for large m.

5.1. Determining the Number of Imputations

When using multiple imputation, we must decide how many
imputations are required to adequately represent the variability
in A. Although in the social sciences as few as 3—10 imputa-
tions are sometimes recommended (e.g., Schafer 1997), larger
numbers more accurately represent uncertainty. To investigate
this we fit spectra from SIMULATION 1 and SIMULATION 2 using
Sherpa, with different values of M, the number of imputations.
For each value of M we generate M effective area curves, A™P, us-
ing Equation (13), fit the simulated spectrum M times, once with
each A™P_ derive the 1o error bars, and combine the M fits using
the multiple imputation combining rules in Equations (4)—(7).
This gives us a single total error bar for each parameter. We
repeat this process 200 times for each value of M to investigate
the variability of the computed error bar for each value of M.
The result appears in the first two rows of Figure 5. For small
values of M the error bars are often too small or too large. With
M larger than about 20, however, the multiple imputation error
bars are quite accurate. Even with M = 2, however, the error
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bars computed with multiple imputation are more representa-
tive of the actual uncertainty than when we fix the effective area
at Ag, which is represented by M = 1 in Figure 5. Generally
speaking, M = 20 is usually adequate, but M = 20-50 is better
if computational time is not an issue. Note that the size of the
calibration sample A is generally much larger than this, and
it is therefore a fair sample to use in the Bayesian sampling
techniques described in Section 4.2.

When M is relatively small, the computed 1o error bars may
severely underestimate the uncertainty, and must be corrected
for the degrees of freedom in the imputations (see Equation (8)).
To illustrate this, we compute the nominal coverage of the
standard +one+/(T) interval for each of the multiple imputation
analyses described in the previous paragraph. When M is large,
such intervals are expected to contain the true parameter value
68.3% of the time, the probability that a Gaussian random
variable is within one standard deviation of its mean. With
small M, however, the coverage decreases because of the extra
uncertainty in the error bars. The bottom two rows of Figure 5
illustrate the importance of adjusting for the degrees of freedom,
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especially when using relatively small values of M. The plots
give the range of nominal coverage rates for one+/7 error bars.
For large M the coverage approaches 95%, but for small M it can
be as low as 50%—-60%. This can be corrected by computing the
degrees of freedom using Equation (8) and using %t4¢o instead

of Fone/T. , as described in Section 4.1.1.

5.2. Determining the Number of Subiterations in the
Pragmatic Bayesian Method

As noted in Section 4.2.1, in order to obtain a sample from
the 8 ~ p(@|Y, AV) as in Equation (10) we must iterate
pyBLOCXS [ times to eliminate the dependence of #*~1. To
investigate how large I must be, we run pyBLoCXS on the
spectra from SIMULATIONS 1 and SIMULATION 5 of Table 2,
which were generated using the “default” and an “extreme”
effective area curve. Since SIMULATION 5 was generated using
the “extreme” effective area curve, it is the “extreme” curve that
is actually “correct” and the “default” curve that is “extreme.”
When running pyBLoCXS with the “default” effective area curve,
we initiated the chain at the posterior mean of the parameters
given the “extreme” curve and vice versa. This ensures that
we are using a relatively extreme starting value and will not
underestimate how large I must be to generate an essentially
independent draw. The resulting autocorrelation and time series
plots for I" appear in Figure 6. The autocorrelation plots report
the correlation of 8% and 6**D for each value of I plotted
on the horizontal axis. The plots show that for / > 10 the
autocorrelations are essentially zero for both spectra, and we
can consider 6% and #**19 to be essentially independent.
Similarly, the time series plots show that there is no effect of
the starting value past the 10th iteration. Similar plots for Ny
and the normalization parameter (not included) are essentially
identical. Thus, in all subsequent computations we set / = 10 in
the pragmatic Bayesian samplers. Generally speaking, the user
should construct autocorrelation plots to determine how large /
must be in a particular setting.

When we iterate STEP 2 in the pragmatic Bayesian Method,
we are more concerned with the mixing of the chain once it has
reached its stationary distribution, rather than convergence of the
chain to its stationary distribution. This is because convergence
to the stationary distribution will be assessed using the final
chain of ) in the regular way, i.e., using multiple chains
(Gelman & Rubin 1992; van Dyk et al. 2001). Even after the
stationary distribution has been reached, we need to obtain
a value of #“*D in STEP 2 that is essentially independent
of the previous draw, given A% Thus, we focus on the
autocorrelation of the chain 6® for fixed A. This said, if the
posterior of # is highly dependent on A and A®’ and A‘+D
are extreme within the calibration sample, that the conditional
posterior distribution of # given A’ and A“*" may be quite
different and we may need to allow 6 to converge to its
new conditional posterior distribution. The time series plots
in Figure 6 investigate this possibility when extreme values of
A are used. Luckily, the effect of these extreme starting values
still burns off in just a few iterations, as is evident in Figure 6.

5.3. Comparing the Algorithms

We discuss two classes of algorithms in Section 4 to account
for calibration uncertainty in spectral analysis: multiple impu-
tation, and a pragmatic Bayesian MCMC sampler. For each,
we consider two methods of exploring the calibration-product
sample space: first by directly sampling from the set of effective
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areas A, and second by simulating an effective area from a com-
pressed principal component representation. Here, we evaluate
the effectiveness of each of the four resulting algorithms, and
show that they all produce comparable results, and are a signifi-
cant improvement over not including the calibration uncertainty
in the analysis. We fit each of the eight simulated data sets de-
scribed in Table 2 using each of the four algorithms. The first
four simulations are identical to those described in Section 2.2.
Analyses carried out using multiple imputation all used M = 20
imputations. For analyses using the PCA approximation to .4,
we used J = 17. For pragmatic Bayesian methods, we used
I = 10 inner iterations. Figure 7 gives the resulting estimated
marginal posterior distributions for I" for each of the eight sim-
ulations and each of the four fitting algorithms along with the
results when the effective area is fixed at Ay. Parameter traces
(also known as time series) are also shown for all the simula-
tions for the two MCMC algorithms (see Section 4.2). Although
the fitted values differ somewhat (see SIMULATIONS 1, 2, 3, AND
6) among the four algorithms that account for calibration un-
certainty, the differences are very small relative to the errors
and overall the four methods are in strong agreement. When
we do not account for calibration uncertainly, however, the er-
ror bars can be much smaller and in some cases the nominal
68% intervals do not cover the true value of the parameter (see
SIMULATIONS 1, 2, 5, AND 6, corresponding to larger nominal
counts). When we do account for calibration uncertainty, only
in SIMULATION 6 did the 68% intervals not contain the true
value, and in this case the 95% (not depicted) do contain the
true value. Results for Ny are similar but omitted from Figure 7
to save space.

An advantage of using MCMC is that it maps out the posterior
distribution (under the conditional independence assumptions of
Section 3.1.1) rather than making a Gaussian approximation to
the posterior distribution. Note the non-Gaussian features in the
posterior distributions plotted for SIMULATIONS 1, 3, 5, AND 7
(corresponding to the harder spectral model).

5.4. Application to a Sample of Radio Loud Quasars

Here we illustrate our methods with a realistic case, using
X-ray spectra available for a small sample of radio loud
quasars observed with the Chandra X-ray Observatory in 2002
(Siemiginowska et al. 2008). We performed the standard data
analysis including source extraction and calibration with CIAO
software (Chandra Interactive Analysis of Observations). The
X-ray emission in radio loud quasars originates in a close
vicinity of a supermassive black hole and could be due to an
accretion disk or a relativistic jet. It is well described by a
Compton scattering process and the X-ray spectrum can be
modeled by an absorbed power law:

S(E) = NETe o ® M photons cm ™2 s~ ! keV !, (15)
where o (E) is the absorption cross section, and the three model
parameters are the normalization at 1 keV, N; the photon index
of the power law, I'; and the absorption column, Ny.

The number of counts in the X-ray spectra varied between 8
and 5500. After excluding two data sets (ObsID 3099 which had
8 counts, and ObsID 836 which is better described by a thermal
spectrum), we reanalyzed the remaining 15 sources to include
calibration uncertainty. In fitting each source, we included a
background spectrum extracted from the same observation over
a large annulus surrounding the source region. We adopted a
complex background model (a combination of a polynomial
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Figure 6. (a): autocorrelation function (ACF) of the parameter trace in MCMC runs. The ACF for the spectral index I" is shown for four cases, where a spectrum
is simulated using one effective area curve and the fit is possibly carried out with another. This explores the dependence of the fitting methodology (codified in the
routine pyBLoCXS) on misspecified calibration. The top row shows the ACF for SIMULATION 1 (generated using “default” effective area curve; see Table 2) and the
bottom row for SIMULATION 5 (generated using an “extreme” effective area curve). The diagonal plots show the ACF when the “correct” effective curve is used to fit
the spectrum, i.e., the same curve as was used to generate it, and the cross-diagonal plots show the case when the fitting is carried out using a different effective area
curve. The cases in the left column both use the “default” effective area to fit the simulated spectra, and the cases in the right column both use the “extreme” curve. The
autocorrelation functions demonstrate that T®) and T*+19) are essentially uncorrelated regardless of whether the correct effective area curve was used in the fit or not.
Thus, we set I = 10 in our pragmatic Bayesian samplers. (b): the parameter traces for the spectral index I', shown for same cases as the autocorrelation cases shown
before. While the autocorrelation determines the “stickiness” of the MCMC iterations, the time series demonstrates that choosing misspecified calibration files does
not have any effect on the convergence of the solutions. The traces are shown in the same order as before, for all iterations k. The inset shows the last 50 iterations,
with T® denoted by filled circles, and consecutive iterations connected by thin straight lines. The necessity of using I >> 1 is apparent in the slow changes in the

values of T,

(A color version of this figure is

available in the online journal.)
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Figure 7. (a): comparing the algorithms in Section 5 as applied to the simulated spectra 1-4 in Table 2. These are spectra which are generated using the default effective
area. The “true” value of the power-law index parameter that was used to generate the simulated spectra is shown as the vertical dashed line. For each simulation,
posterior probability density functions of the power-law index parameter are computed using the pragmatic Bayesian with PCA (black solid curve; Section 4.2.2),
pragmatic Bayesian with sampling from .4 (red dashed curve; Section 4.2.1), Multiple Imputation with PCA (green dotted curve; Section 4.1.2), Multiple Imputation
with samples from A (brown dot-dashed curve; Section 4.1.1), and the combined posteriors from individual runs using the full sample .A (purple dash-dotted curve).
Results for the column density parameter Ny are similar. We use M = 20 samples for multiple imputation. The density curves are obtained from smoothed histograms
of MCMC traces from pyBLoCXS for the Bayesian cases, and are Gaussians with the appropriate mean and variance obtained via fitting with XSPEC v12 for the
multiple imputation cases. Also shown are the 68% equal-tail intervals as horizontal bars, with the most probable value of the photon index indicated with an “x ” for
each of these case, and additionally for the case where a fixed effective area was used to obtain only the statistical error. Note that in all cases, fitting with the default
effective area alone leads to an underestimate of the true uncertainty in the fitted parameter. (b): for simulated spectra 5-8 in Table 2. These are spectra which are
generated using an extreme instance of an effective area from A. The fits when only one effective area is used are done with the default effective area. Note that in
many cases, not incorporating the calibration uncertainties results in intervals for the parameter which does not contain the true value. (c): parameter traces for the
spectral index I for each of the eight simulations. All the simulations are shown on the same plot, rescaled (to depict the fractional deviation from the mean, inflated by
a factor of three) and offset (by an integer corresponding to the number assigned to the simulation) for clarity. The traces for both the MCMC+PCA (pragmatic Bayesian
algorithm using PCA to generate new effective areas; solid black lines) and MCMC+sample (pragmatic Bayesian algorithm with sampling from A; dotted red lines) are
shown, with the latter overlaid on the former. The last 50 iterations are shown zoomed out in the abscissa for clarity, and shows each transformed T® a5 filled circles,
connected by thin lines of the corresponding style and color. Note that all iterations k are shown, but in the calculations of the posterior-probability distributions, only
every I iteration, where I = 10, is used (see Figure 6).

(A color version of this figure is available in the online journal.)
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Figure 7. (Continued)

(A color version of this figure is available in the online journal.)

and four Gaussians) that was first fit to the blank-sky data
provided by the Chandra X-ray Center to fix its shape. While
fitting the models to the source and background spectra, we
only allow for the normalization of the background model to be
free. This is an appropriate approach for very small background
counts in the Chandra spectra of point sources. We used this
background model for all spectra (except for two—ObsIDs 3101
and 3106—that had short 5 ks exposure times and small number
of counts < 45, for which the background was ignored). The
original analysis (Siemiginowska et al. 2008) did not take into
account calibration errors, and as we show below the statistical
errors are significantly smaller than the calibration errors for
sources with a large number of counts.

We fit each spectrum accounting for uncertainty in the
effective area in two ways:

1. with the multiple imputation method in Section 4.1.2 using
Sherpa for the individual fits, and

2. with the pragmatic Bayesian algorithm in Section 4.2.2
using pyBLoCXS for MCMC sampling.

Both of these fits use the PCA approximation using 14
observation-specific default effective area curves, Aj in
Equation (13) with J = 17. We use M = 20 multiple im-
putations and / = 10 subiterations in the pragmatic Bayesian
sampler. To illustrate the effect of accounting for calibration
uncertainty, we compared the first fit with the Sherpa fit that
fixes the effective area at A and each of the second and third
fits with the pyBLoCXS fit that also fixes the effective area at Aj.

The results appear in Figure 8 which compares the error bars
computed with (oy¢) and without (o) accounting for cali-
bration uncertainty. The left panel uses Sherpa and computes
the total error using multiple imputation, and the right panel
uses pyBLoCXS and computes the total error using the prag-
matic Bayesian method. The plots demonstrate the importance
of properly accounting for calibration uncertainty in high-count,
high-quality observations. The systematic error becomes promi-
nent with high counts because the statistical error is small, and
Ot deviates from oy, asymptotically approaching a value of
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oot &~ 0.04. This asymptotic value represents the limiting accu-
racy of any observation carried out with this instrument, regard-
less of source strength or exposure duration. For the absorbed
power-law model applied here, the systematic uncertainty on
I" becomes comparable to the statistical error for spectra with
counts 22400, with the largest correction seen in ObsID 866,
which had > 14,500 counts.

6. DISCUSSION

In the previous sections, we have worked through a specific
example (Chandra effective area) in some detail. Now, in
this section, we present two more complete generalizations.
The first is the case ignored previously, when the data have
something interesting to say about the calibration uncertainties.
In the second, we explain how to generalize the algorithms
we worked through earlier to the full range of instrument
responses, including energy redistribution matrices and point-
spread functions.

6.1. A Fully Bayesian Method

To avoid the assumption that the observed counts carry little
information as to the choice of effective area curve, we can
employ a fully Bayesian approach that bases inference on the
full posterior distribution p(6, A|Y). To do this via MCMC,
we must construct a Markov chain with stationary distribution
p(6, A|Y), which can be accomplished by iterating a two-step
Gibbs sampler, fork =1, ..., K.

A Fully Bayesian Sampler

Step 1: Sample A®*D ~ p(A|0®), V).
StEP 2: Sample 0*+D ~ [, (010X ¥, A®+D),

Note that unlike in the pragmatic Bayesian approach in
Section 4.2, STEP 1 of this sampler requires A to be updated
given the current data. Unfortunately, sampling p(A|0%®), Y) is
computationally quite challenging. The difficulty arises because
the fitted value of 6 can depend strongly on A. That is, calibra-
tion uncertainty can have a large effect on the fitted model; see
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Figure 8. Comparison of the statistical error with the total error including effective area uncertainties for different methods of evaluating them. Results of fits to a
sample of 15 radio loud quasars (Siemiginowska et al. 2008; see Section 5.4) are shown. The abscissae represent the statistical uncertainty oy, as derived by adopting
a fixed, nominal effective area, and fit with absorbed power-law models using CIAO/Sherpa (stronger sources tend to have smaller error bars). They are compared
with the total error oo derived using (a) the multiple imputation combining rule (Section 4.1.2) with CIAO/Sherpa (M = 20), and (b) the pragmatic Bayesian method
with PCA (Section 4.2.4), with pyBLoCXS. (Similar results are obtained when using the pragmatic Bayesian method for the full sample of effective areas.) The different
symbols correspond to the analysis carried out for different observations. The dotted line represents equality, where the total error is identical to the statistical error.
The systematic error cannot be ignored when the statistical error is small, and represents the limiting accuracy of a measurement.

(A color version of this figure is available in the online journal.)

Drake et al. (2006) and Section 2.2. From a statistical point of
view, this means that given Y, 6 and A can be highly depen-
dent and p(A|6%, Y) can depend strongly on #®). Thus, a large
proportion of the replicates in .A may have negligible proba-
bility under p(A|#®, Y) and it can be difficult to find those
that have appreciable probability without doing an exhaustive
search. The computational challenges of a fully Bayesian ap-
proach are part of the motivation behind our recommendation
of the pragmatic Bayesian method. Despite the computational
challenges, there is good reason to pursue a fully Bayesian sam-
pler. Insofar as the data are informative as to which replicates in
A are more—or less—Ilikely, the dependence between 6 and A
can help us to eliminate possible values of 6 along with repli-
cates in A, thereby reducing the total error bars for 6. Work
to tackle the computational challenges of the fully Bayesian
approach is ongoing.

6.2. General Methods for Handling Calibration Uncertainties

In general, the response of a detector to incident photons
arriving at time # can be written as

M(E*, x*,t;0) = /dde S(E,x,t;0) R(E, E*,x"; 1)

x P(x,x*, E; 1) A(E,x*; X, 1), (16)
where x* and E* are the measured photon location and en-
ergy (or the detector channel), while x and E are the true
photon sky location and energy; the source physical model
S(E, x, t; 0) describes the energy spectrum, morphology (point,
extended, diffuse, etc.), and variability with parameters 6; and
M(E*,x*,t;0) are the expected counts in detector channel
space. Calibration is carried out using well-known instances
of S(E, x, t; 0) to determine the quantities

R(E, E*, x*; t) = Energy Redistribution
P(x, x*, E; t) = Point-Spread Function
A(E, x*; x, t) = Effective Area. 17

It is important to note that all of the quantities in Equation (16)

have uncertainties associated with them. Our goal is to pro-

vide a fast, reliable, and robust strategy to incorporate the jit-
tering patterns in all of the calibration products and to draw
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proper inference, best fits and error bars, reflecting calibration
uncertainty.

In principle, using a calibration sample to represent uncer-
tainty and the statistical methods for incorporating the calibra-
tion sample described in Sections 3 and 4 can be applied directly
to calibration uncertainty for any of the calibration products. The
use of PCA, however, to summarize the calibration sample may
not be robust enough for higher dimensional and more complex
calibration products. More sophisticated image analysis tech-
niques or hierarchically applied PCA may be more appropriate.
Our basic strategy, however, of providing instrument-specific
summaries of the variability in the calibration uncertainty and
observation-specific measures of the mean (or default) calibra-
tion product, is quite general. Thus, in this section, we focus on
the generalization of Equation (12) and begin by rephrasing the
equation as

Replicate Calibration Product = Mean + Offset

+ Explained Variability + Residual Variability.  (18)
Here, the mean is the mean of the calibration sample, the offset
is the shift that we impose on the center of distribution of
the calibration uncertainty to account for observation-specific
differences, the explained variability is the portion of the
variability that summarize in parametric and/or systematic way
(e.g., using PCA), and the residual variability is the portion
of the variability left unexplained by the systematic summary.
These four terms correspond to the four terms in Equation (12).

The formulation in Equation (18) removes the necessity
of depending solely on PCA to summarize variance in the
calibration sample, and allows us to use a variety of methods
to generate the simulated calibration products. For example, we
can even include such loosely stated measures of uncertainty as
“the effective area is uncertain by X% at wavelength Y.” This
formulation is not limited to describing effective areas alone,
but can also be used to encompass the calibration uncertainty
in response matrices and point-spread functions. The precise
method by which the variance terms are generated may vary
widely, but in all foreseeable cases they can be described as
in Equation (18), with an offset term and a random variance
component added to the mean calibration product, and with an
optional residual component. The calibration sample simulated
in this way form an informative prior p(A, R, P) that could
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be used like p(A) in Equation (9). Some potential methods of
describing the variance terms (see also Kashyap et al. 2008) are
as follows:

1. When a large calibration sample is available, the random
component is simply the full set of calibration products in
the sample. When using a Monte Carlo for model fitting, as
in Section 3.1.3, a random index is chosen at each iteration
and the calibration product corresponding to that index is
used for that iteration. This process preserves the weights of
the initial calibration sample. In this scenario, the residual
component is identically zero.

2. If the calibration uncertainty is characterized by a mul-
tiplicative polynomial term in the source model, the ex-
plained variance component in Equation (18) can be ob-
tained by sampling the parameters of the polynomial, from
a Gaussian distribution, using their best-fit values and the
estimated errors. These simulated calibration products can
then be used to modify the nominal products inside each
iteration. Thus, the offset and residual terms are zero, and
only the polynomial parameter best-fit values and errors
need to be stored.

3. If a calibration product is newly identified, it may be
systematically off by a fixed but unknown amount over
a small passband, and users can specify their own estimate
of calibration uncertainty as a randomized additive constant
term over the relevant range. This is essentially equivalent to
using a correction with a first-order polynomial. The stored
quantities are the average offset, the bounds over which
the offset can range, and a pointer specifying whether to
generate uniform or Gaussian deviates over that range.

7. SUMMARY

We have developed a method to handle in a practical way the
effect of uncertainties in instrument response on astrophysical
modeling, with specific application to Chandra/ACIS instru-
ment effective area. Our goal has been to obtain realistic error
bars on astrophysical source model parameters that include both
statistical and systematic errors. For this purpose, we have de-
veloped a general and comprehensive strategy to describe and
store calibration uncertainty and to incorporate them into data
analysis. Starting from the full, precise, but cumbersome objec-
tive function of the parameters, data, and instrument uncertain-
ties, we adopt a Bayesian posterior-probability framework and
simplify it in a few key places to make the problem tractable.
This work holds practical promise for a generalized treatment
of instrumental uncertainties in not just spectra but also imag-
ing, or any kind of higher-dimensional analyses—and not just
X-rays, but across wavelengths and even to particle detectors.
Our scheme treats the possible variations in calibration as an
informative prior distribution while estimating the posterior-
probability distributions of the source model parameters. Thus,
the effects of calibration uncertainty are automatically included
in the result of a single fit. This is different from a usual sen-
sitivity study in that we provide an actual uncertainty estimate.
Our analysis shows that systematic error contribution in high-
count spectra is more significant than when there are few counts;
therefore, including calibration uncertainty in a spectral fitting
strategy is highly recommended for high-quality data.

We adopt the calibration uncertainty variations, in particular
the effective area variations for the Chandra/ACIS-S detector,
described by Drake et al. (2006), as an exemplar case. Using the
effective area sample .4 simulated by them, we
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1. show that variations in effective areas lead to large varia-
tions in fitted parameter values;

2. demonstrate that systematic errors are relatively more
important for high counts, when statistical errors are small;

3. describe how the calibration sample can be effectively com-
pressed and summarized by a small number of components
from a PCA;

4. outline two separate algorithms with which to incorporate
systematic uncertainties within spectral analysis:

(a) an approximate, but quick method based on the multi-
ple imputation combining rule that carries out spectral
fits for different instances of the effective area and
merges the mean of the variances with the variance of
the means; and

(b) a pragmatic Bayesian method that incorporates sam-
pling of the effective areas as from a prior distribution
within an MCMC iteration scheme.

5. detail two methods of sampling A™P: directly from the
calibration sample A, and via a PCA decomposition;

6. show that ~ 20 representative samples of A™P are needed
to obtain relatively reliable estimates of uncertainty;

7. apply the method to a real data set of a sample of quasars
and show that known systematic uncertainties require that,
e.g., the power-law index I" cannot be determined with an
accuracy better than oy (I') & 0.04; and

8. discuss future directions of our work, both in relaxing the
constraint of not allowing the calibration sample A to be
affected by the data, and in generalizing the technique to
other sources of calibration uncertainty.
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