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Hierarchical linear and generalized linear models can be fit using Gibbs samplers
and Metropolis algorithms; these models, however, often have many parameters, and
convergence of the seemingly most natural Gibbs and Metropolis algorithms can some-
times be slow. We examine solutions that involve reparameterization and over-
parameterization. We begin with parameter expansion using working parameters, a
strategy developed for the EM algorithm. This strategy can lead to algorithms that are
much less susceptible to becoming stuck near zero values of the variance parameters
than are more standard algorithms. Second, we consider a simple rotation of the re-
gression coefficients based on an estimate of their posterior covariance matrix. This
leads to a Gibbs algorithm based on updating the transformed parameters one at a time
or a Metropolis algorithm with vector jumps; either of these algorithms can perform
much better (in terms of total CPU time) than the two standard algorithms: one-at-a-
time updating of untransformed parameters or vector updating using a linear regres-
sion at each step. We present an innovative evaluation of the algorithms in terms of
how quickly they can get away from remote areas of parameter space, along with some
more standard evaluation of computation and convergence speeds. We illustrate our
methods with examples from our applied work. Our ultimate goal is to develop a fast
and reliable method for fitting a hierarchical linear model as easily as one can now fit a
nonhierarchical model, and to increase understanding of Gibbs samplers for hierarchi-
cal models in general.
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1. INTRODUCTION

1.1 BACKGROUND

Hierarchical linear models (also called multilevel models, random effects regressions,
and mixed effects models) are important tools in many areas of statistics (for reviews see,
e.g., Robinson 1991; Longford 1993; Goldstein 1995). In recent years, there has been in-
creasing interest in the Bayesian formulation (Lindley and Smith 1972), which accounts
for the uncertainty in the variance parameters, a feature that is particularly important when
the hierarchical variances are hard to estimate or to distinguish from zero (see Carlin and
Louis 2000 and Gelman et al. 1995 for discussions and examples). Modern Bayesian in-
ference generally entails simulating draws of the parameters from their posterior distribu-
tion. For hierarchical linear models, this can be done fairly easily using the Gibbs sampler
(see Gelfand and Smith 1990). For hierarchical generalized linear models, essentially the
same algorithm can be used by linearizing the likelihood and then applying a Metropolis-
Hastings accept/reject rule at each step (see Gelman et al. 1995; Gilks, Richardson, and
Spiegelhalter 1996).

Unfortunately, the standard algorithms for computing posterior simulations from hi-
erarchical models can have convergence problems, especially when hierarchical variance
components are near zero. Gibbs samplers (and also EM, Metropolis, and other algorithms)
can get stuck because of dependence in the posterior distribution between batches of co-
efficients and their variance parameters. In this article, we consider computational meth-
ods that aim to improve convergence by embedding the target posterior distribution into a
larger model. Auxiliary variables (Besag and Green 1993) and data augmentation (Tanner
and Wong 1987) are two common methods that work in this way. Auxiliary variables are
added to a model in such a way that conditioning on these variables allows a number of
model parameters that would otherwise be updated one at a time to be blocked into one
joint draw in a Gibbs sampler. Data augmentation, on the other hand, introduces additional
variables (called augmented data or latent variables) to simplify the conditional draws of
the Gibbs sampler. For example, the complete conditional distributions may become stan-
dard distributions in the larger model that includes the augmented data. Together these
methods can simplify and reduce dependence in the conditional specifications in a joint
posterior distribution.

In this article, we focus on a third strategy that builds on data augmentation. Param-
eter expansion introduces a specific sort of variable known as a working parameter. Such
parameters are identifiable given the observed data and augmented data, but are not identi-
fiable given the observed data alone. This partial identifiability allows additional flexibility
in constructing samplers. With care, it can be shown that this flexibility can be used to im-
prove the convergence properties of the samplers. In this way, we are able to add structure
that can be leveraged for improved computation without altering the fitted observed data
model. The method was introduced by Meng and van Dyk (1997) and Liu, Rubin, and Wu
(1998) for the EM algorithm and extended to the data augmentation algorithm by Meng
and van Dyk (1999) and Liu and Wu (1999). Meng and van Dyk (1999) introduced the
terms conditional and marginal augmentation to indicate whether the working parameter
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is conditioned on or averaged over in the iteration; conditional augmentation essentially
indexes a family of transformations by the working parameters. Here we compare and
extend the new algorithms to hierarchical linear and generalized linear models (see also
van Dyk 2000; van Dyk and Meng 2001; Imai and van Dyk 2004). We evaluate our var-
ious proposed algorithms from the standpoint of computation time per iteration, number
of iterations required for approximate convergence, and the autocorrelation in the resulting
chains.

This article proceeds as follows. The rest of Section 1 contains background material
including discussion of the basic hierarchical linear models, standard Gibbs/Metropolis
algorithms based on scalar or vector updating using linear regression computations, struc-
tured Markov chain Monte Carlo, and conditional and marginal augmentation. Section 2
presents two improvements in computation: the parameter-expanded hierarchical model
and the scalar updating algorithm with rotation, an example of conditional augmentation.
Section 3 presents theoretical arguments on the computation time per iteration and conver-
gence times for several proposed Gibbs sampler implementations, including an innovative
argument based on how quickly a Markov chain can free itself from getting stuck in re-
mote areas of the parameter space. Section 4 presents two examples, Section 5 discusses
extensions to generalized linear model, and Section 6 concludes with recommendations
and ideas for further research.

1.2 NOTATION FOR HIERARCHICAL LINEAR MODELS
1.2.1 Hierarchical Linear Model

In setting up any mathematical notation, there is a tension between conciseness and
generality. To keep the focus in this article on the basic computational ideas, we work with
a relatively simple form of the Gaussian hierarchical linear regression model with a vector
of data y and a vector of coefficients f that are arranged in batches:

yIp ~ NAXB, Z)) (1.1)
B~ N(Bo, Zp). (1.2)

Hierarchical linear models with more than two levels can be expressed in this canonical
form by extending the vector f to include the higher-level linear parameters in the hierar-
chy and augmenting y and X appropriately (see Gelman et al. 1995; Hodges 1998; Sargent,
Hodges, and Carlin 2000). For simplicity, we assume the mean vector Sy is known.

The vector  can include modeled and unmodeled parameters (sometimes called “fixed
and random effects,” terminology we avoid for reasons described by Gelman (2005, sec.
6)). Elements of f that are unmodeled (e.g., in a multilevel model, individual-level coeffi-
cients that do not vary by group) can be combined into a batch whose group-level variance
is infinite. The notation could equivalently be developed with modeled and unmodeled
parameters treated separately (as in Laird and Ware 1982).

A key aspect of the model is the parameterization of the variance matrices, X, and Zg.
We shall assume that each X, is diagonal with a vector of unknown elements o> = (crzzk :
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k=1,..., K;), where we are using z as a floating subscript to stand for y or f:
z, = Diag(Wyaf)
Xy = Diag(Wpop), (1.3)

and W, and Wy are indicator matrices of 0’s and 1’s, with exactly one 1 in each row. ¥,
and Wy are not, in general, square: they indicate the batching of the data and parameters.
Each component of o), and oy is the standard deviation assigned to a subset, or batch, of the
components of y or . The data are partitioned into K, batches, the regression coefficients
are partitioned into Kz batches, and the columns of W, and Wy correspond to vectors of
indicator variables for each of the batches. (Depending on the details of the model, the
actual computation may be done by selecting appropriate batches of coefficients rather
than literally by matrix multiplication. The matrix notation, however, has the advantage
of automatically including nonnested groupings which could not simply be handled by
grouping the elements of f into ordered batches.)

1.2.2 Prior Distributions on the Variance Parameters

We assign inverse- y 2 prior distributions to the variance parameters:

ayzk ~ Inv-)(z(vyk,agyk), for k=1,...,K,
op ~ Inv-x*(opogg), for k=1,...,Kp. (1.4)

The prior degrees of freedom v and scale parameters oo can either be preset or assigned a
noninformative prior distribution. There are several important special cases of this choice

of prior distribution. First, the standard noninformative prior distribution, p(oy,0g) o<
Hfilay_l, corresponds to (vyx =0, 00y =0) fork = 1,..., K, and (vgr =—1, oopr =
0) for k = 1,..., Kp. Second, variance components with known values correspond to
v = oo and are, of course, not altered in any of the Gibbs sampler algorithms. Third,
components of # with noninformative flat prior distributions are associated with variance
components o gy that are fixed at co. Fourth, components of # with fixed or known values
are associated with variance components og; = 0. See Gelman (2006) for further discus-

sion of prior distributions for hierarchical models.

1.2.3 Extensions of the Models

The model can be extended in various ways, including nondiagonal variances (Gel-
man et al. 1995), multivariate clustering of regression parameters (Barnard, McCulloch,
and Meng 1996; Daniels and Kass 1999), informative prior distributions on the regression
coefficients, unequal variances (Boscardin and Gelman 1996), robust models, and many
other variants in the statistics and econometrics literature, perhaps most notably models
for variable selection and model averaging (Raftery 1996). Most of these extensions can
be fit into our framework by adding additional parameters and thus additional steps in the
Gibbs or Metropolis algorithms. Rather than trying to present an ideal algorithm to handle
all contingencies, our goal is to understand what works with an important and nontrivial
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basic family of models. In Section 5 we discuss extensions of our methods and algorithms
to a class of generalized liner models.

1.3 BASIC GIBBS SAMPLERS FOR THE HIERARCHICAL NORMAL MODEL

There are two simple Gibbs sampler algorithms for the hierarchical linear model. In
both algorithms, the variance parameters ¢ = (0, gg) are drawn from their joint distri-
bution given f and y. The algorithms differ in their sampling of £: in one version the
components of f are drawn one at a time, and in the other version the vector f is drawn all
at once. As Sargent, Hodges, and Carlin (2000) showed, aspects of these two algorithms
can be combined for greater efficiency; we discuss this further in Section 2. When we speak
of an iteration of either algorithm, we refer to a single update of all of the free parameters
in the model.

The all-at-once algorithm draws the vector £ from p(floy, o, y) by running the re-
gression of y, on X, with variance matrix X,, where

N (X > 0
y*—(ﬂo), X*—(I), and 2*—( Oy Zﬁ) (1.5)

combine the data and prior information (Gelman et al. 1995; see also Dempster, Rubin,
and Tsutakawa 1991 and Hodges 1998). Given X, the regression computation yields an
estimate of the regression coefficient and an estimate of its variance matrix, which we
label ﬁ and Vg, with the understanding that both are functions of the data and the variance
parameters. To simulate £ in the Gibbs sampler we need not compute Vy explicitly; rather,
we can compute the QR decomposition X, 2y, = QR and then draw

all-at-once Gibbs update: S =+ R™ 'z, (1.6)

where z is a vector of independent standard normal random variables. (We sometimes write
[;’(a) and R (o) to emphasize the dependence of [;’ and R on the variance components.)

The one-at-time algorithm samples f componentwise, conditional on all the other pa-
rameters:

one-at-a-time Gibbs update: for each j, sample f; ~ p(8;16-,, Z,, Zp,v), (1.7)

where f_; is all of 8 except f;. The conditional distribution in expression (1.7) is a simple
univariate normal distribution.

The one-at-a-time computations are slightly more difficult to set up in the general case
than the vector Gibbs sampler, but they have the advantage of never requiring large matrix
operations. If the updating step (1.7) is set up carefully, with the appropriate intermediate
results held in storage, this algorithm can be very efficient in terms of computation time
per iteration (Boscardin 1996). There is also the potential for further speeding the scalar
computations by taking advantage of zeroes in the X matrix.

For either algorithm, updating the variance components is simple; their conditional
posterior distributions, given /3, are independent,

l)sz'OZZk + SSzk)

2 2
o |p ~ Inv- Vak + Nk,
Zle d (Z : Vzk T+ Nz
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where 7. is the number of components of z that correspond to the variance parameter o
(i.e., the sum of the elements of the kth column of .), and SS;; is the k&th component of
the appropriate vector of residual sum of squares:

SS, = W,Diag((y — XA, (y — XB)").
or

SSp = WyDiag((B — o) X5 (B = Bo)"), (1.8)

with the variance matrices X, and Xz defined in (1.3).

1.4 STRUCTURED MARKOV CHAIN MONTE CARLO

If the components of f are highly correlated in their posterior distribution, then the one-
at-a-time Gibbs sampler can move slowly. The vector Gibbs sampler avoids this problem
by sampling all the components of £ at once, but this algorithm can be slow in computation
time because it requires a full linear regression computation at each step. (We formalize
this run-time computation in Section 3.1.)

This tradeoff is well known and was discussed at length by Sargent, Hodges, and Carlin
(2006), who advocated the all-at-once Gibbs sampler to avoid a slowly converging chain.
To reduce the per-iteration computational costs, they suggest replacing X, by an approx-
imate value when updating . The approximation may be updated periodically during the
preconvergence burn-in period, but at some point it is fixed and no longer updated to pre-
serve the Markov property of the chain. The approximation to X, is used in the jumping
rule of a Metropolis—Hastings sampler, thus preserving the target posterior distribution as
the stationary distribution of the sampler.

Optimally, we would combine the computational speed of the one-at-a-time algorithm
with the fast convergence of the all-at-once algorithm. We pursue two strategies that aim to
accomplish this without a Metropolis—Hastings correction, at least in the hierarchical linear
model. Our strategies are based on the methods of conditional and marginal augmentation,
and we conclude this section with a general introduction and example of these methods.

1.5 CONDITIONAL AND MARGINAL AUGMENTATION

Conditional and marginal augmentation (Meng and van Dyk 1999) are a set of tech-
niques that alter the joint distribution of the observed data and the augmented data in order
to improve computation. This is done while preserving the marginal distribution of the ob-
served data and thus the target posterior distribution. In the hierarchical linear model, f is
treated as augmented data, and we consider alternative forms of p(y, f|o) that preserve
p(v|o). We alter the joint distribution in a very particular way, and it can be shown that the
resulting joint posterior distribution has the target posterior distribution of the parameter
as its marginal distribution but has less posterior correlation between the parameter and
the augmented data (Meng and van Dyk 1999; van Dyk and Meng 2001). We can take
advantage of this reduced correlation to construct a Markov chain with reduced autocor-
relation, but with the target posterior distribution of the model parameters as its stationary
distribution.
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In order to alter the joint distribution of y and S, we introduce a one-to-one trans-
formation & = D, (p) that is parameterized in terms of the so-called working parameter
a. A working parameter indexes a class of joint distributions of the observed and aug-
mented data given the model parameters in such a way that the marginal distribution of
the observed data does not depend on the working parameter. In particular, the working
parameter indexes a class of equivalent models, in the sense that

/p(y,é‘la, a)dé = p(ylo) forall a e A;

that is, p(y|o, a) does not depend on a. The working parameter does not affect inference
based on p(y|o). We use the notation ¢ to emphasize that we are using a different joint
distribution of the observed and augmented data, with the understanding that this does
not affect the marginal distribution of the observed data. In the context of the hierarchical
linear model we transform from £ to ¢ via premultiplication by a matrix depending on «
that rescales and potentially decorrelates the components of £.

Conditional and marginal augmentation differ in their treatment of working parame-
ters. Conditional augmentation constructs a Gibbs sampler based on the conditional distri-
butions of

p, oly,a) x p(ylE,o,a)plo,a)p(o),

where, as usual, we assume the working and model parameters are a priori independent.
The working parameter is chosen to optimize or at least to improve convergence properties.
It is this step that effectively reduces the posterior correlation between the parameters and
the augmented data. In contrast, marginal augmentation averages over the working prior
density, p(a), and uses a Gibbs sampler based on the conditional distributions of

/ (& 0. aly)da o p(o) / POIE, 0, @) p(Elo, o) p(a)da.

By eliminating the conditioning on a that is implicit in a standard Gibbs sampler, we in-
crease the conditional posterior variance of the augmented data. This in turn allows bigger
jumps and reduces the autocorrelation of the Markov chain. We illustrate how to set up
and use conditional and marginal augmentation samplers in our hierarchical models in
Section 2, illustrating with a simple example in Section 1.6.

When using marginal augmentation, the choice of the working prior density, p(a),
affects the convergence behavior of the algorithm; generally more diffuse densities im-
prove mixing. Unfortunately, improper working prior densities lead to nonpositive recur-
rent Markov chains since p(a|y) = p(a) and hence p(¢, o, aly) is improper. With ju-
dicious choice of the improper working prior density, however, we can ensure that the
subchain corresponding to the model parameters is recurrent with stationary distribution
p(oly); see Meng and van Dyk (1999) and Liu and Wu (1999). The basic strategy is to
construct a sequence of Markov transition kernels on ¢ or (5, o) each with the target poste-
rior distribution as their stationary distribution. The sequence is further constructed so that
its limiting transition kernel is the proper Markovian kernel constructed with the improper
working prior density. This strategy is illustrated in the Appendix.
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1.6 EXAMPLE: A SIMPLE HIERARCHICAL MODEL

We illustrate the basic idea in a simple example to which we shall return in Section 4.1:
a hierarchical linear model of the form,

indep. . iid.
vilu B~ N(u+ B;,07), with g; = N(0,07), (1.9)

with ¢; known for each j. A Gibbs sampler for this model can get stuck near o5 = 0:
once this group-level variance is set near zero in the chain, the f;’s are likely to be drawn
near zero in their step of the Gibbs updating, at which point o is likely to be sampled near
zero, and so forth. We formalize this argument in Section 3.3.2; what is relevant here is
that this pattern of poor convergence can be a particular problem when the true group-level
variance is near zero, which is common in multilevel models after group-level predictors
have been included.
The key parameter expansion step is to include a redundant multiplicative parameter:

indep. . . iid.
yilu, &~ N+ agj, 0f), with & ~ N0, o), (1.10)

where the regression parameters of interest are now f; = a(;, with group-level standard
deviation g = |a|og. As has been shown by van Dyk and Meng (2001) and Liu (2003),
and also by Liu, Rubin, and Wu (1998) in the context of the EM algorithm, computation
of model (1.10) is straightforward.

The likelihood function, p(y;|u, o), obtained by integrating out the &;’s, is the same
as that obtained by integrating out the f;’s under (1.9). Since we do not alter the prior
distribution on (u, o), we can fit either model to obtain a Monte Carlo sample from the
same posterior distribution p(u, os|y). The added parameter a is not necessarily of any
statistical interest, but expanding the model in this way can allow faster convergence of the
Gibbs sampler.

2. ALGORITHMS USING MARGINAL AND CONDITIONAL
AUGMENTATION

2.1 MOTIVATION AND NOTATION FOR THE EXPANDED MODEL

As we discuss in detail in Section 3.3.2, any of the Gibbs samplers discussed in Sec-
tion 1 can be slow to converge when the estimated hierarchical variance parameters are
near zero. The problem is that, if the current draw of opy is near 0, then in the updating
step of S, the deviation of the parameters f in batch £ from their prior means in Sy will
themselves be estimated to be very close to 0 (because their prior distribution has scale
opk). Then, in turn, the variance parameter will be estimated to be close to 0 because it
is updated based on the relevant f;’s (see (1.8)). Ultimately, the stochastic nature of the
Gibbs sampler allows it to escape this trap but this may require many iterations.

Van Dyk and Meng (2001) showed how the method of marginal augmentation can
substantially improve convergence in this setting; see also Meng and van Dyk (1999), Liu,
Rubin, and Wu (1998), van Dyk (2000), and Liu (2003). In order to introduce the working
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parameter into the standard model given in (1.2), we follow the parameterization of Liu,
Rubin, and Wu (1998), which in our notation is

A = [Diag(Wpa)] ™", @.1)

where Wy is the matrix of 0’s and 1’s from (1.3) that indicates the batch correspond-
ing to each f;, and a is a (Kp x 1) vector of working parameters. Setting { = Af =
[Diag(Wﬂa)]_l B yields the reformulated model,

yIEa ~ NXAT'E 3 (2.2)
Ela ~ N(, Z¢) (2.3)
a ~ N(ag, Zq), (2.4)

where ¢y = Afp and Xz = AXgA. This prior variance matrix is diagonal since both
4 and Xp are diagonal: X = Diag(Wg(op /a)?), where the division and squaring are
componentwise. In the limit as X, — oo, the parameter a becomes nonidentified, but the
marginal distribution (5, o) is still defined. As we discuss in Section 1.5, care must be
taken when constructing samplers under this limiting working prior distribution.

The transformation £ = A4f introduces one parameter a; for each of the hierarchical
variance parameters o é - We expect samplers constructed using the appropriate conditional
distributions of (2.2)—(2.4) to perform better than the corresponding sampler constructed
with (1.1)—(1.2). Indeed, we shall see that, with this working parameter, the Gibbs sampler
is less prone to move slowly in regions of the parameter space with oy near zero.

Adding the new parameter a potentially generalizes the hierarchical model in an in-
teresting direction—allowing interactions among the parameters (which is different than
interactions among the regression predictions); see Gelman (2004). Our primary purpose
in this article, however, is to use the expanded model to improve computational efficiency.

2.2 EQUIVALENCE BETWEEN THE PARAMETER-EXPANDED MODEL
AND THE USUAL MODEL

The expanded model can be viewed as a generalization of the usual hierarchical regres-
sion model on S, expanding the class of prior distributions on the variance parameter og
(as described by Gelman (2006) for the one-variance-parameter case). When the prior dis-
tribution on the additional parameter o is proper, one can construct a Gibbs sampler on the
expanded space and marginalize by simply focusing on the inferences for the 8, 03. When
o is assigned an improper prior distribution, it will also have an improper posterior distri-
bution, and we have to be more careful in defining a Gibbs sampler with the appropriate
marginal distribution on the identified parameter.

The sampling distribution p(y|o) implied by (2.2)—(2.4) is the same as that implied
by (1.1)—(1.2) for any fixed value of o or if we average over any proper working prior
distribution on «. In this sense the models are equivalent and a meets the definition of a
working parameter. When drawing inferences under model (2.2)—(2.4), however, we must
account for the parameters’ transformation:
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Model (1.1)-(1.2) | Model (2.2)-(2.4)

the vector S the vector (Wga) * &
a single f; ar(He;

the vector op the vector |a| * o
a single Opk loklock,

where * represents componentwise multiplication.

Thus, if we would like to work with model (1.1)—(1.2), but we use model (2.2)—(2.4)
for computational efficiency, then the quantities on the right side of the above table should
be reported. For each batch k of regression coefficients, the coefficients ¢; and the variance
parameters o sampled under model (2.2)~(2.4) must be multiplied by the corresponding
sampled scale parameter ay so that they can be given their proper interpretations as §;’s
and o gy, in the original model (1.1)—(1.2).

In fact, with these prior distributions the parameters a4 and o cannot be separately
identified and only affect the final inferences under the model through their product. If
proper prior distributions are assigned, then a and o¢ can be interpreted separately as part
of a multiplicative-parameter model (see Gelman 2004, sec. 5.2).

2.3 GIBBS SAMPLER COMPUTATION FOR THE EXTENDED MODEL

Under a proper working prior distribution, there are many possible implementations
of the Gibbs sampler under the expanded model. For example, we can iteratively sample
(a0, 0y, 0¢) and & from their respective complete conditional distributions. Given &, we can
express (2.2) as

y ~ N (XDiag(&)Wpa, X,). 2.5)
This is a normal linear regression of y on the columns of the known design matrix,
XDiag($) Wy with regression coefficient . In our model as presented with a diagonal
data variance matrix (and more generally, with sufficient structure on X,) we can sample
oy from p(o,|&, y). (Likewise, we can independently sample o¢ using (2.4).) Given X,,
a conditional posterior simulation of a can be obtained by running a standard regression
program (augmenting the data vector, design matrix, and the variance matrix to include the
Gaussian prior distribution) to obtain an estimate & and covariance matrix, then drawing
from the multivariate normal distribution centered at that estimate and with that covariance
matrix (see, e.g., Gelman et al. 1995). The multiplicative parameter a is typically a rela-
tively short vector, and so we are not bothered by simply updating it in vector fashion using
linear regression computations.

Similarly, to update &, we express (2.2) as

y ~ N(XDiag(Wga), X)) (2.6)

and work with a regression in which XDiag(Wsa) is the design matrix.

2.4 CONDITIONAL AUGMENTATION IN ONE-AT-A-TIME ALGORITHMS

Rather than sampling a (or equivalently, A) in the iteration, the method of conditional
augmentation aims to fix the working parameter at some optimal or nearly optimal value in
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terms of the convergence properties of the resulting sampler. For conditional augmentation,
rather than sampling 4 = [Diag( Wﬁa)] _1, we simply allow it to be any fixed matrix. Thus,
o amounts to an index on a class of transformations, and we can simply consider ¢ to be a
transformation of f5.

Suppose we do not sample A4 in the iteration, but draw the variance components jointly
given ¢ and y and draw the components of ¢ one at a time given the variance components
and y. If we take A4 to be an identity matrix, we recover the one-at-a-time Gibbs sampler,
so this formulation constitutes a generalization of that in Section 1.3. Since we choose 4
to improve computational performance, one possibility is to set 4 = [R(c¥)]~!, where
o ® represents the current draw of the variance parameters and R comes from the QR
decomposition of X, 2y « (see (1.6)) at each iteration, which orthogonalizes the elements
of & and results in an algorithm that is equivalent to the all-at-once updating. Unfortunately,
this strategy does not save time because it requires the computation of /# and R—that is,
the full regression computation—at each iteration.

A less computationally burdensome method fixes A4 at some nearly optimal value that
is constant across iterations and thus does not need to be recomputed. A natural approach is
to set 4 = [R(69)]~"!, where 69 is some estimate of the variance parameters, perhaps esti-
mated by running a few steps of an EM-type algorithm (e.g., van Dyk 2000) or by using an
initial run of the Gibbs sampler. Given 6, we can run the regression just once, to compute
A, and then run the Gibbs sampler conditional on A4, that is, using &. As long as R(c) is
reasonably stable, using a reasonable estimate of o should keep the components of ¢ close
to independent in their conditional posterior distribution. (We expect this to typically be a
useful strategy since the design matrix X and the fixed structure of the covariance matrices
¥, do not change as the simulation progresses, and this induces stability in R.)

As with structured MCMC, we aim to develop a sampler with the low autocorrelation
of the all-at-once Gibbs sampler but with the quick per-iteration computation time of the
one-at-a-time Gibbs sampler. Also as with structured MCMC, our strategy involves an
approximation to the conditional posterior variance matrix of the regression coefficients.
An advantage of our proposal, however, is that it does not require a Metropolis—Hastings
correction to adjust for the approximation. The relative computational performance of the
two strategies, nonetheless, depends on the quality of the approximations.

A natural modification is to set A4 to the posterior mean of R, which can be com-
puted, for example, by updating occasionally (e.g., every 200 steps) online; for example,
set A = R(6¢)~! and then, for # = 200, 400, ...,

1
40 = [ 4 200[R( )],
£+ 200 +200[R (@]
This updating would take place only during the burn-in period (typically half the total
length of the chain; see Gelman and Rubin 1992) so as not to interfere with the Markov
property of the ultimate chain.
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2.5 SETTING UP THE COMPUTATION

We perform all computations in terms of the regression model (2.2)—~(2.4), without
assuming any special structure in the design matrix X. The algorithms must begin with es-
timates of the variance parameters ¢ and also, for the one-at-a-time algorithms, an estimate
of . In order to reliably monitor the convergence of the Gibbs sampler, it is desirable to
start the Gibbs sampler runs at a set of initial values that are “overdispersed,” that is, from a
distribution that includes and is more variable than the target distribution. More precisely, it
is desired that the simulation draws from the mixture of all the simulated sequences should
decrease in variability as the simulation proceeds, with the variability within each sequence
increasing, so that approximate convergence can be identified with the empirical mixing of
the simulated sequences (see Gelman and Rubin 1992). When using over-dispersed start-
ing values, it becomes particularly important to consider the behavior of the algorithms
when they are started far from the posterior mode, as we discuss in Section 3.3.

3. THEORETICAL ARGUMENTS

The previous section introduced augmentation algorithms and suggested why they
should be able to speed convergence by reducing dependence among regression coeffi-
cients (by a matrix multiplication that is equivalent to rotating the parameter space) and
reducing dependence between batches of coefficients and their variance parameters (using
multiplicative redundant parameters). After a brief look at computation time, we provide
theoretical arguments to show the potential gains from these ideas in Gibbs sampling. We
work out why parameter expansion works well in a one-way hierarchical model that is a
simple case relative to the generality to which the methods are applicable; we believe these
theoretical arguments provide intuition about why they should work in more complex ex-
amples. Our most detailed treatment is of the convergence of the expanded algorithm in
Section 3.3, because this is where we are providing a novel discussion of the algorithm’s
ability to avoid being stuck near the boundary of the parameter space.

3.1 COMPUTATION TIME PER ITERATION

The QR decomposition of the W matrix and backsolving the two upper-triangular sys-
tems that are required for the vector updating algorithms take O(2nm?) floating-point op-
erations (flops), where n and m are the length of y and &, respectively; see Golub and
van Loan (1983). For the scalar updating algorithm, updating all m components of & and
transforming back to ¢ takes only O(10nm) flops. The computation for updating o require
another O (nm) flops. (We assume that the length of a and the number of variance param-
eters is negligible compared to m and n.) In many of the problems we work with, m is
quite large—typically some fraction of n—and thus the scalar updating algorithms require
O(n?) flops per iteration, compared to O (n3) for the vector algorithms.
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3.2 CONVERGENCE RATE OF VECTOR VS. SCALAR UPDATING OF REGRESSION
PARAMETERS

An interesting tradeoff occurs as the number of predictors becomes large. As the batch
sizes npy increase, the dimensions of the X, matrix in (1.5) also increase, making the
least-squares regression computation slower. However, having more replication increases
the precision of the estimates of the variance parameters, which means that once they have
been reasonably estimated, a one-time transformation as described in Section 2.4 will do a
good job of making the components of ¢ close to independent. Thus, increasing the number
of regression coefficients and the number of parameters per batch (the n gy ’s) can make the
Gibbs sampler computations more stable on the transformed space.

We shall try to understand the efficiency of the vector and scalar algorithms by consid-
ering different amounts of knowledge about the variance parameters ¢ in the model (see
(1.3)). In this discussion we focus on the rotation-to-approximate-independence described
in Section 2.4. Thus & refers to the transformations of f described in Section 2.4.

We can understand the efficiencies of vector and scalar updating by considering three
scenarios involving inference about the variance parameters.

First suppose all the variance parameters are known. Then the vector updating of & con-
verges in a single step, meaning that the Gibbs sampler draws are equivalent to indepen-
dent draws from the posterior distribution of &. In contrast, the speed of the untransformed
scalar updating algorithm is roughly determined by the second eigenvalue of the posterior
variance matrix V. In many hierarchical models, it is possible to keep the correlations
in V¢ low by centering and scaling the parameter ¢ (see Gelfand, Sahu, and Carlin 1995;
Gilks and Roberts 1996), but in general finding a good transformation can require matrix
operations that can be slow in high dimensions. Without such a rotation, the computational
savings from the scalar updating algorithm may be lost if they require many more itera-
tions to converge. If all variance parameters are known, the transformed scalar updating
algorithm will converge in one step, and be just as efficient as the vector algorithm.

Second, consider a setting where the variance parameters are unknown but are accu-
rately determined by the posterior distribution. This should be the case in large datasets
with many observations per group and many groups. In this case, the transformed scalar
updating should be nearly as efficient as the vector algorithm, since the only reason the
orthogonalizing transformation varies is uncertainty in X, and Z¢.

Finally, suppose that the variance parameters are poorly estimated, as could occur if
some of the variance components o¢ had few associated ¢;’s, along with a weak or non-
informative prior distribution. In this case, the transformed scalar updating, with any par-
ticular transformation, might not work very well, and it would make sense to occasionally
update the transformation during the burn-in period based on current values of X, and Z¢
in the simulation, as discussed in Section 2.4.

3.3 EFFECT OF PARAMETER EXPANSION ON CONVERGENCE RATE

Because the parameter expansion operates independently for each hierarchical variance
component k, we consider its effect on the convergence of these components separately.
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Ideally, the marginal augmentations methods can outperform the standard Gibbs sampler
in three settings:

o opy near the posterior mode (relevant in problems for which o is well estimated in
the posterior distribution);

o opy near 0 (relevant because of possible extreme starting points and also for prob-
lems in which o4 has a nontrivial posterior probability of being near 0); and

® opy near oo (relevant because of possible extreme starting points and also for prob-
lems in which o4 has a non-trivial posterior probability of being large).

For each of these cases, we consider first the speed of the corresponding EM algorithms
and then consider the Gibbs sampler. Because EM algorithms are deterministic, computing
their speed of convergence is easier than for Gibbs samplers. Due to the similarity in the
structure of the two classes of algorithms, however, the convergence properties of EM
algorithms can emulate those of Gibbs samplers (e.g., van Dyk and Meng 2001). The EM
algorithms we shall consider are those that treat the components of ¢ as missing data and
thus converge to the marginal posterior mode of (a, gy, o¢), averaging over .

We work through the details in the context of a simple model with one variance com-
ponent, 6p = aog, in order to illustrate the principles that we conjecture to hold for hi-
erarchical models in general. Consider the following model, with variance expressed in
parameter-expanded form:

Forj=1,....,m: y;l&; ~ N(a&;,1)
& ~ N(©,02)
pla,08) o< 1.

The Gibbs sampler for this model is

1 i 1 1
& « Nf- y"l,—z =], forj=1..,m
ol+4+ = a“ 14—
%% %%
N 2147y 1
o — zm 4:2 ,Zm 52
Jj=1%j Jj=1%j
m
of — D & amy 3.1
j=1

(In this case, the vector and the componentwise algorithms are identical since the &’s are
independent conditional on the hyperparameters.) The EM updating is simply,

2

S

a : yz .
1+i2sy+

B

e ! L 24 (3.2)
o — ) R .
¢ a2 1+ 4 1+L2y
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where

At each step, op is set to |a|og. The EM algorithm converges approximately to 65 =

/sf— Lor0ifs, < 1.

3.3.1 Speed of the Algorithms Near the Posterior Mode

For gy near the posterior mode (assuming that mode is not 0), the speed of the two-
step Gibbs sampler is roughly the same as the corresponding EM algorithm (Liu 1994),
with convergence rate depending on the covariance matrix of the approximate Gaussian
distribution. Liu, Rubin, and Wu (1997) considered the EM algorithm for the hierarchical
normal model and find that parameter expansion is uniformly better than the usual algo-
rithm (which, in the parameter expansion context, corresponds to holding the parameters
oy fixed at 1).

3.3.2 Speed of the Algorithms for o3 Near 0

For o4 near 0, the usual algorithm, in both the EM and Gibbs contexts, is notoriously
slow, but we shall see that the parameter expanded versions move much faster.

We first consider the EM algorithm. Under the usual parameterization, « is fixed at 1,
and only o = o¢ is updated. For o4 near 0, we can express (3.2) as

op 2 2.2
op 1+0ﬁ2 1+0ﬂ+0ﬁsy

1
= aﬁ(l—l-z(s)z;—l)a/?-l-...).

Thus, even the relative change in oy at each step approaches 0 as o3 — 0. If si < 1, this
means that o4 will approach 0 at a slower-than-linear rate; if sJZ/ > 1 and o4 happens to be
started near 0, then it will move away from 0 hopelessly slowly.

In contrast, the parameter-expanded EM algorithm updates both a and o¢, yielding, for
op near 0,

2
Sy

R
/14 (s2+ Doy

= crﬁ(sJZ} +...),

op < O

which is linearly convergent, which should be acceptable in practice as long as o4 is not
started at an extremely small value.

We now consider the Gibbs sampler which, under the conventional parameterization,
adds two sorts of variation to the EM algorithm: (1) ECX7_, sz.) is replaced by the random
variable 27’:1 &2, and (2) division by a X,% random variable in the update of aﬁz. (Under



110 A. GELMAN, D. A. VAN DYK, Z. HUANG, AND W. J. BOSCARDIN

the conventional parameterization, the updating of a in (3.2) does not occur since a is fixed
at 1.) When the current value of o in the Gibbs sampler is near 0, each of these steps adds
a coefficient of variation 1/(v/2m) to the updating step for o é; so combined they give the
random updating of o a coefficient of variation of 1/m. Within the context of the usual
parameterization, with o4 near 0, this variation acts like a random walk, and it implies that
the Gibbs sampler will require on the order of m(log(zrﬁo))2 iterations to “escape” from a
starting 30 near 0. (See Rosenthal (1995) for more formal versions of this argument.)
For the parameter-expanded algorithm, the Gibbs sampler from (3.1) adds another ran-
dom component through the updating of . The updated o3 = |a|o¢ is essentially a least-
squares regression coefficient plus noise (the Gibbs update for a), divided by the square
root of a y 3_1 random variable (the Gibbs update for o¢). This added random component
causes the draw to be less dependent on the previous iteration. The updated o4 can then be

written as
m
i=17;Yj
oy Z} 17777 +z /x’ (3.3)
2
23‘1:1 7V
where the components of y = ¢/a can be written as
1 N 1
yj 1 Zj )
I+ i+ é

and the following random variables are independent:
z~N@O, 1), x*~yi_,, z;~N@O,1), forj=1,...,m. (3.4)

The random variables in (3.3) induce a distribution for o4 on the left of (3.3) that depends

2
y

tion has a standard deviation on the order of 1/./m on the absolute scale. Therefore, it

only on m, s; = % Z'/”: 1 y]z, and the previous value of o. For o4 near 0, this distribu-
is impossible for o4 to get stuck at values less than 1/./m, no matter how small its value
was in the previous iteration. This is a distinct improvement over the Gibbs sampler for the
conventional parameterization.

This jumpy behavior of the parameter-expanded algorithm near o = 0 is reminiscent
of the nonzero lowest energy state in quantum mechanics, which is related to the uncer-
tainty principle—if o4 is precisely localized near 0, then the “momentum” of the system
will be high (in that o4 is likely to jump far away). When m is large, the minimal “energy”
of 1/4/m becomes closer to 0, which corresponds in a physical system to the classical limit
with many particles. In a statistical sense, this behavior is reasonable because the precision
of the marginal posterior distribution for o is determined by the number of coefficients m
in the batch.

3.3.3 Speed of the Algorithms for o3 Near co

If op is started at a very high value, both the usual parameterization and the parameter-
expanded algorithm perform reasonably well. From 64 = oo, the usual EM algorithm
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moves in one step to op = .,/ s% + 1 and the parameter-expanded EM algorithm moves
in one step to op = sﬁ / /s)z, + 1. Of these two, the parameter-expanded version is prefer-

able (since it is closer to the convergence point, |,/ sf — 1), but they are both reasonable.
Similarly, o will not get stuck near co under either Gibbs sampler implementation.

4. EXAMPLES

We consider two examples that have arisen in applied research. For each example and
each algorithm, we compute computation time per iteration, number of iterations required
for convergence (as determined by the condition that the variance ratio R (Gelman and
Rubin 1992) is less than 1.2 for all model parameters), and simulation efficiency (measured
by the autocorrelations).

4.1 EXAMPLES AND ALGORITHMS

Our first example is a hierarchical model for effects of an educational testing exper-
iment in eight schools, described by Rubin (1981) and Gelman et al. (1995). For each
school j = 1,...,8, an experiment was performed to estimate the treatment effect j;
in that school; a regression analysis applied to the data from that school alone yielded an
estimate of the treatment effect and its standard error, which we label y; and o}, respec-
tively. We model the data using the two-level Gaussian model (1.9). The sample size within
each school is large enough to justify the Gaussian assumption in level one of (1.9). We
use a noninformative uniform hyperprior density, p(u, o5) o 1 (see Gelman (2006) for
discussion of alternative prior distributions). Interest lies in the individual school parame-
ters £; and also in the hyperparameters (x4, 6); we label the set of unknown parameters
7y = (B, u, op). This particular example is quite small and should be easy to compute;
in fact, since there is only one hierarchical variance component, it is in fact possible to
draw posterior simulations noniteratively by first computing the marginal posterior density
for o at a grid of points and then simulating the parameters in the order o, u, f (Rubin
1981).

We consider two standard Gibbs samplers that can be constructed to sample the pos-
terior distribution under this model. The first updates the mean parameters jointly, or as a
vector; we refer to this sampler as the V-SAMPLER.

V-SAMPLER:

Step 1: Sample (x“*tD, p+D) jointly from p (,u, B ‘ op = aﬁ(t),y).
Step 2: Sample aélﬂ) from p (o5 | 0 = u*V, p = e+, y).

A second sampler, updates each of the mean components separately from their respective
complete conditional distributions; we call this sampler the S-SAMPLER.
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S-SAMPLER:

Step 1: Sample £t from p (/z ‘ B=p0, op = a[?),y)-

Step 2: Sample ﬁj(.tH) from p (,6’/ ‘ U= ﬂ(t+]),ﬁ—j = IB(_t;.rl), op = ag),y), for

J= e whers BED = (B0, gD 0 g0)

Step 3: Sample O"EH_I) from p (aﬂ ’ = put+h g — ﬁ'(ﬂr]),y).

A possible difficulty for the convergence of both of these Gibbs samplers occurs when the
maximum likelihood estimate of the hierarchical scalar parameter, oy, is zero. There is
also a substantial portion of the posterior density near o4 = 0, and there is the possibility
that the algorithm may move slowly in this region.

To improve computational efficiency, we consider two marginal Gibbs samplers that
are based on a working parameter a that is introduced via ¢ = f/a. Introducing this
transformation into (1.9), the model becomes (1.10), where o = o/|a|. We can fit either
model (1.9) or (1.10) to obtain a Monte Carlo sample from the same posterior distribution
p(u,0ply). In the Appendix we further show that with the improper prior distribution
specified below on a, all the samplers return a sample from the same target joint posterior
distribution p(8, u, ogly).

To derive the samplers under model (1.10), we begin with the proper working prior dis-
tribution, & ~ Inv-gamma(&, &), which implies p(u, 052, a) x o= exp(—¢1/a)/os. We
then construct two Gibbs samplers on the joint proper posterior distribution
p(u, &, 0¢,aly); the two samplers use updating schemes that correspond to the
V-SAMPLER and the S-SAMPLER, respectively. The chains are constructed so that the
marginal chains {y O ¢t =1,2,...} with y = (u, B, op) are themselves Markovian. We
then take the limit of the transition kernels for the two chains as the working prior dis-
tribution becomes improper. We call these limiting kernels the V+PX-SAMPLER and the
S+PX-SAMPLER, respectively. Here we state these limiting samplers; we prove that their
stationary distributions are both the target posterior distribution, p(y |y) in the Appendix.

V+PX-SAMPLER:

Step 1: Sample (x**V, *) jointly from p (,u, b ) op = 0}[), y); this is the same distri-
bution as is sampled in Step 1 of the V-SAMPLER.

Step 2: Sample a/? from p (U/g ‘ w=pu "t g = p* y); this is the same distribution as
is sampled in Step 2 of the V-SAMPLER.

Step 3: Sample o from p (a ‘ u=ptth &= p* oz = ag,y); that is, sample

S B ety (L
a~N , BH/or ] |- 4.1
S 1B o) Z m
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Step 4: Compute ¢+ = af* and aﬁ(H'l) = lalo.
We use a star in the superscript to represent intermediate quantities that are not part of the
transition kernel.

The S+PX-SAMPLER begins with Step 1 and Step 2 of the S-SAMPLER, but records
what is recorded as A¢*+1 and J,EH]) in the S-SAMPLER as f* and O'E, respectively. The
iteration is completed with Step 3 and Step 4 of the V+PX-SAMPLER.

In the second example, we consider the forecast skill of three global circulation mod-
els (GCM) based on Africa precipitation data in the fall (October, November, December)
season. The models divide the globe into a grid, on which Africa covers 527 boxes, and
we have 41 observed precipitation values (between 1950 and 1990) for each box in a given
season. Here we consider three GCM models, each of which gives us 10 predicted precip-
itation values for each box in a given season (Mason et al. 1999; Rajagopalan et al. 2000).
In this example, we let y;; and x;"t’k represent observed and the kth predicted precipitation
anomaly for the mth GCM ensemble (out of M = 3 models) in box j at time ¢. We use as
predictors the average values,

10
= % x;."t’k.
k=1
We set up the following multilevel model using y; as the response and )E}”t as predictors in
a Bayesian framework:

M
vie=Pi+o+ D BrEnteq, forj=1,...,527andt=1,...,41. (42

m=1
The parameters in the model are defined as follows:

e J; is an offset for time #; we assign it a normal population distribution with mean 0
and standard deviation oy.

e f; is an offset for location j; we assign it a normal population distribution with mean
up and standard deviation og.

) /)’;” is the coefficient of ensemble forecast m in location j; we assign it a normal
population distribution with mean x4, and standard deviation o, .

e ¢;;’s are independent error terms assumed normally distributed with mean 0 and
standard deviation 0.

In this example, our parameter expansion model is

M
vie=opP+ash + D ap X + e, forj=1,...,527andt =1,...,41,(4.3)
m=1
using the notation £, and so on, for unscaled parameters (so that = og B ; for each j;
8, = asd, for each ¢; and so forth). We assign uniform prior distributions on the (uniden-
tifiable) multiplicative parameters o and the mean and scale hyperparameters for the prior
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Figure 1. Computation time of the four algorithms for the eight schools example (plotted on a logarithmic
scale). V: vector updating, S: scalar updating, V+PX: vector updating with parameter expansion, and S+PX:
scalar updating with parameter expansion. The dots display the combination of the computation time per iteration
and the average number of iterations required for approximate convergence of each algorithm. The lines are
indifference curves in total computation time for convergence to the stationary distribution.

distributions on the A’s, 3’s, and so forth. We compute the samplers for the expanded mod-
els and then save the simulations of the parameters as defined in (4.2). For this problem it
was most direct to simply set up the model in the expanded parameter space.

4.2 RESULTS

We present the results of the standard and PX-Gibbs algorithms. For each algorithm,
starting points were obtained by running the EM algorithm (with initial guesses of 1 for all
the variance components) and then drawing from a #4 distribution. When the EM estimate
of a variance component was zero (as in the study of the eight schools), we used 1 as a
starting point.

Figure 1 compares the computation time of the standard and PX-Gibbs algorithms for
the example of the eight schools. Each time we run 10 chains until approximate conver-
gence (R < 1.2 for all parameters). In Figure 1, V represents vector updating without
parameter expansion, S represents scalar updating without parameter expansion, V+PX
represents vector updating with parameter expansion, and S+PX represents scalar updat-
ing with parameter expansion. The dots display the combination of the average compu-
tation time per iteration and the average number of iterations required for convergence
for each algorithm. The lines represent indifference curves for total computation time un-
til convergence to the target distribution. These are straight lines because the graph is on
the logarithm scale. A point on a lower line indicates a more efficient algorithm in total
computation time. Therefore the most efficient algorithm is scalar updating with parame-
ter expansion, which only takes an average of 0.39 seconds in total computation time per
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Figure 2. Simulation efficiency (measured by the autocorrelations) of variance component o4 for the eight
schools example. The sum of the absolute autocorrelation functions (ACF) are given and are roughly equal to the
expected sample sizes (ESS).

Gibbs sampler chain; the second is the vector updating with parameter expansion, which
takes 0.69 seconds; the third is scalar updating, which takes 4.2 seconds; and the slowest is
vector updating, which takes 8.7 seconds. In this example, parameter expansion is 22 times
faster than the traditional algorithms.

The Gibbs samplers on the original scale (points V and S in Figure 1) are slow to
converge because the group-level variance parameter, og, is estimated to be close to zero
in this example. In fact, the marginal posterior mode of o is zero; thus the Gibbs sampler
spends a lot of time down there and can easily get stuck in the models without parameter
expansion.

Figure 2 shows the simulation efficiency (measured by the autocorrelations and the sum
of their absolute values) for the variance component 4. The vector and scalar updating
with parameter expansion are much more efficient than the other two algorithms.

Because the design matrix for the second example (climate modeling) is large, it is dif-
ficult to implement vector updating in R or S-Plus. Although sparse matrix methods might
help with vector updating, for the purposes of illustration we consider only the scalar up-
dating algorithm. The computation speed per iteration for scalar updating in our simulation
was similar with or without parameter expansion. However, the scalar updating with pa-
rameter expansion needed only 400 iterations to reach convergence, compared to 10,000
for the scalar updating without parameter expansion. Figure 3 compares the computation
time of the two algorithms for the second example (climate modeling). The most efficient
algorithm is scalar updating with parameter expansion, which takes an average of 500 sec-
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Figure 3. Computation time (on a logarithmic scale) of the two algorithms for the climate modeling example.
S: scalar updating and S+PX: scalar updating with parameter expansion. The dots display the combination of
the computation time per iteration and the iterations required for convergence for each algorithm. The lines are
indifference curves in total computation time.

onds per chain in total computation time compared to 13,000 seconds per chain for scalar
updating.

5. GENERALIZED LINEAR MODELS

In this section we discuss how the methods developed in Sections 2 and 3 for hierarchi-
cal linear models can be extended to hierarchical generalized linear models, so that (1.1) is
replaced by

YIp ~ glm(Xp) or y|f ~ glm(Xp, X,); (5.1

the simpler form is used for models such as the binomial and Poisson with no free variance
parameters. We use the general “glm” notation to include the necessary probability models
and link functions (McCullagh and Nelder 1989).

5.1 A METROPOLIS ADAPTATION TO THE SIMPLE GIBBS SAMPLERS

For a hierarchical generalized linear model, the simple all-at-once and one-at-a-time
Gibbs samplers described in Section 1.3 must be modified since the likelihood is not conju-
gate with the Gaussian prior distribution. The most straightforward adaptation is to perform
an approximate Gibbs sampler, drawing from the conditional posterior distribution corre-
sponding to the approximate normal likelihood and then accepting or rejecting at each step
based on the Metropolis—Hastings rule. For the one-at-time algorithm, one approach for
the one-dimensional jumps is the adaptive Metropolis algorithm of Gilks, Best, and Tan
(1995). For the all-at-once algorithm, a natural approach to updating S is, by analogy to
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maximum likelihood computations, to run the regression based on a linearization of the
likelihood at the current values of the variance components. This involves computing the
conditional (on the variance components) posterior mode and second derivative matrix and
using a multivariate Gaussian or ¢ distribution to generate proposals.

5.2 PARAMETER EXPANSION FOR GENERALIZED LINEAR MODELS

We can use marginal augmentation for the generalized linear model if we simply re-
place (2.2) by

yI, a ~ gm(X((Wea) &) or |, a ~ glm(X ((Wea) * £), X)),

with the equivalences to the original model as described in Section 2.2. As in Section 2.3
we use a proper working prior distribution and again the Gibbs sampler for the new model
must include a step to update «. Since the model is nonconjugate, this can be performed
by Metropolis jumping, or via a linearization of the model y ~ glm(X((Wza) % &), Z),)—
considered as a likelihood for a—followed by a draw from the corresponding approximate
Gaussian conditional prior distribution for & and a Metropolis—Hastings accept/reject step.
Computation for ¢ can similarly be performed using a Metropolis jump or a Metropolis-
approximate-Gibbs. In either case, we want an approximate transformation to indepen-
dence (as in Section 2.4), whether for scaling the Metropolis proposal distribution or ap-
proximating the Gibbs sampler. Finally, the variance parameters can be updated using the
Gibbs sampler as with the normal model, since they are linked to the other model parame-
ters through the prior distribution, not the likelihood.

5.3 ADAPTATION OF THE ONE-AT-A-TIME ALGORITHMS

If the components of S are highly correlated in their posterior distribution, then the
Metropolis—Hastings sampler corresponding to the one-at-a-time Gibbs sampler can move
slowly. To improve the sampler, we can adapt the rotation method based on an approxi-
mation to the posterior covariance matrix of the regression parameters. In particular, we
can apply Metropolis—Hastings algorithms to the components of & one at a time, either as
corrections to approximate Gibbs sampler jumps for generalized linear models (where the
nonconjugate conditional posterior densities make exact Gibbs impractical), or simply us-
ing spherically symmetric Metropolis jumps on £, starting with a unit normal kernel with
scale 2.4/+/d (where d is the dimension of £) and tuning to get an approximate acceptance
rate of 1/4 (see Gelman, Roberts, and Gilks 1996).

6. DISCUSSION

We see this article as having three main contributions. First, we combine some ideas
from the recent statistical literature to construct a family of improved algorithms for poste-
rior simulations from hierarchical models. We also suspect that the general ideas of approx-
imate rotation for correlated parameters and parameter expansion for variance components
will be useful in more elaborate settings such as multivariate and nonlinear models.
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Second, the computations are set up in terms of an expanded model, following the
work of Liu, Rubin, and Wu (1997) for the EM algorithm, and more recently called “re-
dundant parameterization” in the context of multilevel models (Gelman and Hill 2007).
Once this model has been set up, the next natural step is to see if its additional param-
eters can be given their own statistical meaning, as discussed in Section 2.3. There is a
history in statistics of new models that are inspired by computational developments (Gel-
man 2004). For example, Besag (1974) motivated conditional autoregression by way of the
Hammersley—Clifford theorem for joint probability distributions, and Green (1995) intro-
duced a reversible-jump Markov chain algorithm that has enabled and motivated the use
of mixture posterior distributions of varying dimension. Multiplicative parameter expan-
sion for hierarchical variance components is another useful model generalization that was
originally motivated for computational reasons (see Gelman 2006).

Third, we connect computational efficiency to the speed at which the various iterative
algorithms can move away from corners of parameter space, in particular, near-zero es-
timates of variance components. When the number of linear parameters m in a batch is
high, the corresponding variance component can be accurately estimated from data, which
means that a one-time rotation can bring the linear parameters to approximate indepen-
dence, leading to rapid convergence with one-at-a-time Gibbs or spherical Metropolis al-
gorithms. This is a “blessing of dimensionality” to be balanced against the usual “curse.”
On the other hand, the “uncertainty principle” of the parameter-expanded Gibbs sampler
keeps variance parameters from being trapped within a radius of approximately 1//m
from O (see the end of Section 3.3.2), so here it is helpful if m is low.

Further work is needed in several areas. First, it would be good to have a better ap-
proach to starting the Gibbs sampler. For large problems, the EM algorithm can be compu-
tationally expensive—and it also has the problem of zero estimates. It should be possible
to develop a fast and reliable algorithm to find a reasonably over-dispersed starting distri-
bution without having to go through the difficulties of the exact EM algorithm. A second,
and related, problem is the point estimate of (¢, o) used to compute the estimated co-
variance matrix Rg required for the scalar updating algorithms with transformation. Third,
the ideas presented here should be generalizable to multivariate models as arise, for exam-
ple, in decompositions of the covariance matrix in varying-intercept, varying-slope models
(O’Malley and Zaslavsky 2005; MacLehose et al. 2007). Finally, as discussed by van Dyk
and Meng (2001) and Liu (2003), the parameter expansion idea appears open-ended, which
makes us wonder what further improvements are possible for simple as well as for complex
hierarchical models.

A. APPENDIX: VERIFYING THE STATIONARY DISTRIBUTION
OF SAMPLERS BASED ON MARGINAL AUGMENTATION

We consider Example 1 of Section 4.1. To prove that p(y |y) is the stationary distri-
bution of both the V+PX-SAMPLER and the S+PX-SAMPLER we use Lemma 2 of Liu
and Wu (1999). The lemma states that if a sequence of proper Markovian transition ker-
nels each have the same stationary distribution, and if the sequence converges to a proper
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Markovian transition kernel, the limiting kernel has the same stationary distribution as
the sequence. We construct the sequence of proper Markovian transition kernels using a
sequence of proper prior distributions on a, p,(a), that converge to the improper prior
distribution, pso (@) o 1/a. Namely, we use a ~ Inv-gamma(w,, w,) where w, — 0 as
n — oo.

Consider the following transition kernel constructed under some proper py(a).

PROPER V+PX-SAMPLER

Step 1: Sample (xtV, &, a*) from p, (,u, g a ‘ op = aﬁ(t),y).

Step 2: Sample o from p (05 p=plth &= g = a*,y).

Step 3: Sample o ‘) from p, (a ‘ u=pFD &= g = ag,y).

Step 4: Set BUFD) = g +DEx and 0(t+1) PG

Here we use the subscript n to emphasize the dependency of certain conditional distri-
butions on the choice of p,(a). For any proper p,(a), the stationary distribution of this
sampler is p(y, a|y) = p(y |y) pa(a). Moreover, the marginal chain {y @, ¢ = 1,2, ...}
is Markovian with stationary distribution p(y |y) for any proper p,(a). Thus, in order to
establish that the stationary distribution of V+PX-SAMPLER is also p(y |y), we need only
show that the limit of the sequence of transition kernels constructed using the PROPER
V+PX-SAMPLER is the Markovian kernel given in the V+PX-SAMPLER.

Proof: Step 1 and Step 2 of the PROPER V+PX-SAMPLER can be rewritten as
e Sample a* form p, (a ’ aﬁ ,y) = pn(a).
e Sample
(u t+1) , ) jointly from p (,u s | aﬁ , y) (A1)
e Sample
o from p(op | = u"*D,p=py). (A2)
e Set&* = p*/a* and ag = aE/la*l.
Only the draw of a* depends on p, ().
To analyze Step 3 in the limit, we note that because p,(a) = poo(a), pu(u, &, o, aly)
converges to poo (i, &, o¢, a|y), the (improper) posterior distribution under po(a). Thus,

by Fatou’s lemma, the corresponding conditional distributions also converge, so that,
pr(@lu, &, 06,9) = poolalp, &, 0z, ). Thus, given (u+D, &%, o), Step 3 converges

to sampling from the proper distribution

S &y — p ) 2
P (SILV s

o | X By = )07

J
= oN|Z=ED LD e | A3
’ ST (B2 /o? E 70

o)~ N

J
> (&) /e}
j=1
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Notationally, we refer to the normal random variable in (A.3) as a, that is, a ‘D = a*a.
Finally, in Step 4, we compute f¢*1 and aﬂ(H'l) which in the limit simplifies to

D = a0 = ap* and of TV = a0t = |alo). (A4)

Thus, under the limiting kernel, y “*1 does not depend on a* and we do not need to
compute a*, &*, 6%, or a1 Thus the iteration consists of sampling steps given in (A.1),
(A.2), and (4.1), and computing (A.4). But this is exactly the transition kernel given by the
V+PX-SAMPLER. 0

A similar strategy can be used to verify that the S+PX-SAMPLER is the proper Marko-
vian limit of a sequence of proper Markovian transition kernels each with stationary dis-
tribution equal to p(y ). In particular, we use the same sequence of proper prior distribu-
tions, p,(a) to construct the following sequence of transition kernels.

PROPER S+PX-SAMPLER

Step 1: Sample (¢*, &%, 0f) from p, (a,& 061y = 9D, y); that is, sample a* ~ p,(a)
and set &* = f® /o* and a; = a,gl)/la*l.

Step 2: Sample £“*+D from p (,u | &= 00 = og, o =a”, y).

Step 3: Sample ¢; from p (fj | = ,u(’“),f_j, o =0f,0 = a*,y) forj=1,...,J.

Step 4: Sample ¢ from p (o7 | 4 = p "+, & a = a*, y).

Step 5: Sample a“*D from p, (a | 4 = u"*D, &, 0, y).

Step 6: Set D = gU+D¢ and aﬂ(tH) = |a®*D|g;.

In the limit, we find that y “*1) does not depend on a, thus the limiting transition kernel is
proper and Markovian. Analysis similar to that given for the V+PX-SAMPLER shows that
the limiting transition kernel is the kernel described by the S+PX-SAMPLER.
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