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ABSTRACT

The detection and quantification of narrow emission lines in X-ray spectra is a challenging statistical task. The
Poisson nature of the photon counts leads to local random fluctuations in the observed spectrum that often result in
excess emission in a narrow band of energy resembling a weak narrow line. From a formal statistical perspective, this
leads to a (sometimes highly) multimodal likelihood. Many standard statistical procedures are based on (asymptotic)
Gaussian approximations to the likelihood and simply cannot be used in such settings. Bayesianmethods offer a more
direct paradigm for accounting for such complicated likelihood functions, but even here multimodal likelihoods pose
significant computational challenges. The newMarkov chain Monte Carlo (MCMC) methods developed in 2008 by
van Dyk and Park, however, are able to fully explore the complex posterior distribution of the location of a narrow
line, and thus provide valid statistical inference. Even with these computational tools, standard statistical quantities
such as means and standard deviations cannot adequately summarize inference and standard testing procedures cannot
be used to test for emission lines. In this paper, we use new efficient MCMC algorithms to fit the location of narrow
emission lines, we develop new statistical strategies for summarizing highlymultimodal distributions and quantifying
valid statistical inference, and we extend the method of posterior predictive p-values proposed by Protassov and
coworkers to test for the presence of narrow emission lines in X-ray spectra. We illustrate and validate our methods
using simulation studies and apply them to the Chandra observations of the high-redshift quasar PG 1634+706.

Subject headinggs: methods: statistical — quasars: emission lines

1. INTRODUCTION

1.1. Scientific Background

Modern X-ray observations show complex structures in both
the spatial and spectral domains of various astrophysical sources.
Nonetheless, active galactic nuclei (AGN) including quasars’
nuclei remain spatially unresolved even with the highest resolu-
tion X-ray telescopes. Most of their energy is released within the
unresolved core, and only spectral and timing information is avail-
able to study the nature of the X-ray emission. Generally speak-
ing, emission and absorption lines constitute an important part of
the X-ray spectrum in that they can provide information as to
the state of plasma. One of the goals of X-ray data analysis is to
understand the components present in the spectrum and to obtain
information about the emission and absorption features, as well
as their locations and relation to the primary quasar emission.
The detection of weak lines in noisy spectra is themain statistical
problem in such analyses: is a bump observed in the spectrum
related to a real emission line or is it simply an artifact of the
Poissonian noise?

Although quasars’ X-ray spectra are usually featureless, as ex-
pected based on the Comptonization process (see e.g., Markoff
et al. 2005; Sobolewska et al. 2004; Sikora et al. 1997), an im-
portant X-ray emission feature identified in AGN and quasar
spectra is the iron K emission line (see recent review by Miller
2007). Determining the origin and the nature of this line is one of
main issues in AGN and quasar research. This line is thought to
come directly from illuminated accretion flow as a fluorescent
process (Fabian 2006). The location of the line in the spectrum
indicates the ionization state of iron in the emitting plasma, while

the width of the line tells us the velocity of the plasma (Fabian
2006). The iron line provides a direct probe of the innermost re-
gions of accretion flow andmatter in the close vicinity of a black
hole.

Absorption features associated with the outflowing matter
(warm wind, partial covering absorber) have also been observed
in recent X-ray observations (Gallagher et al. 2002; Chartas et al.
2002; Pounds & Reeves 2007). Although the location and width
of absorption lines provide information as to the velocity of the
absorber and its distance from the quasar, this article focuses on
statistical issues in fitting the spectral location of narrow emis-
sion lines, i.e., identifying the ionization state.

There are two parts to the Fe K� emission line observed in
AGNs (Yaqoob et al. 2001a): one is a broad component thought
to be a signature of a relativistic motion in the innermost regions
of an accretion flow; the other is a narrow component that is a
result of a reflection off the material at larger distances from the
central black hole. A detection of the broad component is chal-
lenging, as it requires a spectral coverage over a large energy
range, so that the continuum emission is well determined and the
broad line can be separated (Reeves et al. 2006). The relativistic
line profile is broad and skewed, and two strong peaks of the emis-
sion line that originates in a relativistic disk can be prominent and
narrow. While the full profile of the broad line may not be easily
separable from the continuum, these two peaks may provide a
signature for this line in the X-ray spectrum. The broad Fe line
gives an important diagnostic of the gas motion and can be used
to determine the spin of a black hole (Miller 2006); see also an
alternative model for the ‘‘red wing’’ component by Miller et al.
(2008). The narrow component of the line gives diagnostics of
the matter outside the accretion disk and conditions at larger dis-
tances from the black hole; see Fe line Baldwin effect discussion
in Jiang et al. (2006). Both line components are variable and the
line may ‘‘disappear’’ from the spectrum (Yaqoob et al. 2001b).

The spectral resolution of X-ray CCD detectors (for example
100Y200 eV in ACIS on Chandra or EPIC on XMM-Newton) is
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relatively low with respect to the predicted width of narrow
(<5000Y30,000 km s�1) emission or absorption lines inAGNs and
quasars. Observations with grating instruments (RGS or HEG)
can provide high-resolution X-ray spectra, but the effective area
of the present X-ray telescopes is too low for efficient AGN de-
tections, and only a handful of bright low-redshift sources have
been observed with gratings to date (Yaqoob 2007). Therefore,
mainly the X-ray CCD spectra of lower resolution are used to
study large samples of AGNs and quasars (see, e.g., Guainazzi
et al. 2006; Page et al. 2005; Jiménez-Bailón et al. 2005).

Using these relatively low resolution X-ray detectors, the
Fe K� emission line can be narrow enough to be contained en-
tirely in a single detector bin. In some cases (e.g., inChandra) the
line may occupy a few bins. In this article we focus on the sta-
tistical problem of fitting the spectral location of an emission line
or a set of emission lines that are narrow. This is a common ob-
jective in high-energy analyses, but as we shall discuss, fitting
these relatively narrow features poses significant statistical chal-
lenges. In particular, we find evidence that using line profiles
that are narrower than we actually expect the emission line to be
can improve the statistical properties of the fitted emission line
location.

1.2. X-Ray Spectral Analysis

X-ray spectra, such as those available with theChandra X-Ray
Observatory, carry much information as to the quasar’s physics.
Taking advantage of the spectral capacity of such instruments,
however, requires careful statistical analysis. For example, the
resolution of such instruments corresponds to a fine discretiza-
tion of the energy spectrum. As a result, we expect a low number
of counts in each bin of the X-ray spectrum. Such low-count data
make the Gaussian assumptions that are inherent in traditional
minimum �2 fitting inappropriate. A better strategy, which we
employ, explicitly models photon arrivals as an inhomogeneous
Poisson process (van Dyk et al. 2001). In addition, data are sub-
ject to a number of processes that significantly degrade the source
counts, e.g., the absorption, nonconstant effective area, blurring of
photons’ energy, background contamination, and photon pileup.
Thus, we employ statistical models that directly account for these
aspects of data collection. In particular, we design a highly struc-
tured multilevel spectral model with components for both the data
collection processes and the complex spectral structures of the
sources themselves. In this highly structured spectral model, a
Bayesian perspective renders straightforward methods that can
handle the complexity of Chandra data (vanDyket al. 2001, 2006;
vanDyk&Kang 2004).Aswe shall illustrate, thesemethods allow
us to use low-count data, to search for the location of a narrow
spectral line, to investigate its location’s uncertainty, and to con-
struct statistical tests that measure the evidence in the data for
including the spectral line in the source model.

1.3. A Statistical Model for the Spectrum

The energy spectrum can be separated into two basic parts:
a set of continuum terms and a set of several emission lines.4 We
begin with a standard spectral model that accounts for a single
continuum term along with several spectral lines. Throughout this
paper, we use � as a general representation of model parameters in
the spectral model. The components of � ¼ (�C; �L; �A; �B) rep-
resent the collection of parameters for the continuum, (emission)
lines, absorption, and background contamination, respectively.
(Notice that the letters in the superscripts serve as a mnemonic

for these four processes.) Because the X-ray emission is mea-
sured by counting the arriving photons, we model the expected
Poisson counts in energy bin j2J , where J is the set of energy
bins, as

�j(� ) ¼ �j f (�
C;Ej)þ

XK
k¼1

kk�j (�k ; �k); ð1Þ

where�j andEj are the width andmean energy of bin j, f (�C;Ej)
is the expected counts per unit energy due to the continuum term
at energy Ej, �

C is the set of free parameters in the continuum
model, K is the number of emission lines, kk is the expected
counts due to the emission line k, and �j(�k ; �k) is the proportion
of an emission line centered at energy �k and with width �k that
falls into bin j. There are a number of smooth parametric forms
to describe the continuum in some bounded energy range; in this
article we parameterize the continuum term f as a power law, i.e.,
f (�C;Ej) ¼ �CE��C

j
where �C and �C represent the normali-

zation and photon index, respectively. The emission lines can be
modeled via the proportions �j(�k ; �k) using narrow Gaussian
distributions, Lorentzian distributions, or delta functions; the
counts due to the emission line are distributed among the bins
according to these proportions. While the Gaussian or Lorentzian
function parameterizes an emission line in terms of center and
width, the center is the only free parameter with a delta function;
the width of the delta function is effectively the width of the
energy bin in which it resides.
While the model in equation (1) is of primary scientific in-

terest, a more complex statistical model is needed to address the
data collection processes mentioned in x 1.2. We use the term
statistical model to refer to the model that combines the source or
astrophysical model with a model for the stochastic processes
involved in data collection and recording. Thus, in addition to the
source model, the statistical model describes such processes as
instrument response and background contamination. Specifi-
cally, to account for the data collection processes, equation (1) is
modified via

Nl(� ) ¼
X
j2J

Mlj�j(� )dju(�
A;Ej)þ �Bl ; ð2Þ

where Nl(� ) is the expected observed Poisson counts in detector
channel l2L, L is the set of detector channels, Mlj is the prob-
ability that a photon that arrives with energy corresponding to
bin j is recorded in detector channel l (i.e.,M ¼ fMljg is the so-
called redistribution matrix or RMF commonly used in X-ray
analysis), dj is the effective area (i.e., ARF, a calibration file as-
sociated with the X-ray observation) of bin j, u(�A;Ej) is the
probability that a photon with energy Ej is not absorbed, �

A is the
collection of parameters for absorption, and �Bl is a Poisson in-
tensity of the background counts in channel l. While the scatter
probabilityMlj and the effective area dj are presumed known from
calibration, the absorption probability is parameterized using
a smooth function; see van Dyk & Hans (2002) for details. To
quantify background contamination, a second data set is collected
that is assumed to consist only of background counts; the back-
ground photon arrivals are also modeled as an inhomogeneous
Poisson process.

1.4. Difficulty with Identifying Narrow Emission Lines

Unfortunately, the statistical methods and algorithms devel-
oped in van Dyk et al. (2001) cannot be directly applied to fitting
narrow emission lines. There are three obstacles that must be

4 The model can be extended to account for absorption lines, but in this paper
we focus on additive features such as emission lines.
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overcome in order to extend Bayesian highly structured models
to spectra containing narrow lines. In particular, we must develop
(1) new computational algorithms, (2) statistical summaries and
methods for inference under highly multimodal posterior distri-
butions, and (3) statistical tests that allow us to quantify the sta-
tistical support in the data for including an emission line or lines
in the model. Our main objective in this paper is to extend the
methods of van Dyk et al. (2001) in these three directions, and
to evaluate and illustrate our proposals. Here we discuss each of
these challenges in detail.

1.4.1. Challenge 1: Statistical Computation

Fitting the location of narrow lines requires new and more
sophisticated computational techniques than those developed by
van Dyk et al. (2001). Indeed, the algorithms that we develop
require a new theoretical framework for statistical computation:
they are not examples of any existing algorithm with known
properties. Although the details of this generalization are well
beyond the scope of this article, we can offer a heuristic descrip-
tion; a more detailed description is given in Appendix A. Readers
who are interested in the necessary theoretical development of
the statistical computation techniques are directed to van Dyk &
Park (2004, 2008) and Park & van Dyk (2008).

The algorithms used by van Dyk et al. (2001) to fit the struc-
tured Bayesian model described in x 1.3 are based on the prob-
abilistic properties of the statistical models. For example, the
parameters of a Gaussian line profile can be fit by iteratively
attributing a subset of the observed photons to the line profile and
using the mean and variance of these photon energies to update
the center andwidth of the line profile. The updated parameters of
the line profile are used to again attribute a subset of the photons
to the line, i.e., to stochastically select a subset of the photons
that are likely to have arisen out of the physical processes at the
source corresponding to the emission line. These algorithms are
typically very stable. For example, they only return statistically
meaningful parameters because the algorithms themselves mimic
the probabilistic characteristics of the statistical model. The family
of expectation/maximization (EM) algorithms (Dempster et al.
1977) andMarkov chainMonte Carlo (MCMC)methods such as
the Gibbs sampler (Geman & Geman 1984) are the examples of
statistical algorithms of this sort.

A drawback of these algorithms is that in some situations they
can be slow to converge. When fitting the location of a Gaussian
emission line, for example, the location is updated more slowly
if the line profile is narrower. This is because only photons with
energies very close to the current value of the line location can
be attributed to the line. Updating the line location with the mean
of the energies of these photons cannot result in a large change
in the emission line location. The situation becomes chronic
when a delta function is used to model the line profile: the line
location parameter sticks at its starting value throughout the
iteration.

It is to circumvent this difficulty that we develop both new
EM-type algorithms (van Dyk & Park 2004) and new MCMC
samplers specially tailored for fitting narrow lines. Our new sam-
plers aremotivated by theGibbs sampler, but constitute a nontrivial
generalization of Gibbs sampling known as partially collapsed
Gibbs sampling (van Dyk & Park 2008; Park & van Dyk 2008);
see Appendix A. Our updated versions of both classes of algo-
rithms are able to fit narrow lines by avoiding the attribution of
photons to the emission line during the iteration. Such algorithms
tend to require fewer iterations to converge regardless of the width
of the emission line. Because they involve additional evaluation
of quantities evolving the large-dimensional redistribution ma-

trix, M, however, each iteration of these algorithms can be sig-
nificantly more costly in terms of computing time. A full inves-
tigation of the relative merit of the algorithms and a description
of how the computational trade-offs can be played to derive
optimal algorithms are beyond the scope of this paper. Except
in Appendix A, we do not discuss the details of the algorithms
further in this article; interested readers are directed to van Dyk
& Park (2004, 2008) and Park & van Dyk (2008).

1.4.2. Challenge 2: Multimodal Likelihoods

The likelihood function for the emission-line location(s) is
highly multimodal. Each mode corresponds to a different rela-
tively likely location for an emission line or a set of emission
lines. Standard statistical techniques such as computing the es-
timates of the line locations with their associated error bars or
confidence intervals implicitly assume that the likelihood function
is unimodal and bell shaped. Because this assumption is clearly
and dramatically violated, these standard summary statistics are
unreliable and inadequate.

Unfortunately, there are no readily available and generally ap-
plicable simple statistical summaries to handle highly multimodal
likelihoods. Instead we must develop summaries that are tailored
to the specific scientific goals in a given analysis. Because general
strategies for dealing with multimodal likelihood functions are
little known to astronomers and specific strategies for dealing
with multimodal likelihood functions for the location of narrow
spectral lines do not exist, one of the primary goals of this article
is to develop and illustrate these methods.

A fully Bayesian analysis of our spectral model with narrow
emission lines is computationally demanding, even with our new
algorithms. Thus, we develop techniques that are much quicker
and give similar results for the location of emission lines. These
methods based on the so-called profile posterior distribution do
not stand on as firm a theoretical footing as a fully Bayesian anal-
ysis, but are much quicker and thus better suited for exploratory
data analysis. The profile posterior distribution along with our
exploratory methods are fully described and compared with the
more sophisticated Bayesian analysis.

1.4.3. Challenge 3: Testing for the Presence of Narrow Lines

In addition to fitting the location of one or more emission lines,
we often would like to perform a formal test for the inclusion of
the emission lines in the statistical model. That is, wewould like to
quantify the evidence in a potentially sparse data set for a par-
ticular emission line in the source.

Testing for a spectral line is an example of a notoriously
difficult statistical problem in which the standard theory does not
apply. There are two basic technical problems. First, the simpler
model that does not include a particular emission line is on the
boundary of the larger model that does include the line. That
is, the intensity parameter of an emission line is zero under the
simpler model and cannot be negative under the larger model.
An even more fundamental problem occurs if either the line lo-
cation or width is fit, because these parameters have no value
under the simpler model. The behavior (i.e., sampling distribu-
tion) of the likelihood ratio test statistic under the simpler model
is not well understood and cannot be assumed to follow the stan-
dard �2 distribution, even asymptotically. Protassov et al. (2002)
propose a Monte CarloYbased solution to this problem based
on themethod of posterior predictive p-values (Rubin 1984;Meng
1994). In this article we extend the application of Protassov
et al.’s solution to the case when we fit the location of a narrow
emission line, a situation that was avoided in Protassov et al.
(2002).
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1.5. Outline of the Article

The remainder of the article is organized into four sections.
Section 2 reviews Bayesian inference and Monte Carlo methods
with an emphasis on multimodal distributions, outlines our com-
putation methods, proposes new summaries of multimodal dis-
tributions, and describes exploratory statistical methods in this
setting. We introduce illustrative examples in x 2, but detailed
spectral analysis is postponed in order to allow us to focus on our
proposed methods. In x 3, a simulation study is performed to
investigate the statistical properties of our proposed methods,
with some emphasis placed on the potential benefits of model
misspecification. Section 4 presents the analysis of the high red-
shift quasar PG 1634+706, and how to test for the inclusion of
the line in the spectral model. Concluding remarks appear in x 5.
Appendix A outlines the computational methods we developed
specifically for fitting the location of narrow emission lines.

2. MODEL-BASED STATISTICAL METHODS

2.1. Likelihood-Based and Bayesian Methods

Using a Poisson model for the photon counts, the likelihood
function of the parameter in the spectralmodel described in x 1.3 is
given by L �jYobs

� �
/

Q
l2LNl(� )

Y obs
l exp �Nl(� )½ � where Yobs ¼

fY obs
l ; l2Lg denotes the observed photon counts.With likelihood-

based methods, the parameter value that maximizes the proba-
bility of the observed data is generally chosen as an estimate of
�; this estimate is called themaximum likelihood estimate (MLE).
InBayesianmethods, prior knowledge for � can be combinedwith
the information in the observed data. A prior distribution can be
used to quantify information from other sources or to impose
structure on a set of parameters. The prior distribution is com-
bined with the likelihood to form a posterior distribution. The
prior distribution is denoted by p(� ) and the posterior distribu-
tion by p �jYobs

� �
. Bayesian inferences for � are based on the

posterior distribution. Using Bayes’ theorem, the prior distri-
bution and the likelihood function are combined to form the
posterior distribution via

p �jYobs
� �

¼
p(� )L �jYobs

� �
R
p(� )L �jYobs

� �
d�

/ p(� )L �jYobs
� �

; ð3Þ

where the last proportionality holds because p Yobs
� �

¼R
p(� )L �jYobs

� �
d� does not depend on � and, given the ob-

served data, is considered a constant.
Bayesian statistical inferences are made in terms of probability

statements, which are quantified using various numerical sum-
maries of the posterior distribution. To illustrate this, we con-

sider a stylized right-skewed distribution; see Figure 1. This dis-
tribution is similar to the posterior distribution of the expected
counts due to the emission line k, kk , because this parameter is
necessarily nonnegative.
Although from a Bayesian perspective the posterior distribu-

tion of a model parameter is the complete summary of statistical
inference for that parameter, it is often useful to summarize the
posterior distribution using point estimates or intervals. Commonly
used Bayesian point estimates of a parameter are the mean,
median, and mode(s) of the posterior distribution. Error bars for
the point estimates can be computed based on the variation of the
posterior distribution. The equal-tail interval and the highest pos-
terior density (HPD) interval are both commonly used summaries
of uncertainty. For example, a 68% equal-tail posterior interval is
the central interval of the posterior distribution and corresponds
to the range of values of the parameter above and below which
lies exactly 16%of the posterior probability. A 68%HPD interval,
on the other hand, is the interval of values that contains 68% of
posterior probability and within which the density is never lower
than that outside the interval. The 68%HPD interval is the shortest
possible interval that accounts for 68% of the posterior prob-
ability. This is illustrated in Figures 1a and 1b. The equal-tail
interval achieves the same probability as the HPD interval by ex-
cluding a more likely region and by including a less likely region.
When the posterior distribution is unimodal and symmetric, the
equal-tail interval and the HPD interval are identical.
In addition to computing parameter estimates and their error

bars, it is often important to check if model assumptions are sup-
ported by the data. Oneway to do this is to generate simulated data
under themodel and compare the simulated data with the observed
data; refer to Protassov et al. (2002) where this strategy is used to
determine whether emission line profiles should be included in
the spectral model for a gamma-ray burst. If the simulated data
vary systematically for the observed data, it is an indication that
the model used to simulate the data may not be adequate. In a
Bayesian analysis, we might generate such simulated data from
the posterior predictive distribution, denoted by p ỸjYobs

� �
, i.e.,

p ỸjYobs
� �

¼
Z

p ỸjYobs; �
� �

p �jYobs
� �

d�

¼
Z

L �jỸ
� �

p �jYobs
� �

d�; ð4Þ

where Ỹ represents an unknown future observation and the last
equation follows because Ỹ and Yobs are conditionally inde-
pendent given �. In words, the posterior predictive distribution
averages the likelihood function over the posterior distribution of
�. Data are simulated from the posterior predictive distribution
and then used to make predictive inferences; see x 4.3 for details.

Fig. 1.—Various summaries of a right-skewed distribution. (a, b) Illustrations of the 68% equal-tail interval and the 68%HPD interval, respectively. (c) Demonstration
that a theoretical probability density function agrees with its Monte Carlo simulation.
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Posterior simulation plays a central part in applied Bayesian
analysis because of the usefulness of a simulation that can often
be relatively easily generated from a posterior distribution. In per-
forming simulations, given a large enough sample, a histogram of
a Monte Carlo simulation can provide practically complete in-
formation about an actual posterior distribution. Figure 1c shows
that the histogram of the Monte Carlo simulation carries the
same information as the posterior distribution itself. Thus, once
a Monte Carlo simulation is obtained, it can be used to compute
the mean, variance, percentiles, and other summaries of the pos-
terior distribution. In particular, with a random simulation of size
N, the posterior mean can be approximated as

E �jYobs
� �

¼
Z
�p �jYobs
� �

d� � 1

N

XN
‘¼1

�(‘); ð5Þ

where f�(‘); ‘ ¼ 1; : : :;Ng is a simulation from the posterior
distribution, p �jYobs

� �
.

A 68% equal-tail posterior interval is computed by gener-
ating a Monte Carlo simulation of size N from the posterior
distribution, sorting the simulated values into increasing order,
and choosing the ½0:16N �th and the ½0:84N �th values in the list.
With theMonte Carlo simulation, a 68%HPD region is computed
by segmenting the range of possible parameter values into bins,
approximating the posterior probability of each bin as the propor-
tion of the simulated values in that bin, and computing a region
by beginning with the bin with the largest posterior probability
and adding additional bins in the order of their posterior prob-
abilities until the resulting region contains at least 68% of the
posterior probability.

2.2. Outline of Computational Strategies

Our search for a narrow emission line begins by findingmodes
of its posterior distribution that correspond to plausible locations
of an emission line. To find the modes (and to complete the pro-
file posterior distribution), we use an algorithm optimized for this
problem [i.e., the Rotation(9) EM-type algorithm; see Appendix A
and van Dyk & Park (2004) for details]. Because the posterior
distribution of the line location is highly multimodal (see x 2.3),
the algorithm is run usingmultiple starting values selected across
the entire energy range of possible line locations, e.g., 50 starting
values for the line location equally spaced between 1.0 and 6.0 keV.
Using multiple starting values enables us to identify the impor-
tant local modes of the posterior distribution. It is important to
use enough starting values to ensure all of the important modes
are identified. This is a standard strategy, long advocated in texts
onBayesian data analysis (Gelman et al. 1995, 2003), and is closely
related to the computation of the profile posterior distribution de-
scribed in x 2.4. The profile posterior distribution is computed by
fixing the line location at each value of a fine grid, finding the
posterior modes of the other model parameters, and plotting the
resulting maximum posterior probability as a function of the line
location. This procedure corresponds to the projected��2 method
in the �2 setting; see Lampton et al. (1976) and Press et al. (1992).
Mode finding also begins with a fine grid of starting values, but
we run themode finder allowing all parameters including the line
location to be fit.

After the modes are found, Monte Carlo simulation techniques
optimized to this problem can be run to further investigate the
uncertainty of the possible line locations. We employ state-of-
the-art MCMC samplers, i.e., partially collapsed Gibbs (PCG) I
for the delta function emission line and PCG II for the Gaussian
emission line to obtain the posterior distribution of line location;

see Appendix A, van Dyk & Park (2008) and Park & van Dyk
(2008) for details. To ensure the convergence of aMarkov Chain
constructed by the MCMC samplers, we run multiple chains with
overdispersed starting values (e.g., 1, 3, and 5 keV for the line
location parameter) andmonitor the convergence qualitatively and
quantitatively. For example, we compute the estimate of the po-
tential scale reduction (Gelman&Rubin 1992), denoted by R̂1/2, for
all parameters of interest. If R̂1/2 is near 1 (e.g., below 1.2) for
each of the parameters, we collect the second halves of the chains
together and use these Monte Carlo draws for inference; see
Gelman & Rubin (1992) for theoretical justification and discus-
sion. There are of course many strategies that one might employ
to construct efficient Monte Carlo samplers. Methods based on
annealing or tempering, or that use explicitly parallel methods
are often useful for exploring multimodal posterior distributions.
Given the low autocorrelation of the simulated values produced
by our method, we have not pursued these strategies.

2.3. Summarizing Multimodal Posterior Distributions

Fitting a narrow emission line often tends to yield a highly
multimodal posterior distribution of the line location, as shown
in Figure 2. Thus, we are interested in the two types of intervals
for the posterior distributions: an equal-tail posterior interval and
an HPD region. Figure 2 illustrates a 68% equal-tail posterior
interval and a 68% HPD region for the line location when its
posterior distribution is highly multimodal. This is only an ex-
ample of a highly multimodal posterior distribution. We come
to the details of our analysis of a line location in x 3. The 68%
equal-tail posterior interval is a central interval, so that it includes
segments with nearly zero posterior probability here and there
within the interval. Because the posterior distribution of the line
location in Figure 2 is multimodal, the 68%HPD region consists
of the four shaded disjoint intervals; notice that the height of each
of the histogram bars outside the HPD region is less than that of
those within the region. In such a multimodal posterior distri-
bution, the HPD region not only is shorter in length but also
conveys more information as to likely locations of the line than
does the equal-tail interval.

In Figure 2, we use a coarse binning to illustrate the distinction
between the equal-tail posterior interval and HPD region. This
results in a posterior region that is relatively imprecise; in our
spectral analysis, we use a finer binning to construct a more pre-
cise region from a Monte Carlo simulation. When the posterior
distribution of the line location is plotted with the same fine bin-
ning as the Chandra energy spectrum, however, it may not be
smooth due to Monte Carlo errors, as shown in the top panel of
Figure 3. An HPD region computed from the unsmoothed pos-
terior distribution may result in a combination of too many pos-
terior intervals. To avoid such fragmentation of HPD regions, we
use Gaussian kernel smoothing to smooth the posterior distri-
bution before we compute HPD regions. The middle panel of
Figure 3 presents the smoothed posterior distribution resulting
from applying Gaussian kernel smoothing with standard devia-
tion equal to the bin size of the Chandra energy spectrum, i.e.,
0.01 keV. The smoothed posterior distribution smooths out lower
posterior probabilities, but does not flatten higher posterior prob-
abilities too much.

We propose a new graphical summary to better describe the
HPD regions of a (smoothed) multimodal posterior distribution.
AnHPD graph is constructed by plotting a series of HPD regions
against their corresponding HPD levels. For example, for the
data set used to compute the posterior distribution in Figure 3, we
compute 100HPD regions, one for each of 100 levels, 1%, 2%, . . . ,
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and 100%. Each of these regions is a union of possible values of
the line location. We can plot the line location on the horizontal
axis and the level on the vertical axis. Each of the 100 HPD
regions can then be plotted as a union of horizontal line intervals
at the appropriate level of the HPD region on the vertical axis.
The resulting HPD graph lets us visualize many HPD regions
with varying levels, so that all the important modes of a multi-
modal distribution can be effectively summarized with their

relative posterior probabilities. As an illustration, we computed
the threeHPD regionswith levels 50%, 68%, and 95%, and plotted
them in the middle panel of Figure 3 along with the smoothed
posterior distribution. The solid lines indicate the disjoint intervals
that compose each HPD region, and the dotted lines the intervals
outside the HPD region. The bottom panel in Figure 3 shows the
HPD graph in gray with the three HPD intervals from the middle
plot superimposed.

Fig. 2.—Comparison of an equal-tail interval and an HPD region computed with a Monte Carlo simulation. Top: Shaded interval indicates a 68% equal-tail interval;
bottom: shaded region indicates a 68% HPD region. On the top of each shaded area, its range of energies and the corresponding posterior probability accounted for are
shown. TheHPD region is not an interval and is muchmore informative as to the likely values of the line location. Here, we use a coarse binning for illustrative purposes. In
our actual analysis, we use finer binning to construct more precise equal-tail intervals and HPD regions. The shape of the histogram is typical of what we observe for the
location of a relatively weak emission line.
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When there are two parameters of interest, the 1D HPD graph
can be extended to a 2D HPD graph. That is, a joint posterior
distribution is computed from aMonte Carlo simulation by using
bivariate Gaussian kernel smoothing and used to construct 2D
HPD regions with various levels. These HPD regions can then be

plottedwith different shades of gray. For example, Figure 4 shows
the 2D HPD graph computed for the joint posterior distribution
of two possible line locations; see x 3.2 for further discussion on
the scatter plot. The left panel of Figure 4 is an unsmoothed joint
posterior distribution. After applying bivariate Gaussian kernel

Fig. 3.—Comparing an unsmoothed marginal posterior distribution with its HPD graph computed with Gaussian kernel smoothing. Top: Unsmoothed posterior
distribution computed fromMonte Carlo draws, plotted with the same resolution as theChandra energy spectrum.Middle: Posterior distribution smoothed usingGaussian
kernel smoothing with standard deviation 0.01 keV, the width of one energy bin in the Chandra spectrum. Based on the smoothed posterior distribution, we compute
100 HPD regions with levels ranging from 1% to 100%. These intervals are plotted against their levels in the HPD graph shown on the bottom. The horizontal solid lines in
the middle and bottom panels are the 50%, 68%, and 95% HPD regions, and the horizontal dotted lines are the intervals outside each HPD region.
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smoothing, 10 HPD regions (one for each of 10 levels, 10%,
20%, . . . , and 100%) are computed and plotted with different
shades of gray from black (10%) to white (100%), as shown in
the right panel of Figure 4. HPD regions with lower levels con-
tain pixels with higher posterior probabilities, so that darker pixels
indicate more probable regions of the two line locations.

Multimodal likelihoods and posterior distributions pose an-
other challenge for statistical analysis. The calibration of many
standard statistical procedures is based on the asymptoticGaussian
nature of the likelihood and posterior distribution. Thus, standard
methods for computing error bars and confidence intervals rely
on the likelihood being at least approximately Gaussian. When
the likelihood function exhibits the multimodal features that we
see in Figures 3 and 4, these standard results simply do not apply.
One consequence of this is that the nominal level of an interval
may not match its frequency coverage. That is, if we were able to
repeat our observationmany times, wewould find that the percent-
age of intervals that contain the true line locationmight differ from
the nominal level of the interval. In x 3, we find that the posterior
distribution is highly multimodal when the true emission line is
weak or there are several emission lines in a spectrum. In this
case, we also find that by misspecifying the model we are able
to improve the frequency properties of our proposed method. In
particular, we find that using a delta function line profile improves
the properties of our procedure even when the true line has ap-
preciable width.

2.4. Exploratory Data Analysis

As discussed in x 2.3, the posterior distribution of a narrow
emission line location tends to be highly multimodal. In this case,
the profile posterior distribution can be used as a handy and quick-
to-compute summary of the posterior distribution to explore the
possible locations of a spectral line. The profile posterior dis-
tribution is the posterior distribution of a parameter evaluated
at the values of the other parameters that maximize the posterior
distribution. The profile posterior distribution is a Bayesian an-
alog to the profile likelihood, a standard likelihood method for
dealing with nuisance parameters; see Venzon & Moolgavkar
(1988) or Critchley et al. (1988) for applications of the profile

likelihood. In the context of parameter estimation, the distribu-
tion of the minimum �2 statistic described by Lampton et al.
(1976) is closely related to the profile posterior distribution.
Generally we do not advocate using the profile posterior dis-

tribution as a substitute for the marginal posterior distribution
because interval or region estimates computed with the profile
posterior distribution have rather unpredictable statistical proper-
ties. The marginal posterior distribution is obtained by integrating
out (i.e., averaging over) the other parameters and computing the
marginal posterior distribution requires sophisticated numerical
integration methods such as MCMC especially when the dimen-
sion of the nuisance parameters is large. However, the profile
posterior distribution can be computed without MCMC and, as
an analog to the marginal posterior distribution, can be used to
roughly examine the posterior distribution of a model parameter.
Thus, we believe the profile posterior distribution is well suited
for the initial exploration of the data because it gives a clear and
reliable set of potential locations for spectral lines.
The profile posterior distribution can be computed on a fine

grid of the possible values of the line location by running an
optimizer to maximize over the other model parameters for each
value of the line location on the grid; we recommend using stable
optimizers such as EM-type algorithms (van Dyk & Park 2004).
The profile posterior distribution of the line location computed in
this way is computationally less demanding and cheaper in terms
of CPU time than the marginal posterior distribution produced
by Monte Carlo methods such as MCMC.

3. SIMULATION STUDY

Our simulation study is conducted to assess the validity of the
highly structured multilevel spectral model discussed in x 1.3, to
illustrate the connection between the multimodal posterior distri-
bution of a single narrow emission line and evidence for multiple
lines, to illustrate the possible advantage of the misspecification
of an emission line width, and to illustrate the relationship among
Gaussian line parameters.
We consider the following six cases that we believe are rep-

resentative of the cases that are of general interest:

Case 1.—There is no emission line in the spectrum.

Fig. 4.—Comparing an unsmoothed joint posterior distribution with its 2D HPD graph computed with bivariate Gaussian kernel smoothing. Left: Unsmoothed
posterior distribution is smoothed using bivariate Gaussian kernel smoothing with a diagonal covariance matrix with each marginal standard deviation equal to the size of
an energy bin in the Chandra spectrum, i.e., 0.01 keV. Based on the smoothed posterior distribution, we compute 10 2D HPD regions with levels ranging from 10% to
100%. These regions are plotted with different shades of gray in the 2D HPD graph shown on the right.
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Case 2.—There is a narrowGaussian emission line at 2.85 keV
with SD ¼ 0:04 keV5 and equivalent width,6 EW ¼ 0:198 keV
in the spectrum.
Case 3.—There is amoderateGaussian emission line at 2.85 keV

with SD ¼ 0:21 keV and EW ¼ 0:661 keV in the spectrum.
Case 4.—There is a narrowGaussian emission line at 2.85 keV

with SD ¼ 0:04 keV and EW ¼ 0:659 keV in the spectrum.
Case 5.—There are two narrow Gaussian emission lines with

SD ¼ 0:04 keV, one at 1.20 keV with EW ¼ 0:139 keVand the
other at 2.85 keV with EW ¼ 0:198 keV in the spectrum.
Case 6.—There are two narrow Gaussian emission lines with

SD ¼ 0:04 keV, one at 1.20 keV with EW ¼ 0:139 keVand the
other at 2.85 keV with EW ¼ 0:659 keV in the spectrum.

That is, each spectrum has either 0, 1, or 2 lines. Typical
Chandra data are recorded in an energy grid with bin width
0.01 keV. Thus, the narrow emission line (i.e., cases 2, 4, 5, and
6) corresponds to about 17 energy bins and the moderate one
(i.e., case 3) about 85 energy bins, using�2 standard deviations.
As compared to the Chandra resolution, the delta function emis-
sion line profile corresponds to 1 energy bin, and thus it does not
correctly specify the width of the Gaussian emission lines in this
simulation. Through the simulation study, however, we illustrate
possible advantage of this model misspecification in producing
valid and efficient estimates and associated uncertainties for the
line location. We show that using delta functions emission lines
in the model is a useful strategy even when the true line occupies
multiple bins.

For each of the six spectra, we generate 20 test data sets (120
data sets in total) each with about 1500 counts similar to the
observed number of counts in the Chandra X-ray spectrum of
PG 1634+706 analyzed in x 4, mimicking the real data situation.
Each spectrum has a power-law continuum with �C ¼ 3:728 ;
10�5 and �C ¼ 1:8. Our simulation is done with Sherpa software
(Freeman et al. 2001) in CIAO,7 assuming theChandra responses
(effective area and instrument response function) and no back-
ground contamination.

3.1. Validity of Delta Function Line Profiles

For each of the test data sets, we run state-of-the-art MCMC
samplers to fit a spectral model with a single delta function emis-
sion line. Based on the Monte Carlo draws collected from the
multiple chains of the MCMC samplers, the top two rows of
Figure 5 present the marginal posterior distribution of the delta
function line location for one simulation under each of the six
cases; the vertical dashed lines represent the true line locations.
Themarginal posterior density is smoothed using Gaussian kernel
smoothingwith standard deviation 0.01 keV, as described in x 2.3.

When there is no emission line in the spectrum (i.e., case 1),
the posterior distribution of the delta function line location is
highly multimodal. In the case of a weak narrow Gaussian emis-
sion (i.e., case 2), themarginal posterior distribution often remains
highly multimodal, but one mode typically identifies the true line
location. In practice, the local mode(s) of such a highly multi-
modal posterior distribution may suggest plausible line locations
and show evidence for multiple lines; see x 3.2. Even with a
moderate line (i.e., case 3), the true line location appears well
estimated with the marginal posterior distribution of the delta
function line location. As we shall see in Table 1, however, in this
case the resulting posterior region undercovers the true values

because the true line is 85 times wider than the specified model.
With the strong narrow Gaussian line (i.e., case 4), the posterior
distribution of the line location tends to be unimodal, and the
posterior mode correctly identifies the true line location. The
posterior distribution for case 5 in Figure 5 is bimodal, with the
modes corresponding to the two true line locations. When mul-
tiple lines are present in a spectrum, the posterior distribution of
the single line location can bemultimodal, as shown in the case 5
of Figure 5. Thus, the multiple modes may be indicative of
multiple lines; see x 3.2 for details. When one of two narrow
Gaussian emission lines is much stronger (i.e., case 6), the single
delta function line model tends to identify only one of the two
true line locations. To visualize the uncertainty of the fitted delta
function line location(s), the bottom two rows of Figure 5 show
the HPD graphs constructed with 100 HPD regions as described
in x 2.3.

3.2. Connection Between Multimodality and Multiple Lines

The multimodality in the marginal posterior distribution of
a single line location may indicate the existence of multiple lines
in a spectrum, provided the lines are well separated. When a
model is fitted with one emission line, modes in the likelihood
function of the line location correspond to ranges of energy with
excess emission relative to the continuum.Multiple modes in the
likelihood indicate that there are multiple ranges of energy with
such excess emission. The height of the mode is indicative of the
degree of excess. Thus, if there are several emission lines, we
might expect to see several correspondingmodes in the likelihood.
If there is one energy range that dominates in terms of excess
emission, however, it corresponds to the dominate mode of the
likelihood. Thus, if there are lines of very different intensities,
only the strongest ones may show up as a mode of the likelihood.
This can be seen by comparing cases 5 and 6 in Figure 5.

If there is evidence for multiple lines in a spectrum or if we
suspect multiple lines a priori, we can fit amodel with two ormore
lines. We illustrate this using simulated data under case 2 (one
narrow line) and case 5 (two narrow lines). Beginningwith case 2,
the actual spectrum has only one line, but we investigate what
happens when we fit two lines to this data. A scatter plot of the
two fitted line locations identified when fitting two emission lines
to one of the data sets generated under case 2 is presented in the
top left panel of Figure 6. There is a label switching problem
between the two fitted line locations because of the symmetry of
the emission lines in the model. We can remove the symmetry by
imposing a constraint on line locations. To do this, we first fit the
model with a single delta function line profile and compute the
posterior mode of its line location. Returning to the model with
two fitted delta functions, we separate the two fitted line loca-
tions by setting the ‘‘first’’ line location to be the one closest to
the posterior mode. In case 2, the posterior mode for the single
line location is 2.815 keV, so that the first line location is the line
location closest to 2.815 keV and the second line is the other
location. The two panels in the top right corner of Figure 6 show
the resulting marginal posterior distributions of the two fitted line
locations. As shown in the figure, the marginal posterior distri-
bution of the first line location correctly identifies the true line
location. The spectrum used to generate the data under case 2 has
no second line, so that the marginal posterior distribution of the
second line is highly multimodal. In practice, we may take the
local mode(s) in the second marginal posterior distribution as
candidates for another line location. However, the resulting HPD
regions for the second line are wide, indicating that either there is
no second line or if there is, it cannot be well identified.

5 SD stands for standard deviation.
6 The equivalent width is defined as EW¼k/½ f (�C; �) ;ARF ; Exposure time�.
7 The software is publicly available at http://cxc.harvard.edu/ciao.
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Fig. 5.—Marginal posterior distribution and HPD graph of the line location for one simulation under each of the six cases in the simulation study. There is no emission
line in the spectrum of case 1; the spectra of cases 2, 3, and 4 include one narrow or moderate emission line; and the spectra of cases 5 and 6 include two narrow emission
lines. The top two rows illustrate the smoothed marginal posterior distributions of the line location for the six spectra in the simulation study, computed using Gaussian
kernel smoothing with standard deviation 0.01 keV. The corresponding HPD graphs constructed with 100 HPD regions are presented in the bottom two rows; refer to
Fig. 3. The vertical dashed lines represent the locations of the true emission lines.

TABLE 1

Summary of 95% HPD Regions for the Line Location in the Simulation Study

Delta Function Line Gaussian Line

Case Line Type
a

Coverageb

(%) Mean Length

Coverageb

(%) Mean Length

1........................................ No lines NA 3.354 NA 3.613

2........................................ One narrow line 85 0.722 100 1.489

3........................................ One moderate line 65 0.164 95 0.263

4........................................ One narrow line 100 0.068 100 0.075

5........................................ Two narrow lines 95 0.081 95 0.137

6........................................ Two narrow lines 100 0.068 100 0.076

Total ............................. Narrow line(s) 95 0.235 98.8 0.444

a The narrow emission lines are 17 bins wide (four standard deviations, i.e., 0.17 keV); moderate emission lines are 85 bins wide
(i.e., 0.85 keV).

b The coverage is the percentage of 20 95% HPD regions containing at least one true line location.



When two emission lines are present in a spectrum, we follow
the same procedure as illustrated using the data generated under
case 5. The bottom left panel of Figure 6 shows the scatter plot of
two line locations identified in the spectrum of case 5. Label
switching is handled as above using the posterior mode for the
single line location, which is computed as 2.855 keV. The fitted
marginal posterior distributions of the first and second line lo-
cations are given in the bottom right corner of Figure 6. When
there are two emission lines in a spectrum, the two true line lo-
cations are precisely specified by the two marginal posterior
distributions. This is a verification of what is suggested by the
multiple modes in the marginal posterior distribution of the single
line location shown in Figure 5.

3.3. Possible Advantage of Model Misspecification

The possibility of model misspecification when using a delta
function to model an emission line depends on both the width of
the true line and the resolution of the detector. Misspecification
only occurs when the line is not contained in one energy bin, and
we shall illustrate that such misspecification only has statistical
consequences for the fitted line location if it is very severe. In-
deed there can be a possible statistical advantage of using a delta
function rather than a Gaussian line if we know the spectral line

is not too wide. As a toy example, consider a simple Gaussian
model with known standard deviation: when Y � N (�; �), a
95% confidence interval for � is given by Y � 1:96 �. If we
misspecify the modal as Y � N (�; &) with & < �, the resulting
interval for � is shorter and has lower coverage. We similarly
underrepresent the error bars of an emission line locationwhenwe
use a delta function for a line that is not contained in one energy
bin. We expect this to reduce both the length and coverage of the
confidence regions. The advantage or disadvantage of this strat-
egy is not immediately clear, however, since the nominal coverage
of the intervals is based on an asymptoticGaussian approximation
to the posterior distribution which clearly does not apply in this
setting. Nonetheless, our simulation study illustrates that the use
of a delta function line profile can result in a shorter and more
informative HPD region while maintaining good coverage.

We now turn to the computation of HPD regions and the pos-
sible statistical advantage of using delta functions in place of
narrow Gaussian emission lines. We fit a spectral model that
includes a single delta function line or a single narrow Gaussian
line to the 20 simulated data sets generated under each of the six
cases. After smoothing the marginal posterior distribution using
Gaussian kernel smoothing, we construct 95% HPD regions for
the line location, as shown in Figure 7. For visual clarity, we

Fig. 6.—Joint posterior distribution and the corresponding marginal posterior distributions of two line locations in case 2 (one narrow emission line) and case 5 (two
narrow emission lines). The vertical dashed lines in the right panels represent the locations of true emission lines.
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present results only for the first 10 simulated data sets in Figure 7;
results from all 20 simulated data sets are discussed in Table 1.
Because there is no emission line in the spectrum used to simulate
data under case 1, the 95% HPD regions for the line location are
very wide and show large uncertainties for the fitted line location.
When there is at least one strong emission line (i.e., cases 3, 4, and
6), both line models produce comparable HPD regions, although
those computed under the Gaussian line model appear somewhat
wider. The trade-off between the two linemodels becomes evident
when there is no strong emission line in the spectrum (i.e., cases 2
and 5). In case 2, the 95% HPD regions for a single Gaussian line
location are somewhat wider. With the same nominal level, the
delta function line model yields more compact and informative
HPD regions. An added advantage of the delta function line
model occurs in case 5 when the 95% HPD regions for a single
delta function line location consist of two disjoint HPD intervals
which simultaneously contain the two true line locations; this
behavior is more often observed with the delta function line

model (2 times out of 20) than the Gaussian line model (1 time
out of 20).
To more closely inspect the advantage of model misspeci-

fication, we evaluate the coverage of the true line locations and
the mean length of the 95% HPD regions. For each of the six
spectra, Table 1 shows the percentage of the 20 95%HPD regions
containing at least one true line location along with the mean
length of the regions. In case 1, there is no emission line in the
spectrum and there should therefore be great uncertainties about
the line location. Thus, both line models produce comparably
wide HPD regions for the line location on average.When a spec-
trum has at least one emission line, the delta function line model
yields HPD regions of smaller mean length and with better cov-
erage rates. The one exception is case 3, which includes one
moderate emission line whose location is significantly under-
covered with the delta function line model. In this case, the 85 bin
(i.e., 0.85 keV) wide line is very broad, as compared to the delta
function line profile which corresponds to one energy bin (i.e.,

Fig. 7.—95% HPD regions for the delta function line location and Gaussian line location in the simulation study. The HPD regions are all computed under a model
containing a single emission line and plotted against the index of the first 10 simulated data sets. The intervals produced when using a delta function line profile tend to be
somewhat narrower and more precise. The vertical dashed lines represent the locations of true emission lines.
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0.01 keV). Although the delta function appears to be efficient in
identifying lines this wide, the model underrepresents the un-
certainty in their location. When all emission lines are narrow
(i.e., cases 2, 4, 5, and 6), the misspecification of the line width
seems to show an advantage. The last row of Table 1 summarizes
the 95%HPD regions when there is at least one narrow emission
line in the spectrum, i.e., an emission line with a width of 17 bins
(i.e., 0.17 keV). The delta function line model produces HPD
regions with 53% the mean length of HPD regions resulting from
the Gaussian line model, with coverage closer to the nominal
95% rate.

Because fitting a spectral model involves MCMC sampling
that is computationally expensive and requires some supervision,
exhaustive simulations are difficult to carry out. In addition, the
results may depend on the line location, line strength, line width,
characteristics of the continuum, sample size, and so on. Based
on the simulation study, however, we conclude that the delta
function line model is useful for exploratory data analysis and for
inference when the true line is believed to be narrow. From a
computational point of view, an additional advantage is a sig-
nificant reduction in the computational time when using a delta
function, owing largely to the fact that the line width need not be
fit. While the delta function line model enjoys the advantages
of model misspecification when searching for the locations of
narrow emission lines, it is not designed to estimate the other
line parameters. The delta function emission line model under-
estimates the width, intensity, and EWof the emission line. When
making inference for these line parameters, the delta function
emission linemodel should not be used unless an emission line is
truly narrow relative to the resolution of the detector.

3.4. Summary of Line Parameters

When fitting a Gaussian emission line profile, the fitted line
intensity may be correlated with the fitted line width. To examine

the relationship among the Gaussian line parameters, Figure 8
shows the pairwise joint posterior distributions of the Gaussian
line location, the line SD, and the log of the line intensity. The
two rows in Figure 8 correspond to the results from two simu-
lated data sets, where the posterior distribution of the line location
tends to be unimodal or (highly) multimodal. The two simulated
data sets are both from case 2 but encompass the two typical
types of posterior distributions we see in cases 2, 3, 4, 5, and 6.

As the possible location of a Gaussian emission line is shifted
away from its posterior mode(s), the line width tends to increase
in order for the Gaussian emission line to be wide enough to
encompass the excess emission. When the line location is not
well specified, fitted values far from the true line location may
be consistent with the data so long as the width and equivalent
width of the line are sufficiently large. Thus, the joint posterior
distribution of the line location and line width tends to have a
V shape at each mode of the line location. This behavior is
illustrated in the left panels of Figure 8. A larger fitted value of
the line width, in turn, increases the Gaussian line intensity, re-
sulting in an overall positive relationship in the middle panels of
Figure 8. As a result, the line intensity tends to increase as the
line locationmoves away from each of its modes, as illustrated in
the right panels of Figure 8.

4. ANALYSIS OF THE QUASAR PG 1634+706

4.1. The High-Redshift Quasar PG 1634+706

X-ray spectra of many sources are available in Chandra
archives.8 We apply our methods to the calibration source,
PG 1634+706, that was observed 6 times during the first year
of theChandramission. Only one observation (ObsID 1269) has
been analyzed and published (Haro-Corzo et al. 2007), and it

Fig. 8.—Joint posterior distributions of the Gaussian line location, the line SD, and the log of the line intensity from the simulation study. The two rows correspond to
two typical types of test data in case 2, where the first row represents the test data with the line location having a unimodal posterior distribution and the second row the test
data with the line location having amultimodal posterior distribution. The dashed lines represent either the true location (2.85 keV), the true standard deviation (0.04 keV),
or the true log intensity (3.15 photons) of a narrow and weak Gaussian emission line in case 2 of our simulation study.

8 See http://cxc.harvard.edu /cda.
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indicates that a narrow iron line was detected in this source. We
include all available data sets in our analysis to evaluate the
location and significance of the line.We focus on a single narrow
emission line that might correspond to either the narrow com-
ponent or one of the two peaks of the broad component, of the Fe
K� line discussed in x 1.1. In principle, an analysis might in-
clude two or three delta functions in an effort to simultaneously
identify all three features. As we shall discuss, however, we find
only marginal evidence for one feature, and thus did not pursue
the simultaneous fitting of multiple features.

PG 1634+706 (redshift z ¼ 1:334) is a radio-quiet and opti-
cally bright quasar (Steidel & Sargent 1991). It is very luminous in
X-rayswith the 2Y10 keV band luminosity exceeding 1046 erg s�1

(Jiménez-Bailón et al. 2005). The iron emission line in such lu-
minous sources is expected to be weaker than in lower luminosity
AGNs (Nandra et al. 1997). The quasar was observed with ASCA
(George et al. 2000) and XMM-Newton (Page et al. 2005) and
no line was detected at the energy of the 6.4 keV Fe K� line
(observed at Eobs ¼ 2:738 keV) with the limits on equivalent
width given as EW < 750 eV and EW < 82 eV, respectively.
However, the narrow line was detected in Haro-Corzo et al.
(2007) analysis of one Chandra data set at Eobs ¼ 2:84 keV. Here
we present all available Chandra observations and search for the
narrow emission line within the available energy range.

PG 1634+706 was observed with Chandra ACIS-S detector
(Weisskopf et al. 2002) as a calibration target six times on 2000
March 23 and 24. Each observation lasted between 4.4 and 11 ks.
We use CIAO software9 to process the archival data and ex-
tracted the spectra assuming circular source regions of 1.800 radius.
We apply CALDB 3.3.0 calibration data. Table 2 lists each obser-
vation with its exposure time and the total counts in its spectrum.

Below we apply our methods and search for the narrow emis-
sion line in the available Chandra spectra. In the xx 4.2Y4.3, we
illustrate our methods using all of the availableChandra spectra.
This allows us to combine the information in the individual spec-
tra in our search for a narrow emission line in PG 1634+706.

4.2. Fitting a Spectral Model

Weuse our statistical algorithms using a delta function line pro-
file to search for a line in the Chandra spectra of PG 1634+706.
When we look for emission lines, we typically confine our at-
tention to energies above 1 keV, because we avoid regions with
potential calibration issues and effects related to absorption.

The marginal posterior distribution of the line location for each
observation of PG 1634+706 is computed using Monte Carlo
draws and is presented in the top two rows of Figure 9. The solid
lines represent the marginal posterior distributions, and the cor-
responding profile posterior distributions are represented by dashed
lines. Although the marginal and profile posterior distributions

differ in their treatment of nuisance parameters, Figure 9 illus-
trates that both representations capture similar peaks and confirms
that the Markov chain fully explores the parameter space for the
delta function line location. Because the marginal posterior dis-
tribution of the delta function line location is highly multimodal,
we summarize the posterior distribution by constructing an HPD
graph to visualize the HPD regions of varying levels; see x 2.3.
The HPD graph also illustrates that the marginal posterior dis-
tribution is highly multimodal, so that each HPD region may con-
sist of a number of disjoint intervals.
For example, the 95% HPD regions of the delta function line

location are presented in Table 3 along with local modes of the
posterior distribution associated with each interval. Each of the
95%HPD regions is composed of a number of disjoint intervals.
Only the intervals that have posterior probabilities greater than
5% are presented in Table 3, so that the probabilities may sum
to less than 95%. For example, the two intervals of ObsID 47
presented in Table 3 have a combined posterior probability of
80.96% and the other 11 intervals not shown in the table have a
posterior probability of about 14.04%, for a total of 95%. The
posterior modes of the delta function line location that are located
near 2.74 keV are indicated by footnote b in Table 3.
The six observations of PG 1634+706 were independently

observed withChandra. Thus, under the flat prior distribution on
�, p(�) / 1, the posterior distribution of the line location given
all six observations is given by
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denotes the six observations,

� denotes the delta function line location parameter,  ¼
f i; i ¼ 1; : : : ; 6g denotes the set of model parameters other
than � for the six observations, and L �;  ijYobs

� �
represents a

likelihood function of (�;  i) given Yobs. (Here we allow  i to
vary among the six observations, i.e., we do not exclude the
possibility that the six observations have somewhat different
power-law normalizations and photon indexes.) The values of
the posterior distribution given one of the individual data sets are
sometimes indistinguishable from zero because of numerical in-
accuracies. Thus, we add 1/15,000 to the posterior probability of
each energy bin and renormalize each of the posterior distribu-
tions. This allows the product given in equation (6) to be com-
puted for each energy bin and is somewhat conservative as it
increases the posterior uncertainty corresponding to each of the
individual data sets. Figure 10 presents the marginal posterior
distribution of the delta function line location given all six obser-
vations computed in this way; the left panel examines the whole
range of the line location while the right panel focuses on the
range near 2.74 keV. As shown in Figure 10, the posterior dis-
tribution given all six observations is fairly unimodal and sym-
metric, except the little local mode near 2.655 keV. Thus, using a
nominal 95% HPD region, the most probable delta function line
location is summarized as 2:845þ0:045

�0:055 keV with posterior prob-
ability of 95.3%.

4.3. Model Checking and Evidence for the Emission Line

Posterior predictive methods (Rubin 1981, 1984; Meng 1994;
Gelman & Meng 1996; Gelman et al. 1996) can be employed to
check the specification of the spectral model. Thesemethods aim

TABLE 2

Description of the Chandra Observations for PG 1634+706

Observed Data Set

Exposure Time

(s) Total Counts

ObsID 47...................................... 5389.08 1651

ObsID 62...................................... 4854.57 1472

ObsID 69...................................... 4859.42 1457

ObsID 70...................................... 4859.68 1419

ObsID 71...................................... 4405.57 1356

ObsID 1269.................................. 10834.03 2216

9 See http://cxc.harvard.edu/ciao.
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to check the self-consistency of a model, i.e., the ability of the
fitted model to predict the data to which the model is fit. To
evaluate and quantify evidence for the inclusion of an emission
line in the spectrum, we extend the method of posterior predic-
tive p-values (ppp-values10) proposed by Protassov et al. (2002)
and van Dyk & Kang (2004).

With theChandra observations of PG 1634+706, we consider
the same spectral model discussed in x 1.3 except that we com-
pare three models for the emission line:

Model 0.—There is no emission line in the spectrum.
Model 1.—There is a delta function emission line with loca-

tion fixed at 2.74 keV, but unknown intensity in the spectrum.

Model 2.—There is a delta function emission line with un-
known location and intensity in the spectrum.

We could equally well consider a Gaussian line profile in
models 1 and 2; either line profile model results in a valid test.
We consider a delta function line profile simply because we are
looking for evidence of a narrow emission line.

We use ppp-values to compare the three models and quantify
the evidence in the data for the delta function emission line; see
Protassov et al. (2002) for details of this method and its ad-
vantages over the standard F-test, the standard Cash statistic
(Cash 1979; or likelihood ratio test statistic), andBayes factors.11

Fig. 9.—Marginal posterior distribution andHPDgraph of the delta function line location,�, for each of the six observations of PG 1634+706. The solid lines in the first
two rows represent the marginal posterior distribution of the delta function line location, and the dashed lines the profile posterior distribution. For several of the
observations the two are nearly indistinguishable.

10 A posterior predictive p-value (ppp-value) is a Bayesian generalization of
the classical p-value. Because classical p-values depend on the unknown param-
eters of the nullmodel, they are difficult to computewhen the nullmodel is not fully
specified; ppp-values handle this difficulty by computing the expected value of the
classical p-value using the posterior distribution of the unknown parameters.

11 Becausewe are looking for evidence for the emission line, we do not treat the
two models under comparison equally. That is, we are not simply looking for the
model (with or without the emission line) that best explains the data but we are also
attempting to guard againstwrongly concluding that an emission line is presentwhen
there is none. If we wished to simply compare the twomodels, the deviance infor-
mation criterion (DIC; Spiegelhalter et al. 2002) would be a better method to use.
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In the posterior predictive checks, model 1 fixes the delta function
line location at 2.74 keVusing prior information as to the location
of the Fe K� emission line. In order to combine the evidence for
the line from all six observationswith different exposure areas and
exposure times, we base our comparisons on the test statistic that
is the sum of the six log likelihood ratio statistics for comparing
model m and model 0, i.e.,

Tm Ỹ(‘)
� �

¼
X6
i¼1

ln
sup�2�m

L �jỸ(‘)
i

� �

sup�2�0
L �jỸ(‘)

i

� �
2
4

3
5;

for m ¼ 1; 2; and ‘ ¼ 1; : : : ; 1000; ð7Þ

where �0, �1, and �2 represent the parameter spaces under
models 0, 1, and 2, respectively, and Ỹ(‘) ¼ fỸ(‘)

i ; i ¼ 1; : : :; 6g
denotes the collection of six data sets simulated under model 0.
Specifically, we generate 1000 replications of each data set from
the posterior predictive distribution under model 0 and compute
Tm Ỹ(‘)

� �
for m ¼ 1; 2. Histograms of T1 Ỹ(‘)

� �
and T2 Ỹ(‘)

� �
ap-

pear in Figure 11. Comparing the histogram of the simulated test

statistics with the observed value of the test statistic yields the
ppp-values (Rubin 1984; Meng 1994) shown in Figure 11. The
ppp-value is the proportion of the simulated test statistics that are
as extreme as or more extreme than the observed test statistic.
Smaller ppp-values give stronger evidence for the alternative
model, i.e., models 1 or 2, thereby supporting the inclusion of the
line in the spectrum in our case. As shown in Figure 11, there is
evidence for the presence of the spectral line given all six obser-
vations. The comparison betweenmodels 0 and 1 shows stronger
evidence for the line location because we are using extra a priori
information about the plausible line location.

5. CONCLUDING REMARKS

This article presents methods to detect, identify, and locate
narrow emission lines in X-ray spectra via a highly structured
multilevel spectral model that includes a delta function line pro-
file.Modeling narrow emission lines with a delta function causes
the EM algorithms and MCMC samplers developed in van Dyk
et al. (2001) to break down and thus requires more sophisticated
statistical methods and algorithms. The marginal posterior dis-
tribution of the delta function emission line location tends to be

TABLE 3

95% HPD Regions of the Delta Function Line Location

Observed Data Set

Posterior Mode

(keV)

95% HPD Region

(keV)

Posterior Probabilitya

(%)

ObsID 47...................................... 2.885b (2.44, 3.14) 72.48

5.915 (5.44, 5.92) 8.48

ObsID 62...................................... 1.885 (1.00, 1.97) 25.88

2.785b (2.05, 3.02) 21.65

3.925 (3.30, 4.06) 28.27

5.395 (4.99, 5.41) 8.17

ObsID 69...................................... 1.955 (1.51, 2.65) 55.75

3.535 (2.84, 3.62) 12.41

3.935 (3.70, 4.01) 11.79

ObsID 70...................................... 2.795b (2.37, 3.17) 63.22

5.945 (5.34, 6.00) 15.96

ObsID 71...................................... 2.325 (1.75, 2.45) 8.81

2.815b (2.50, 3.01) 42.11

5.625 (5.38, 5.72) 30.25

ObsID 1269.................................. 2.995b (2.69, 3.08) 84.96

a Note that the posterior probability combined for each ObsID may not add up to 95% because we list only
posterior intervals with posterior probability of 5% or more.

b Posterior modes of the line location near 2.74 keV where the Fe K� emission line is identified.

Fig. 10.—Posterior distribution of the line location given all of the observations of PG 1634+706. Left: Plotted over the entire energy range of �; right: plotted over a
range near 2.85 keV.
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highly multimodal when the emission line is weak or multiple
emission lines are present in the spectrum. Because basic sum-
mary statistics are not appropriate to summarize such a multi-
modal distribution, we instead develop and use HPD graphs
along with a list of posterior modes. Testing for an emission line
in the spectrum is a notoriously challenging problem because the
value of the line intensity parameter is on the boundary of the
parameter space, i.e., zero, under a model that does not include an
emission line. Thus, we extend the posterior predictive methods
proposed byProtassov et al. (2002) to test for the evidence of a delta
function emission line with unknown location in the spectrum.

Using the simulation study in x 3, we demonstrate the po-
tential advantage of model misspecification using a delta func-
tion line profile in place of a Gaussian line profile. We show that
the delta function line profile may provide more precise and
meaningful summaries for line locations if the true emission line
is narrow. When multiple lines are present in the spectrum, the
marginal posterior distribution of a single delta function line
location may indicate multiple lines in the spectrum.

Our methods are applied to the six different Chandra obser-
vations of PG 1634+706 in order to identify a narrow emission

line in the X-ray spectrum. Given all the six observations, the
most probable delta function line is identified at 2:845þ0:045

�0:055 keV
in the observed frame. The corresponding rest frame energy for
the line is 6:64þ0:11

�0:13 keV, which may suggest the high ionization
of iron in the emitting plasma. There is some recent evidence that
high ionization iron line can be variable on short timescales (see
for example Mrk766 in Miller et al. 2006). Such variability
would explain no detection of the emission line in one of the six
Chandra observations.
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APPENDIX A

NEW ALGORITHMS FOR MODE FINDING AND POSTERIOR SIMULATION

In this section we give an overview of the mode finding and posterior simulation methods used to fit the spectral model with a narrow
emission line. Our summary is brief, and thus readers who are interested in a more detailed description should refer to van Dyk & Park
(2004, 2008) and Park & van Dyk (2008).

A1. FASTER EM-TYPE ALGORITHMS FOR MODE FINDING

In order to illustrate our computational strategy, consider a simplified example of an ideal instrument that is not subject to the data
contamination processes. In particular, the redistribution matrix is an identity matrix, the effective area is constant, there are no
absorption features, and there is no background contamination. In addition, we assume that the continuum is specified with no unknown
parameters and that there is a single Gaussian emission line that has a known width �0 and a known intensity k. Thus, the line location is
the only unknown parameter, the source model given in equation (1) simplifies to

�j(�) ¼ �j f (Ej)þ k�j(�; �0); ðA1Þ

and the counts are modeled as Yj � Poisson(�j(�)). This model can be fit using the method of data augmentation (Tanner &Wong 1987)
by setting Yj ¼ YC

j þ YL
j , where Y

C
j and YL

j are the counts due to the continuum and the emission line in bin j, respectively. In particular,

Fig. 11.—Posterior predictive checks given all six observations of PG 1634+706. In each of the two histograms, the observed test statistic (vertical line) is compared
with the test statistics from 1000 posterior predictive simulated data sets. The ppp-value is the proportion of the test statistics computed using the data simulated under
model 0 that are as extreme as or more extreme than the observed test statistic. Small ppp-values indicate stronger evidence for the emission line.
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the EM iteratively split the counts into continuum counts and emission line counts. Given the current iterate of the line location, �(t), the
E-step updates the line counts via

E-step.—Compute EðYL
j j�(t);YÞ for each bin j. That is,

Ŷ L
j � E YL

j

���(t);Y� �
¼ Yj

k�j �(t); �0
� �

�j f (Ej)þ k�j �(t); �0ð Þ : ðA2Þ

Next, the M-STEP of EM updates the emission line location �(tþ1) by

M-step.—Find �(tþ1) ¼
P

j2J EjŶ
L
j /

P
j2J Ŷ L

j , which is the weighted average of the bin energies and uses the emission line counts
as weights.

Although this EM algorithm is simple, it breaks down when fitting the location of a narrow emission line, i.e., when �0 is small
relative to the size of the bins. In the extreme, the Gaussian line profile becomes a delta function, so that �j(�

(t); �0) is zero for all bins
except the bin containing �(t). This results in an E-step that computes zero line counts in all bins except the bin containing �(t) and
finally an M-step that computes �(tþ1) ¼ �(t). This means that EM will return the same line location at each iteration and that the
algorithm will not converge to a mode.

In this simplified example, this difficulty can be avoided by directly maximizing the posterior distribution

p(�jY) /
Y
j2J

�j(�)
� �Yj

e��j(�): ðA3Þ

Because of the binning of the data, we can treat possible line locations within each bin as indistinguishable and compute the mode by
evaluating equation (A3) on the fine grid that corresponds to the binning of the data.

The situation is more complicated in the full spectral model described in x 1.3. The method of data augmentation can be used to
construct efficient algorithms that both fit the parameters in the continuum and the lines and account for instrument response and back-
ground contamination. In the case of the narrow emission line, however, we must implement a strategy that uses less data augmentation
when updating the line location/width than when updating the other model parameters. The expectation/conditional maximization either
(ECME) algorithm (Liu & Rubin 1994) allows us to use no data augmentation when updating the line location/width, but the resulting
M-step is time consuming owing to the multiple evaluations of the conditional posterior distribution of the line location/width which
involve the large dimensional redistribution matrix,M. An intermediate strategy uses the standard data augmentation scheme to adjust
for instrument response and background contamination but does not separate continuum and line photons when updating the line
location/width. This strategy is an instance of the alternating expectation/conditionalmaximization (AECM) algorithm (Meng&vanDyk
1997), and each iteration is much quicker than with ECME, but more iterations are required for convergence. The algorithms we use for
mode finding aim to combine the advantages of ECME andAECMby running one ECME iteration followed bymAECM iterations and
repeating until convergence. Van Dyk & Park (2004) call this a Rotation(m) algorithm and illustrate the computational advantage of the
strategy.

A2. FASTER MCMC SAMPLERS FOR POSTERIOR SIMULATION

Returning to the simplified example of Appendix A1, we can formulate a Gibbs sampler using the same data augmentation scheme.
Given the current iterate, �(t), step 1 simulates the line counts in bin j via

Step 1.—Simulate (YL
j )

(tþ1) from its conditional distribution given �(t) and Y for j ¼ 1; : : : ; J. That is,

YL
j j �(t);Y
� �

� Binomial Yj;
k�j �(t); �0

� �
�j f (Ej)þ k�j �(t); �0ð Þ

� 	
: ðA4Þ

Next, step 2 simulates the line location via

Step 2.—Simulate �(tþ1) from its conditional distribution given YL
� � tþ1ð Þ

and Y. That is,

�j YL
� � tþ1ð Þ

;Y
h i

� N

P
j2J Ej YL

j

� � tþ1ð Þ

P
j2J YL

j

� � tþ1ð Þ ;
�20P

j2J YL
j

� � tþ1ð Þ

2
64

3
75: ðA5Þ

We collect a posterior sample �(t); t ¼ t0 þ 1; : : : ; T
� �

after a sufficiently long burn-in period t0; we discard the burn-in draws. See
van Dyk et al. (2001) for details.

When this algorithm is applied with a narrow emission line, it breaks down just as the EM algorithm does. When a delta function is
used for the line profile, the simulation in equation (A4) results in no line counts in any bin except the one containing the line, and again�
does not move from its starting value.When a narrow Gaussian line profile is used, the situation is less extreme, but the sampler exhibits
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very high autocorrelations and typically cannot jump among the posterior modes. Just as with EM, the difficulty can be avoided by
computing the posterior distribution of � on a find grid and directly simulating

�(t) �Multinomial 1; p(�jY)
��
� ¼Ej

; j2J
n o� �

: ðA6Þ

When themethod of data augmentation is used to account for data contamination processes described in x 1.3, however, this approach
should be modified in a manner analogous to the ECME and AECM algorithms. This leads to the strategy of using conditional
distributions from different data augmentation schemes. In this case, however, the resulting set of conditional distributions used to con-
struct the Gibbs sampler may be incompatible and there may be no joint distribution that corresponds to this set of conditional dis-
tributions. Although such a sampler may result in efficient computation, care must be taken to be sure the sampler delivers simulations
from the target posterior distribution. This is formalized through the partially collapsed Gibbs (PCG) sampler of van Dyk& Park (2008)
which outlines the steps that should be taken to ensure proper convergence; refer to Park & van Dyk (2008) for the applications and
illustrations of PCG samplers. The PCG samplers can be viewed as the stochastic version of ECME and AECM, thereby allowing us to
sample the line location with no data augmentation (as in ECME) or partial data augmentation (as in AECM). Thus, the PCG sampler
differs from the Gibbs sampler developed in van Dyk et al. (2001) in sampling the line location (and line width), and in the order of
sampling steps. Park& vanDyk (2008) design two PCG samplers to fit the spectral model with a delta function emission line or a narrow
Gaussian emission line, which are called PCG I and PCG II, respectively. As compared to PCG I, PCG II requires one additional
sampling step for the line width, so that fitting the narrow Gaussian emission line is computationally more demanding than fitting the
delta function emission line.
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