
Multiple Imputation for Incomplete Data
With Semicontinuous Variables

Kristin N. JAVARAS and David A. VAN DYK

We consider the application of multiple imputation to data containing not only partially missing categorical and continuous variables, but
also partially missing ‘semicontinuous’ variables (variables that take on a single discrete value with positive probability but are otherwise
continuously distributed). As an imputation model for data sets of this type, we introduce an extension of the standard general location
model proposed by Olkin and Tate; our extension, the blocked general location model, provides a robust and general strategy for handling
partially observed semicontinuous variables. In particular, we incorporate a two-level model for the semicontinuous variables into the
general location model. The � rst level models the probability that the semicontinuous variable takes on its point mass value, and the second
level models the distribution of the variable given that it is not at its point mass. In addition, we introduce EM and data augmentation
algorithms for the blocked general location model with missing data; these can be used to generate imputations under the proposed model
and have been implemented in publicly available software. We illustrate our model and computational methods via a simulation study and
an analysis of a survey of Massachusetts Megabucks Lottery winners.
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1. INTRODUCTION

1.1 Multiple Imputation With Semicontinuous Variables

Missing data often complicate statistical analysis, particu-
larly in the survey setting where item nonresponse is frequently
encountered.A common method for handlingsuch missing data
is to impute them before any statistical analysis is performed.
This method divides data analysis into two phases. First, in the
imputation phase, an imputation of the dataset (i.e., a complete
version of the data with all missing values imputed) is gener-
ated. Second, in the analysis phase, the imputed dataset is ana-
lyzed as if there were no missing data. Usually, the imputation
phase is conducted in consultation with the data collector, in-
corporates available expert knowledge, and uses sophisticated
statistical tools (e.g., Monte Carlo methods for � tting highly
structured models). The analysis phase can be repeated by nu-
merous end-users who are less familiar with the data collec-
tion mechanism and have fewer statistical tools. The basic ad-
vantage of this strategy is that it separates the complications
caused by the missing data from the basic statistical analysis.
Thus, from a computational standpoint, imputation simpli� es
the analysis phase so that it requires only standard statistical
methods (i.e., methods for data with no missing values). More
importantly, from an inferential standpoint, this method incor-
porates the knowledgeand informationavailable to the data col-
lector into the imputation. Thus, imputation methods are more
than computational tools; they are a mode of inference that al-
lows for the sequential input of multiple sources of information
(see, e.g., Meng 1994).

Unfortunately, it is quite unusual for the imputation to be
completely deterministic; that is, even with the expert knowl-
edge of the data collector, there is uncertainty involved in the
imputation. Valid inference must account for this uncertainty.
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Multiple imputation (MI) (e.g., Rubin 1987) is an oft-adopted
approach for obtaining such valid inference while accounting
for missing data. In the imputation phase of MI, M imputa-
tions (rather than just one imputation) of the dataset are gener-
ated. Ordinarily, a model-based method is used to generate the
M imputations, which then represent repeated random draws
from a model for the nonresponse, which is a conditionaldistri-
bution of the imputation model for the complete data. In the
analysis phase, each of the M imputed datasets is analyzed
as if there were no missing data, and the M sets of estimates
and corresponding errors are combined according to simple
combining rules. The power of MI lies in its ability to return
valid inferences—that is, ones that re� ect the additional vari-
ability due to the missing values under the imputation model—
while requiring only standard statistical methods in the analysis
phase.

Of course, it is important that the imputation model be suit-
able for the particular dataset of interest. For certain types of
datasets, existing models can make suitable imputation models.
For instance, the general locationmodel (GLoM) used by Olkin
and Tate (1961) and Krzanowski (1980, 1982) is a standard im-
putation model for incomplete datasets containing continuous
and categoricalvariables; it is appropriateas long as its assump-
tion of normality and variance constraints are suitable for the
continuousvariables in the dataset (or for some transformations
of them). Imputationsof the incomplete categorical and contin-
uous dataset can be generated using a GLoM for the imputation
model by employing either the expectation-maximization(EM)
algorithm(Dempster, Laird, and Rubin 1977)developedby Lit-
tle and Schluchter (1985) for the GLoM or the data augmenta-
tion algorithm (Tanner and Wong 1987) developed by Schafer
(1997) for the GLoM.

But what if the incomplete dataset contains not only contin-
uous and categorical variables, but also semicontinuous vari-
ables, as is common in practice? A semicontinuous variable is
de� ned as a variable that takes on a speci� c value (say, zero,
without loss of generality) with a positive probability, but oth-
erwise takes on values that can be modeled by a continuousdis-
tribution.Some common examples of semicontinuousvariables
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(with point masses at zero) are number of years of higher edu-
cation, dollar amount of unemploymentbene� ts, and number of
years of exposure to a particular carcinogen. As is the case for
these examples, the continuous values of a particular semicon-
tinuous variable are often restricted to a certain part of the real
line (e.g., only nonnegativevalues are allowed in the foregoing
examples). Also, it is not uncommon for the continuousvalues
of a given semicontinuous variable to have a skewed distribu-
tion; however, if a semicontinuousvariable is treated as contin-
uous, then normalizing transformationssuch as the log transfor-
mation are problematicbecause of the point mass at zero. In this
article we introduce a new model, the blocked general location
model (BGLoM), that is an extension of the standard GLoM
and that can be used as an imputation model for a dataset con-
taining semicontinuousvariables. The BGLoM is an alternative
to existing imputation methods for semicontinuous variables
proposed by Herzog and Rubin (1983) and Heeringa, Little,
and Raghunathan (2002), both of which are discussed in Sec-
tion 1.3. Throughout this article, we assume that the missing-
data mechanism is ignorable, which requires that the missing
data be missing at random, as de� ned by Rubin (1976), and
that the parameters of the imputation model and missing-data
mechanism be distinct (Little and Rubin 1987; Rubin 1987).
Under this assumption, the BGLoM is an appropriate imputa-
tion model as long as its distributionalassumptions are suitable
for the dataset at hand (possibly after some transformations of
the variables).

Even with an appropriate imputation model, it is important
that the analysis model be congenialwith the imputation model
(Meng 1994). If the imputation and analysis models differ, then
the resulting inference may not be valid. For example, if a
particular interaction is assumed to be zero in the imputation
model, then the imputed values will not show the interaction;
as a result, any interaction existing in the observed data will be
attenuated in the � nal analysis. Examples such as this one led
Meng to suggest the following:

To accommodate a wide variety of subject-motivated analyses that will be per-
formed on the imputed datasets, the imputation model should be as objective
and general as the imputer’s resources allow. This implies that general and sat-
urated models are preferred to models with special structures (e.g., models that
assume certain interactions are zero), and imputation models should include
predictors that are likely to be part of potential analyses even if these predictors
are known to have limited predictive power for the existing incomplete obser-
vations.

(For further discussion of the issue of imputation model gen-
erality, see also Rubin 1980, 1996; Clogg, Rubin, Schenker,
Schultz, and Weidman 1991; Schenker, Treiman, and Weid-
man 1988, 1993; Liu and Rubin 1998; Barnard, McCulloch,
and Meng 2000.) This concern about imputation model gener-
ality is clearly of fundamental importance and is a driving force
in our model speci� cation; we allow more � exibility in the vari-
ance structure than is available with the standard GLoM.

After presenting the BGLoM, we describe several methods
that can be used to generate imputations of the dataset under
a BGLoM imputation model. We also introduce an EM algo-
rithm and a data augmentation algorithm for the BGLoM with
missing data, both of which can be used to implement these
methods of generating imputations. Once the imputations have
been generated, a method appropriate for complete data with
semicontinuous variables can be used by the end-user to ana-
lyze the imputed datasets. Although there is some shortage of

appropriate methods, a variety of useful tools do exist. Many of
these tools model the semicontinuousvariables in two parts, as
does our BGLoM (see Olsen and Schafer 2001 for a review of
these two-part models).

1.2 Motivating Example

This article is motivated by the Massachusetts Megabucks
Lottery Winners Survey (MMLWS) dataset, which contains
background information and various measures of economic be-
havior for individuals who won the Massachusetts Megabucks
Lottery in the mid-1980s. This dataset is interesting from an
economic standpoint because the lottery effectively produced a
randomized experiment that assigned large sums of cash to cer-
tain individuals, thereby allowing investigation into the effects
of unearned income on economicbehavior (Imbens, Rubin, and
Sacerdote 2001). In addition to continuousand categorical vari-
ables, the MMLWS dataset includes semicontinuousvariables,
such as annual income due to employment in 1995, which has
a sizable point mass at zero corresponding to individuals who
were unemployed in 1995. Further, in the MMLWS dataset, al-
most all of the variables are partially missing, having at least
one missing value.

Previous analyses of the MMLWS dataset by Imbens, Ru-
bin, and Sacerdote (2001) utilized the complete-case approach
to handle the missing data: Units with missing values for one or
more of the variables of interest were discarded before any data
analysis was begun. As the authors acknowledge, the complete-
case approach results at the very least in a loss of information
and potentially in serious biases; thus, it was decided to reana-
lyze the MMLWS dataset using MI. However, as Schafer (1997,
sec. 10.2.4) notes, there is a dearth of suitable model-based im-
putation methods for incomplete datasets with semicontinuous
variables; not surprisingly, then, none of the existing models
and accompanying imputation generating methods considered
were deemed appropriate means of implementing the MI ap-
proach for the MMLWS dataset.

Throughout the article, we refer to a subset of the MMLWS
dataset for illustrative purposes. This subset includes the bi-
nary categorical variable gender (0 D female, 1 D male), the
continuous variable winnings (dollar amount won in the lot-
tery), and the semicontinuous variables 1992 earnings (annual
income from employment in 1992) and 1995 earnings (annual
income from employment in 1995). Both semicontinuous vari-
ables havepoint masses located at zero that comprise those indi-
vidualswho were not employed in 1992 and 1995, respectively.
More generally, the dataset of interest refers to a dataset with
r0 semicontinuous,q0 continuous, and p0 categorical variables,
any of which can be partially missing.

1.3 Existing Imputation Models and Model-Based
Methods

In this section we outline three existing imputation models
and methods that might be, but should not be, used to gen-
erate imputations of the dataset of interest. The � rst imputa-
tion model that might be suitable is the aforementioned GLoM.
Under the standard GLoM, the categorical variables have a
marginal distribution that is multinomial across the cells of a
contingency table produced by crossing the levels of the cate-
gorical variables. Conditional on the categorical variables, the
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continuous variables have a multivariate normal distribution
with means that vary across the cells and a covariance matrix
that is common across the cells. Because of this conditional
formulation, generating imputations under a GLoM imputation
model is generally relatively easy.

Although the GLoM and the accompanying EM and data
augmentationalgorithms could be used to generate imputations
of the dataset of interest if all of its semicontinuous variables
were treated as continuous variables, doing so would result in
questionable imputations for the missing values of these vari-
ables. This is the case because the point mass value (here,
zero) for one such variable would be imputed with probabil-
ity zero under a continuous model; for instance, in our exam-
ple no values of zero would be imputed for 1992 earnings,
which is a somewhat dubious result given the nontrivial level
of unemployment among the individuals with observed val-
ues. Additionally, as noted earlier, it may not be possible to
use common normalizing transformations to make the stan-
dard GLoM’s within-cell normality assumption more appropri-
ate for a skewed semicontinuousvariable. Finally, the continu-
ous model may result in imputations outside the range of pos-
sible values (e.g., negative 1992 earnings). Although some of
these dif� culties can sometimes be mitigated by rounding val-
ues that are impossible or simply near the point mass to the
point mass, such post hoc corrections generally require ad hoc
rules and ignore the inappropriatenature of the Gaussian model
for semicontinuousdata.

A second existing option is the model-based method pro-
posed by Herzog and Rubin (1983), in which a partially missing
semicontinuousvariable is imputed in two stages. However, this
method is intended for the special case in which there is only
one semicontinuousvariable and all other variables are fully ob-
served. Likewise, a third existing option, used by Heeringa, Lit-
tle, and Raghunathan (2002), used a two-stage model for semi-
continuous variables. In their examples, however, not only are
all continuous and categorical variables completely observed,
but also the indicator variables for the point mass values of the
semicontinuous variables are completely observed (i.e., only
the continuousvalues of the semicontinuousvariables might be
missing). Neither of these assumptions is appropriate for our
more general dataset of interest.

Although none of these options is suitable for the dataset of
interest, we adopt certain aspects of all three in our formulation
of an appropriate imputation model. In particular, Heeringa,
Little, and Raghunathan (2002) suggest that their model can be
generalized to handle more general missing-data patterns and
more general variance structures. It is these generalizationsthat
we address.

1.4 Organization of the Article

In Section 2, we introduce the BGLoM, highlightinghow it
differs from the standard GLoM. We also describe how one
might generate imputations of the dataset of interest under a
BGLoM imputation model, using EM and data augmentation
algorithms developed for the BGLoM with missing data. In
Section 3, we describe the encouraging performance of the
BGLoM in both a simulation study and an analysis of the
MMLWS subset example. Concluding remarks regarding the

bene� ts and limitations of our BGLoM formulation are pro-
vided in Section 4. In the appendixeswe present the full details
of the EM and data augmentationalgorithms that we develop to
� t the BGLoM.

2. A NEW IMPUTATION MODEL: THE BLOCKED
GENERAL LOCATION MODEL

We now introducea new model, the BGLoM, which is a suit-
able imputation model for datasets with partially missing vari-
ables of all three types provided that the model’s distributional
assumptions are appropriate and that the missing-data mecha-
nism is ignorable. However, before describing the BGLoM, we
discuss a popular and convenient way of treating semicontinu-
ous variables used in the BGLoM. Further, we show how this
treatment necessitates an extension of the GLoM, thereby lead-
ing to the formulation of the BGLoM.

2.1 Two-Part Models for Semicontinuous Variables

Similar to the way in which Herzog and Rubin (1983) treated
the semicontinuous variable in their method, we replace each
of the r0 semicontinuous variables by a constructed categor-
ical variable that has two levels (zero if the semicontinuous
variable takes on the point mass value, and one otherwise) and
a constructed continuous variable that is relevant if and only
if the constructed categorical variable has a value of 1 (see
also Dunn, Manning, Morris, and Newhouse 1983; Manning
et al. 1981;Heeringa, Little, and Raghunathan2002). When the
constructed continuous variable is relevant, it equals the cor-
responding semicontinuous variable; when irrelevant, the con-
structed continuous variable is not de� ned. For instance, in the
MMLWS subset example, 1992 earnings would be replaced
with a positive earnings indicator variable that takes a value of
one if an individual was working in 1992 and zero otherwise,
and a constructed continuousvariable that is relevant only when
the positive earnings indicator variable takes a value of one and
that represents the earnings of an individual employed in 1992.
Analogous replacements would occur for 1995 earnings.

These 2r0 constructed variables can be combined with the
dataset’s p0 pure (i.e., nonconstructed)categoricalvariablesand
q0 pure continuous variables to produce p D p0 C r0 combined
(i.e., pure and constructed)categoricalvariables and q D q0 Cr0

combined continuous variables. In our illustrative example, the
result would be three combined continuous variables and three
combined categorical variables. (In our notation we use a zero
in the subscript to refer to summaries of the pure variables and
a prime in the superscript to refer to summaries of the con-
structed variables; summaries of the combination of pure and
constructed variables have no such adornment.)

2.2 Extending the General Location Model

After rede� ning the dataset of interest in terms of combined
continuous and categorical variables only, as is described in
Section 2.1, it may appear at � rst glance that the standard
GLoM can be used as a model for the rede� ned data. To see
why this is not the case, we consider the contingency table pro-
duced by crossing the levels of the combined categorical vari-
ables, which we term the augmented contingency table. This p-
dimensional augmented contingency table has C D 2r0

Qp0
jD1 cj
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Figure 1. Augmented Contingency Table for the MMLWS Subset Ex-
ample. The blocks are determined by the semicontinuous variables, via
the constructed categorical variables, and have different sets of rele-
vant constructed continuous variables. These variables, in addition to
the pure continuous variable, are listed in gray type in each block.

cells, where cj is the number of levels for pure categorical vari-
able j. In this table, different sets of constructedcontinuousvari-
ables are relevant in different cells. For a concrete illustrationof
this phenomenon,we turn to our MMLWS subset example: the
eight-cell augmented contingency table for this example is por-
trayed in Figure 1, which shows that the constructed continuous
variable earnings in 1995 is relevant in all cells corresponding
to employment in both 1992 and 1995, but not in cells corre-
sponding to employment in 1992 and unemployment in 1995.
Thus, cells of the former variety have one more constructed
continuousvariable than do cells of the latter variety.

Because not all cells in the augmentedcontingencytable con-
tain the same set of continuousvariables, the covariance matri-
ces for the continuous variables do not refer to the same set
of variables (or even have the same dimensions) in every cell,
unlike the covariance matrix in the standard GLoM. For this
reason, it is necessary, as Schafer (1997, pp. 381–382) notes,
to extend the standard GLoM to make it appropriate for the re-
de� ned dataset; below we introduce just such an extension, the
BGLoM. In contrast, the strategy suggested by Heeringa, Lit-
tle, and Raghunathan (2002) entails treating the variables that
are not relevant in each block as missing data; see the last para-
graph of Section 2.4 for more on this strategy.

2.3 De� nition of Blocks

Before we present the particular extension that we propose
in this article, the BGLoM, we must introduce the concept of
a block, because the concept is integral to the formulation of
the BGLoM. We seek to formalize the concept that not all cells
in the augmented contingency table have the same set of rel-
evant continuous variables. To do so, we divide the table into
mutually exclusive and exhaustive blocks, where a block is de-
� ned as the set of all cells that share the same values for the r0

constructed categorical variables. The augmented contingency
table can be divided into 2r0 blocks, which are formed by cross-
ing the levels of the constructed categorical variables. Within
each block is a smaller p0-dimensional contingency table with

C0 D
Qp0

jD1 cj cells; this smaller table is produced by crossing
the levels of the pure categorical variables while holding the
levels of the constructed categorical variables constant. As a
result of the de� nition for a block, the same constructed contin-
uous (and, of course, the same pure continuous) variables are
relevant in every cell within a given block.

Figure 1 depicts the four blocks in the MMLWS subset ex-
ample. The blocks, each of which consists of two cells, recede
into the page, and, for each block, the relevant continuousvari-
ables are enumerated in gray type. Block 1 corresponds to un-
employment in both years; block 2, to employment in 1992 and
unemploymentin 1995; block 3, to unemployment in 1992 and
employmentin 1995; and block 4, to employment in both years.
Within each block are two cells that correspond to the “male”
and “female” levels of the only pure categorical variable, gen-
der. Further, the continuous variable winnings can be observed
in all four blocks, but the constructed continuousvariable earn-
ings in 1995 is relevant only in blocks 3 and 4, and the con-
structed continuous variable earnings in 1992 is relevant only
in blocks 2 and 4.

2.4 De� nition of the Blocked General Location Model

Proceeding with the de� nition of the BGLoM, we assume a
completelysaturated multinomialmodel for the combinedcate-
gorical variables across the cells of the augmented contingency
table. We also assume that the joint distributionof the pure con-
tinuous variables and the relevant constructed continuous vari-
ables is multivariate normal within the cells of the augmented
contingencytable. In the BGLoM, the means of this joint distri-
bution are assumed to differ across the cells, as is the case in the
standard GLoM. However, the variancesand covariancesare as-
sumed to be constant only within, and not across, blocks, unlike
in the standard GLoM where the covariance matrix is constant
across all cells. Obviously, because the same set of continuous
variables is relevant in every cell within a given block, the di-
mensions of the covariancematrix are the same for all cells in a
block. In principle,we could constrain certain variances and co-
variances to be equal across within-block covariance matrices,
which would reduce the number of parameters to be estimated.
However, in the interest of simplifying the following presen-
tation (and because a more general imputation model is often
desirable, as is discussed later in this section), we do not incor-
porate such constraints here.

To formalize the BGLoM, we let W1; : : : ; Wp0 denote the
pure categorical variables, let Z1; : : : ; Zq0 denote the pure con-
tinuous variables, and let S1; : : : ; Sr0 denote the semicontinu-
ous variables, all recorded for n individuals. For semicontinu-
ous variable Sj, de� ne a constructed categorical variable Wp0Cj

that takes the value 0 if Sj D 0 and 1 if Sj 6D 0, as well as a
constructed continuousvariable Zq0Cj that is relevant and equal
to Sj if Wp0Cj D 1 and irrelevant if Wp0Cj D 0. The combined
sets of categorical and continuous variables are denoted by
W D .W1; : : : ;Wp/ and Z D .Z1; : : : ; Zq/, respectively. We use
lower-case letters to refer to the rows of W and Z; thus, wi and
zi represent the (combined) categorical and (combined) contin-
uous variables for individual i. Finally, we denote the complete
dataset by Y D f.wi; zrel

i /, i D 1; : : : ; ng, where zrel
i represents

the components of zi that are relevant. Throughout, we make
some effort to follow the notation of Schafer (1997, chap. 9).
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The complete-datasampling distributioncan be factored into

p.Yjµ/ D
nY

iD1

p.zrel
i jµ;wi/p.wijµ/; (1)

where µ is the set of unknown model parameters. We begin
with the marginal distributionof the categorical variables. Each
wi can be classi� ed into a p-way contingency table with C
cells. We assume a completely saturated multinomial model
for this contingency table. Speci� cally, we let U D .uic/ be an
n £ C matrix with uic indicating whether individual i belongs
to cell c: in other words, we let uic D Ifwi belongs to cell cg and
assume

.u¢1; : : : ; u¢C/ » multinomial .n; ¼/; (2)

where u¢c D
Pn

iD1 uic for c D 1; : : : ; C and ¼ D .¼1; : : : ;¼C/ is
a probability vector.

The conditionaldistributionof the continuousvariables given
the categorical variables depends on wi through its cell and
block classi� cation. To keep track of the relationship between
individual, cell, and block indexes, we introduce six possibly
set-valued functions. Speci� cally, I.c; / and I.;b/ denote the
set of indexes of individuals in cell c and in block b, respec-
tively, C .wi; / and C .;b/ denote the index of the cell containing
individuals with categorical variables wi and the indexes of the
cells in block b, respectively, and B.w0

i; / and B.;c/ denote the
index of the block containing individuals with constructed cat-
egorical variables w0

i and containing cell c, respectively. These
de� nitions are formalized in Table 1. We can now complete the
model speci� cation with

zrel
i j µ;wi » N.¹c; 6b/; (3)

where c D C .wi; /, b D B.w0
i; / D B.;c/, ¹c is a vector of length

qrel
b , and 6b is a .qrel

b £ qrel
b / positive de� nite matrix, with qrel

b
the number of relevant continuousvariables in block b.

Using (1)–(3), we can construct the complete-data likelihood
function,

L.µ jY/ /

Á
CY

cD1

¼u¢c
c

!
BY

bD1

j6bj¡ub
¢¢=2

£ exp

µ
¡1

2

» X

c2C.;b/

X

i2I.c;/

.zrel
i ¡ ¹c/

>6¡1
b .zrel

i ¡ ¹c/

¼ ¶
;

(4)

Table 1. Mappings Between Individual, Cell, and Block Indexes

I(c; ) D {i : wi D w(c)} The set of indexes of individuals in cell c
I(; b) D {i : w 0

i D w 0(b)} The set of indexes of individuals in block b
C(wi ; ) D {c : w(c) D wi } The index of the cell containing individuals

with categorical variables wi
C(; b) D {c : w(c)0 D w 0(b)} The set of indexes of cells in block b
B(w 0

i ; ) D {b : w 0(b) D w 0
i } The index of the block containing individuals

with constructed categorical variables w 0
i

B(;c) D {b : w 0(b) D w(c)0} The index of the block containing cell c

NOTE: Cell membership of individuals is uniquely determined by wi and block membership is
determined by w 0

i , the component of wi corresponding to the constructed categorical variables.
We denote the value of wi corresponding to cell c by w.c/, its subvector corresponding to
the constructed categorical variables by w.c/0 , and the value of w 0

i corresponding to block b

by w 0.b/. With these de� nitions, we de� ne the index functions.

where µ D .¼;¹1; : : : ;¹C; 61; : : : ; 6B/, B D 2r0 is the num-
ber of blocks, and ub

¢¢ D
Pn

iD1
P

c2B.;c/ uic is the total count in
block b. In some cases we examine the posterior distribution
p.µ jY/ / L.µ jY/p.µ/, where p.µ/ is the independent reference
prior distribution

p.µ/ /
Á

CY

cD1

¼ ®c¡1
c

!Á
BY

bD1

j6bj¡
.qrel

b C1/

2

!
; (5)

where ® D .®1; : : : ; ®C/ is a vector of user-speci� ed hyperpara-
meters. In (5) we choose a marginal Dirichlet prior distribution
for ¼ , a � at prior distribution for each ¹c , and the standard non-
informative Jeffreys prior distribution for each 6b .

At this point,we pause to discuss why the BGLoM’s assump-
tion of block-speci� c covariancematrices, as opposed to a com-
mon covariance matrix for all blocks, makes it a more suitable
imputation model. First, as discussed in Section 1.1, it is im-
portant that the imputation model be as objective and general
as possible; unnecessary constraints should be avoided when-
ever possible. This certainly applies to avoiding constraints on
the cell variances in the GLoM. Indeed, the desire to avoid
such constraints is behind the generalizationsof the GLoM pro-
posed by Liu and Rubin (1998) and by Barnard, McCulloch,
and Meng (2000). Constraining the cell variances in a GLoM
to be the same can, for example, lead to dramatic overcover-
age of multiple imputation con� dence intervals (Barnard 1995,
sec. 6.6.2). Thus, constraining variance elements to be equal
across blocks should be a method of last resort to be used only
when the data are not rich enough to estimate block-speci� c
covariance matrices. If the sparsity of a particular dataset ne-
cessitates constraining some or all of the variance elements to
be equal across blocks (to reduce the number of parameters
to be estimated), then it is possible to incorporate these con-
straints into the BGLoM, as is noted in the � rst paragraph of
this section. However, such constraints on the variances lead to
computational issues, which is the second reason we choose to
assume that the covariance matrix varies across blocks. More
speci� cally, because different blocks contain different sets of
relevant continuous variables, attempting to constrain variance
elements to be equal across blocks can lead to messy, and often
intractable calculations. One reasonably straightforward strat-
egy for implementing the assumption that the entire covariance
matrix (for all the pure and constructed continuousvariables) is
constant across all blocks entails treating the values of contin-
uous variables as missing data in blocks where those variables
are not relevant (e.g., values of 1995 earnings in cells corre-
sponding to no earnings in 1995). Heeringa, Little, and Raghu-
nathan (2002), for example, adopt this approach and impute the
irrelevant values to have a common covariance matrix (see also
Little and Su 1987; Little and Raghunathan 1997). However,
treating the variables that are not relevant in a given block as
missing data raises concerns of computational ef� ciency, be-
cause it can seriously degrade the rates of convergence of the
EM and data augmentation algorithms.

2.5 Generating Imputations Under the Blocked General
Location Model

The BGLoM can be used as an imputationmodel for datasets
with partially missing variables of all three types provided that
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the model’s distributional assumptions are appropriate for the
particular dataset of interest and that the missing-data mecha-
nism can be assumed to be ignorable.

To allow for missing data, we dichotomize the (combined)
categorical and (combined) continuous variables into missing
and observed groups for each individual. In particular, let wi D
.wobs

i ;wmis
i /, where wobs

i and wmis
i represent the observed and

missing components of wi, respectively. The situation is some-
what more complicated for the continuous variables, because
we may not know which components of zi are relevant. This is
the case because some of the categorical variables that deter-
mine block membership, and thus which continuous variables
are relevant, may be missing. Thus we let zrel

i D fzobs
i ; zmis

i .b/g,
where zmis

i .b/ represents the components of zi that are missing
if B.w0

i; / D b.
Because we assume that the missing-data mechanism is ig-

norable, the observed-data log-likelihoodis

L.µ jYobs/ D
Z

¢ ¢ ¢
Z

L.µ jY/dzmis
1 fB.w0

1; /g ¢ ¢ ¢dzmis
n fB.w0

n; /g

¢ dwmis
1 ¢ ¢ ¢dwmis

n ; (6)

where Yobs D f.wobs
i ; zobs

i /; i D 1; : : : ; ng.
Imputations of the dataset of interest can be generated under

a BGLoM imputation model using a variety of methods, two
of which are described here. One potential method entails gen-
erating imputed datasets from the BGLoM with parameters set
equal to their estimates, usually the (observed-data) maximum
likelihood estimates (MLEs). An EM algorithm developed for
the BGLoM with missing data can be used to calculate the
MLEs of the model parameters, given the observed data [i.e.,
the value of µ that maximizes (6)]. Then imputed values for the
missing data can be generated from the BGLoM at the MLEs
using straightforward conditional simulation techniques made
possible by the model’s convenient conditional formulation.

A second method, which is Bayesian, uses the prior distribu-
tion on the BGLoM parameters given in (5) and requires simu-
lating the joint posterior distributionof the unobserveddata and
the BGLoM parameters, given the observed data. We suggest
using Markov chain Monte Carlo techniques or, more speci� -
cally, a data augmentationalgorithm developed for the BGLoM
with missing data. Imputed values for the missing data are sam-
pled from the Markov chain (or chains) simulated by the data
augmentation algorithm once the chain has achieved stationar-
ity.

To implement these two methods of generating imputations,
we develop EM and data augmentation algorithms for the
BGLoM with missing data. Details of the algorithms are pre-
sented in Appendixes A and B.

3. NUMERICAL RESULTS

3.1 Available Software for Multiple Imputation Under the
Blocked General Location Model

We implemented the EM and data augmentation algorithms
for the BGLoM with missing data in S-PLUS and R, with cer-
tain common subfunctionscoded in C; an R package containing
these implementations is available on request from the � rst au-
thor. In this section, we apply these routines � rst in a simulation
study designed to investigate the properties of various parame-
ter estimates and then in an analysis of the MMLWS subset
data.

3.2 A Simulation Study

We used the R implementation of the BGLoM algorithms
to perform a two-stage simulation experiment. In both stages
of this experiment, we generated 1,000 datasets with n D 250
and with three (pure) continuousvariables, two semicontinuous
variables (with point masses at zero), and one (pure) trichoto-
mous categorical variable, doing so from a known BGLoM; we
then made these datasets incompleteusing a missing-at-random
mechanism (Rubin 1976).

The � rst stage of the simulation experiment was designed
to investigate the frequentist properties of estimates of the
(known) BGLoM parameters. In this part of the experiment,
we applied the EM and data augmentation algorithms for the
BGLoM to each of the 1,000 incomplete datasets. When sam-
pling from the posterior distribution with the data augmenta-
tion algorithm, we use the prior distribution in (5) with ®c D
1 C .:05/n=12 for c D 1; : : : ; 12. Our choice of the hyperpara-
meter vector was motivated by a desire to have a slightly in-
formative prior distribution for the cell probabilities; relative
to a � at prior distribution, our speci� cation effectively divides
the equivalent of 5% of the data evenly among the 12 cells.
For each dataset, maximum likelihood estimates (MLEs) pro-
duced by the EM algorithm and 100 parameter draws gener-
ated by the data augmentationalgorithm were retained for each
BGLoM parameter. We collected the 100 draws of each para-
meter from a single data augmentation chain, started from the
MLEs, by sampling every third draw beginning after a burn-in
period of 150 iterations. We made the sampling decision by ex-
amining autocorrelation plots for each parameter from a num-
ber of preliminary runs, all of which suggested that lag-three
draws were effectively uncorrelated; we determined the burn-
in period by computing the R-hat statistic (Gelman and Rubin
1992) for various burn-in period lengths using three data aug-
mentation chains begun from overdispersed starting values.

For each BGLoM parameter, we used the 1,000 MLEs and
the 1,000 “means” of the retained parameter draws to assess
the parameter recovery properties of the EM and data augmen-
tation algorithms, respectively. We obtained each of the 1,000
means for a given parameter by � rst applying the relevant “nor-
malizing” transformation to the 100 retained draws, then tak-
ing the mean of the transformed draws, and � nally applying
the inverse transformation to that mean; the transformations
were log.¼=.1 ¡ ¼//, ¹, log.¾ 2/, and log..½ C 1/=.½ ¡ 1//

for the cell probabilities, within-cell means, within-block vari-
ances, and within-block correlations, respectively. In addition,
we used 94% equitailed empirical credible intervals for each
BGLoM parameter to further investigate the performance of the
data augmentation algorithm, as well as the impact of the prior
distributions used in the algorithm. For a particular parameter,
we computed the 1,000 94% intervals by taking the range of
the middle 94 (out of the 100) draws of that parameter for each
of the 1000 datasets. The reason for using an even-numbered
coverage, as opposed to, say, 95%, was that an equitailed inter-
val was then constructed. The results from the � rst simulation
experiment, summarized in Table 2 and Figure 2, were encour-
aging. As can be seen in the � gure, the coverage frequencies of
the credible intervals for the (known) BGLoM parameters var-
ied tightly around their selected credible levels [see Fig. 2(a)],
and the priors used in the data augmentation algorithm did not
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Table 2. Simulation Stage 1 Results for a Randomly Selected Subset of the BGLoM Parameters

Parametera

Simulation criteriab ¼6 ¹3;C2 ¾ 2
4(C2;C2) ½2(P2;C1)

True parameter value :065 12:00 1;000:00 ¡:018
Average MLE :062 13:73 1;000:86 ¡:038
Estimated bias of MLE ¡:003 1:73 :86 ¡:020
Average posterior mean :061 13:82 1;249:26 ¡:017
Estimated bias of posterior mean ¡:004 1:82 249:26 :001
Average lower bound :028 ¡7:00 785:48 ¡:347
Average upper bound :121 36:94 2;134:75 :343
Coverage of the true parameter 1:00 :91 :95 1:00
Coverage of the MLE :96 1:00 :96 1:00

aThe four selected BGLoM parameters are: (1) ¼6 , the cell 6 probability; (2) ¹3;C2 , the mean of constructed continuous variable 2 in

cell 3; (3) ¾ 2
4(C2;C2), the variance of constructed continuous variable 2 in block 4; and (4) ½2(P2;C1), the correlation of pure continuous

variable 2 and constructed continuous variable 1 in block 2.
b In the results for the � rst stage of the simulation experiment, average refers to the average across the 1,000 simulated datasets, the

MLE is computed with the EM algorithm, the estimated bias of an estimate is the difference between the average estimate across the 1,000
simulated datasets and the true value of the parameter, the posterior mean is the (retransformed) mean of 100 transformed (“uncorrelated”,
post–burn-in) draws from the posterior distribution obtained using the data augmentation algorithm, the lower bound and upper bound are
the bounds of the 94% empirical equitailed credible interval computed from 100 (“uncorrelated”post–burn-in) draws, and the coverage of the
true parameter and the coverage of the MLE are the proportion of the 1,000 94% empirical credible intervals that contain the true parameter
value and the maximum likelihood estimate, respectively.

seem to have a large impact, except in the case of very small
cell probabilities (e.g., the cell probability corresponding to the
outlying point in both cell probability boxplots). Additionally,
as can be seen by the small size of the estimated biases of
the MLEs and posterior means in rows 3 and 5 of the table,
both algorithmsdid a good job recovering the BGLoM parame-
ters.

The second stage of the simulation experiment was designed
to investigate how the MI analysis approach with a BGLoM
as the imputation model performs relative to the complete-case
analysis approach and relative to the MI analysis approach with
a GLoM as the imputation model. In this third and last ap-
proach, we use the standard GLoM (Olkin and Tate 1961); be-
cause this model makes no allowance for semicontinuousvari-

ables, we treat them simply as continuous variables. Regard-
less of which of the three approaches was used to handle the
missing data, we analyzed the simulated datasets by � tting a
two-part model to each of the semicontinuous variables: for
each semicontinuous variable, we used a logistic regression to
model the probability that the semicontinuous variable takes
on its point mass value, and used a Gaussian linear regres-
sion to model the semicontinuous variable given that it does
not take on its point mass value. In all four regressions (two
regressions for each semicontinuous variable), we included an
intercept and the same � ve covariates: indicator variables for
two levels of the categorical variable, denoted by IfW1 D 2g
and IfW1 D 3g, and the three continuous variables, denoted by
Z1, Z2 , and Z3 . For each of the 1,000 simulated datasets, we

Figure 2. Coverage Frequencies for 94% Credible Intervals, by Parameter Group. These boxplots summarize the distribution of coverage of
(a) the true parameter values and (b) the MLEs, obtained by simulation for the four types of parameters in the BGLoM. The horizontal line in
(a) corresponds to the target coverage of 94%, and lines below the boxplots represent outlying coverage frequencies.
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Table 3. Simulation Stage 2 Results

Mean distance to Mean length % of intervals containing
gold standard estimate of intervals gold standard estimate

Case- Case- Case-
Covariates deletion GLoM BGLoM deletion GLoM BGLoM deletion GLoM BGLoM

Logistic-linear regression for � rst semicontinuous variable
Intercept :06 :14 :07 1:38 1:01 1:04 100 100 100
I{W1 D 2} :28 :14 :38 2:06 1:54 1:66 100 100 100
I{W1 D 3} :49 :16 :14 2:27 1:69 1:59 100 100 100
Z1 :00 :00 :00 :01 :01 :01 100 100 100
Z2 :00 :00 :00 :01 :01 :01 100 100 100
Z3 :00 :00 :00 :01 :01 :01 100 100 100

Gaussian linear regression for � rst semicontinuous variable
Intercept 20:71 16:02 2:72 49:28 42:33 38:33 100 85 100
I{W1 D 2} 21:73 6:19 4:38 73:51 60:14 51:51 100 100 100
I{W1 D 3} 13:26 12:42 2:89 62:76 56:83 42:61 100 100 100
Z1 :01 :13 :09 :41 :40 :26 100 91 100
Z2 :00 :09 :03 :34 :28 :18 100 99 100
Z3 :12 :02 :09 :47 :38 :27 100 100 100

Logistic-linear regression for second semicontinuous variable
Intercept :29 :07 :11 1:37 1:01 1:05 100 100 100
I{W1 D 2} :33 :68 :51 2:09 1:65 1:53 100 79 100
I{W1 D 3} :52 :16 :26 2:11 1:66 1:47 100 100 100
Z1 :00 :00 :00 :01 :01 :01 100 96 100
Z2 :00 :00 :00 :01 :01 :01 100 100 100
Z3 :00 :00 :00 :01 :01 :01 100 100 100

Gaussian linear regression for second semicontinuous variable
Intercept 4:77 5:56 5:13 42:98 29:02 26:61 100 100 100
I{W1 D 2} 4:60 2:57 3:02 60:71 44:11 37:90 100 100 100
I{W1 D 3} 10:14 11:35 7:73 83:72 59:87 51:52 100 100 100
Z1 :14 :05 :05 :51 :32 :28 100 100 100
Z2 :17 :05 :01 :43 :27 :25 100 100 100
Z3 :06 :04 :03 :47 :33 :27 100 100 100

performed the four regressions four different times, once on
the complete version of each dataset (before missing-at-random
missingness was imposed), and three times on the incomplete
version of each dataset using three different approaches to han-
dling incomplete data. First, we analyzed the complete version
of each dataset by simply � tting the four regressions; we used
this “gold standard” analysis later to assess the performance of
the three incomplete-dataanalysis approaches.Second, we ana-
lyzed the incomplete version of each dataset using a complete-
case analysis approach; we discarded cases (e.g., individuals)
with any missing data and � t the four regression models to only
the completely observed cases. Third and fourth, we analyzed
the incomplete version of each dataset using the MI approach
with two different imputation models, � rst the standard GLoM
and then the BGLoM. In both of these MI analysis approaches,
we imputed � ve complete datasets from � ve parallel data aug-
mentation chains, each started from the relevant MLEs; these
chains were allowed burn-in periods of 400 and 1,000 itera-
tions for the standard GLoM and BGLoM imputation models,
respectively.Any negative semicontinuousvariable values gen-
erated under the standard GLoM were replaced by zero, the
point mass value; no such negativevalues were generatedunder
the BGLoM. For the standard GLoM imputations and also the
BGLoM imputations, we obtained estimates and standard er-
rors of the various regression parameters from each of the � ve
imputed datasets, and then applied the MI combining rules to
the � ve sets of errors and estimates to produce a grand estimate
and a 95% con� dence interval for each parameter.

Estimates of the 24 regression coef� cients were retained for
all four analyses of each dataset, and con� dence intervals for

all 24 coef� cients were retained for the three incomplete-data
analyses. We used these retained estimates and con� dence in-
tervals to compare the performance of the three incomplete-data
approaches. We measured performance for each coef� cient by
the mean (absolute) difference between each approach’s 1,000
estimates and the gold standard estimate, by the mean length of
each approach’s 1,000 con� dence intervals, and by the percent-
age of each approach’s 1,000 con� dence intervals that covered
the correspondinggold standard estimate. As shown in Table 3,
the BGLoM approach performed much better than the other two
incomplete-data approaches. Its con� dence intervals, although
usually narrower than those of the other approaches, generally
achievedhigher coverage frequencies, and its estimates were on
average closer to the gold standard estimates.

Further results and details of the simulation experiment, in-
cluding the BGLoM parameter values used to generate datasets
in both stages of the simulation experiment, are available from
the authors on request.

3.3 Analysis of the Massachusetts Megabucks Lottery
Winners Survey Subset Data

We analyzed the MMLWS subset data using a case-deletion
approach and also the MI approach, implemented � rst with a
standard GLoM imputation model and then with a BGLoM im-
putation model. The MMLWS subset data consist of the vari-
ables gender, winnings, 1992 earnings, and 1995 earnings for
the 327 surveyed individuals who won large prizes (more than
22,000 1986 U.S. dollars). These variables contain 4 (1%),
0 (0%), 120 (37%), and 161 (49%) missing values, respectively,
making it necessary to use a missing-datamethod to analyze the
data.
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Figure 3. Histograms for (a) the 207 Observed Values of
p

1992 Earnings, (b) the 120 Imputed Values of
p

1992 Earnings in One
BGLoM-Imputed Dataset, (c) the 120 Imputed Values of

p
1992 Earnings, Without Rounding, in One Standard GLoM-Imputed Dataset, and (d) the

120 Imputed Values of
p

1992 Earnings, With Negative Imputations Rounded to the Point Mass at zero, in One Standard GLoM-Imputed Dataset.
In each histogram, the 1992 earnings values are on the square root scale, and the bar located at zero corresponds to those individuals who were
unemployed in 1992.

In the case-deletion approach, we removed units with miss-
ing values for any of the variables involvedin a particular analy-
sis during that analysis. Note that this approach differs from
the complete-case approach of Imbens, Rubin, and Sacerdote
(2001), in which units with missing values for any of the vari-
ables of interest (in any of the analyses) were removed perma-
nently before beginning the data analysis.

We found the MI approach with either a standard GLoM
or a BGLoM imputation model to be a potentially appropri-
ate method of handling the missing data, although some con-
cern might typically arise over the suitability of the missing-at-
random assumption for the earnings variables. We generated
imputations of the MMLWS subset data under the standard
GLoM imputation model (with the two semicontinuous earn-
ings variables treated as continuous) using the “mix” library
provided by Joseph Schafer for S-PLUS (but ported to R). We
generated imputationsunder the BGLoM imputation model us-
ing the aforementioned R package. For both imputation mod-
els, winnings were imputed on the log scale, and 1992 earn-
ings and 1995 earnings were imputed on the square root scale,
as suggested by graphical inspection of their observed values
within the augmented contingency table cells. We generated
10 imputed datasets under both the GLoM, which took about
1 minute, and the BGLoM, which took about 15 minutes, with
a 1-GHz Pentium III processor. Under both models, we gener-
ated the imputed datasets by sampling, after a burn-in period
of 450 iterations, from parallel chains started at the relevant
EM-produced MLEs; we based our decision to use a burn-in
period of length 450 on time series plots and R-hat statistics
for the respective model parameters. For both the GLoM and
the BGLoM imputation models, we used the prior distribution
speci� ed in (5) when sampling from the posterior distribution;
for the GLoM, both hyperparameters in ® were equal to one,
making the prior distribution � at, and for the BGLoM, all eight
hyperparameters were equal to two. In the imputed datasets
generated under the standard GLoM imputationmodel, all neg-
ative imputationsof the (square-rooted)1992 earningsand 1995
earnings variables were set to zero, thus making them part of

the point mass for those variables. This procedure was unnec-
essary for the BGLoM-imputed datasets, because none of the
imputed values for the two earnings variables were negative.
Figure 3 compares the observed values of 1992 earnings (on the
square root scale) with the imputed values from two datasets,
one dataset imputed under the BGLoM and the other imputed
under the GLoM. Note that the two rightmost histograms both
correspond to the GLoM-imputed values; the negative imputa-
tions that appear in the � rst of these plots have been rounded to
the point mass at zero in the second of these plots. Also note
that the GLoM-imputed values (whether rounded or not) and
the BGLoM-imputed values, besides differing from each other,
both differ from the observed values in the leftmost plot, which
suggests that the missingness mechanism for 1992 earnings is
not missing completely at random.

We used the standard GLoM- and BGLoM-imputed datasets
to investigate the following parameters: (1) the mean earnings
of employed individuals in 1992 and in 1995; (2) the propor-
tions of unemployedindividualsin 1992 and in 1995; (3) the co-
ef� cients from a logistic regression of 1995 employment status
on gender, the log of winnings, and 1992 employment status;
and (4) the coef� cients from a linear regression of the square
root of 1995 earnings on gender, the log of winnings, and the
square root of 1992 earnings (left as a semicontinuousvariable),
for only those individualswho were employed in 1995. For the
standard GLoM imputations and also the BGLoM imputations,
we obtained estimates and standard errors of these parameters
from each of the 10 imputed datasets, and then applied the MI
combiningrules to the 10 sets of errors and estimates to produce
a grand estimate and a 95% con� dence interval for each para-
meter. For the 1992 and 1995 proportions, we performed the
combiningof estimates and errors on the logit scale to make the
normal assumptions of the combining rules more appropriate,
and, then retransformed the resulting estimate and con� dence
interval upper and lower bounds to the original scale using the
inverse logit transformation.

The estimates and con� dence intervals produced by the case-
deletion analysis and the standard GLoM and BGLoM MI
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Table 4. Results of Analyzing the MMLWS Subset Data

Case-deletion GLoM BGLoM

Parameter Estimate 95% Conf. interval Estimate 95% Conf. interval Estimate 95% Conf. interval

Mean 1992 earnings for those employed 23,121 (20,643, 25,600) 20,958 (18,635, 23,281) 28,622 (22,909, 34,335)
Mean 1995 earnings for those employed 22,116 (19,385, 24,847) 20,053 (17,441, 22,664) 29,341 (25,871, 32,810)
Proportion unemployed in 1992 :19 (:14; :24) :15 (:11; :20) :18 (:11; :24)
Proportion unemployed in 1995 :12 (:07; :17) :09 (:05; :14) :18 (:09; :27)
Logistic regression: Intercept 5:66 (¡2:53; 13:85) 4:01 (¡5:21; 13:23) 7:29 (¡:72; 15:29)
Logistic regression: Gender coef�cient :34 (¡:83; 1:51) :30 (¡:87; 1:47) :53 (¡1:52; 2:59)
Logistic regression: 1992 employ. status coef�cient 2:97 (1:72; 4:21) 2:97 (1:88; 4:07) 2:05 (:82; 3:27)
Logistic regression: Log(winnings) coef�cient ¡:40 (¡1:00; :19) ¡:27 (¡:94; :39) ¡:55 (¡1:13; :03)
Linear regression: Intercept 99:23 (¡25:81; 224:27) 98:45 (¡31:26; 228:17) 40:84 (¡58:64; 140:31)
Linear regression: Gender coef�cient 3:46 (¡12:76; 19:68) 2:89 (¡16:24; 22:01) ¡9:13 (¡23:26; 5:01)
Linear regression:

p
1992 earnings coef�cient :56 (:45; :66) :61 (:50; :72) :65 (:53; :78)

Linear regression: Log(winnings) coef�cient ¡2:78 (¡12:10; 6:53) ¡3:43 (¡13:07; 6:20) 2:56 (¡4:81; 9:92)

NOTE: The table compares the estimates and 95% con� dence intervals resulting from various case-deletion analyses and analyses of the MI datasets imputed under the GLoM and BGLoM. There
are notable differences, particularly for mean earnings for those employed in 1992 and 1995 and for the proportion employed in 1992 and 1995.

analyses are presented in Table 4. To investigate the sensitiv-
ity of the two MI analyses to the particular imputed datasets,
we replicated both the GLoM and BGLoM analyses 3 more
times, using 10 different imputed datasets each time; the results
from these replications were quite similar to those from the sin-
gle replication summarized in Table 4. As can be seen in this
table, the same regression coef� cients in the linear and the lo-
gistic regression are signi� cant regardless of which of the three
analysis approaches was used, but the estimates produced un-
der the three methods differ considerably for many coef� cients.
This latter fact is also true for the estimates of the marginal pa-
rameters in the � rst four rows of the table; in fact, for some of
these parameters (e.g., the mean of 1995 earnings), the GLoM
and BGLoM con� dence intervals do not even overlap.

Overall, the MMLWS subset data analysis illustrates that the
BGLoM’s more reasonable model assumptions for semicontin-
uous variables (relative to those of the GLoM ) can have a sub-
stantive impact on the resulting statistical analysis. The results
of this MMLWS subset data analysis and of the simulation ex-
periment suggest that under reasonable conditions, the BGLoM
and the accompanying EM and data augmentation algorithms
proposed here are a viable means of implementing the MI ap-
proach for datasets with partially missing semicontinuous,con-
tinuous, and categorical variables.

4. DISCUSSION

The strong relationship between the BGLoM and the stan-
dard GLoM means that many of the strengths and weaknesses
of the standard GLoM apply equally to the BGLoM. Here we
outline some of these similarities, but also emphasize several
salient differences.

Computationally, the EM and data augmentation algorithms
for � tting the BGLoM with missing data can be formulated
through simple and elegant modi� cations to the corresponding
algorithms (Little and Schluchter 1985; Schafer 1997) for the
standard GLoM with missing data. More speci� cally, the con-
stant within-blockcovariance assumption in the BGLoM means
that operationsperformed for the dataset as a whole in the stan-
dard GLoM algorithms are merely performed within blocks in
the correspondingBGLoM algorithms.

As with the GLoM, the model speci� cation of the BGLoM
is not always appropriate. For example, the assumption of a

multinomial distribution for the combined categorical variables
is not ideal if the dataset has categorical variables of the ordinal
variety, because the information contained in the ordering of
the variable levels is lost. The assumptions of multivariate nor-
mality and constant within-block covariance matrices can also
be problematic. Fortunately, though, these two particular con-
straints can be relaxed. For instance, the BGLoM setting could
be imposed on Liu and Rubin’s (1998) ellipsoidally symmet-
ric extended GLoM, which allows for different but proportional
within-cell covariance matrices and within-cell multivariate t
distributions for the continuousvariables, where the degrees of
freedom of these distributionsvary across cells. Alternatively, it
may be possible to transform the data in such a way that the dis-
tributionalassumptionsbecomemore appropriate.For example,
suppose (as is often the case) that a given semicontinuousvari-
able’s values are restricted to the positive part of the real line
and have a skewed distribution,which brings the assumption of
within-cell normality into question.Then, to make this assump-
tion more appropriate for the corresponding constructed con-
tinuous variable, the log transformation could be applied to all
continuous values of the semicontinuous variable. We empha-
size that this solution is much easier with the BGLoM than with
the standard GLoM, at least in the common case of a nonneg-
ative variable with a point mass at zero, because the log trans-
formation cannot be applied unless the point mass is removed.

One additional concern arises with the BGLoM because its
parameter space is larger than that of the GLoM. The assump-
tion that the covariance matrices of the constructed continu-
ous variables are constant only within blocks, and not across
all cells, can greatly increase the dimension of the free para-
meters, especially when there are either many blocks or many
pure continuousvariables. Although this added � exibility in the
model is sometimes more appropriate than assuming constant
variance across all cells, it requires larger datasets for accept-
able statistical inference. The larger parameter space can also
lead to computational dif� culties. Not only is the ef� ciency of
the EM and data augmentation algorithms reduced, but also
the algorithms may not converge in cases where the dataset is
too sparse (i.e., has a small number of units and/or signi� cant
amounts of missing data). Both the computationaland the more
important inferential dif� culties can, in principle, be mitigated
by placing restrictions on the BGLoM parameters. For exam-
ple, the cell probabilitiesand within-cell means could be forced
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to satisfy a log-linear model and a linear model, respectively,
as has been done for the standard GLoM (Krzanowski 1982;
Little and Schluchter 1985). Alternatively, certain variances or
correlations could be constrained to be equal across blocks, or a
common prior distributioncould be used on the scalar variances
or correlations to borrow strength across blocks.

Despite these concerns, both the MMLWS subset data analy-
sis and the simulation experiment described in Section 3 sug-
gest that the BGLoM and our � tting algorithms perform well in
practice, at least in situations where the dataset is suf� ciently
nonsparse (relative to the number of BGLoM parameters) and
where the BGLoM is deemed to be an appropriate imputation
model. The MMLWS application in particular illustrates the
real inferential advantage of the BGLoM for statistical analy-
sis of datasets with partially observed categorical, continuous,
and semicontinuousvariables.

APPENDIX A: THE EM ALGORITHM FOR THE
BLOCKED GENERAL LOCATION MODEL WITH

INCOMPLETE DATA

Here and in Appendix B, we continue to avoid constraintson the el-
ements of the within-block covariance matrices in the interest of sim-
plicity. In general, a patterned within-block covariance matrix (e.g.,
6b diagonal) can be accommodated by an (often simple) modi� ca-
tion to the M-step of the EM algorithm (or to the P-step of the data
augmentation algorithm). However, if we wish to constrain certain el-
ements of two or more within-block covariance matrices to be equal,
it may be necessary to alter the data augmentation scheme to maintain
a simple M-step (or P-step). Consider, for example, two blocks where
the set of relevant continuous variables for the � rst block is a subset
of the relevant continuous variables for the second block. We can eas-
ily accommodate the constraint that the corresponding elements of the
two within-block covariance matrices are equal; this could be done
by treating the variables that are relevant in the second block, but not
in the � rst block, as missing data in the � rst block. The method of
Heeringa, Little, and Raghunathan (2002) is an example of this strat-
egy in which all of the corresponding elements of the within-block
covariance matrices are constrained to be equal and all of the variables
that are not relevant are treated as missing data. Addressing the numer-
ous possible variations of this strategy would be notationally tedious,
and thus we avoid doing so here.

A.1 Overview

The EM algorithm is a well-known iterative method for com-
puting the modes of marginal distributions such as p.µ jYobs/ /
L.µ jYobs/p.µ/, where L.µ jYobs/ is the marginal distribution given
in (6). Here we focus on maximum likelihood estimation by taking
p.µ/ / 1. Beginning with starting value µ .0/, EM proceeds by com-
puting

µ .tC1/ D argmax
µ

E
©
logL.µ jY/p.µ/jYobs; µ .t/ª (A.1)

for t D 0;1; : : : . Computing the expectation in (A.1) is known as the
E-step of EM, and computing the maximization in (A.1) is known as
the M-step of EM. This procedure,which often entails only straightfor-
ward computation, is guaranteed to increase the log posterior at each
iteration.

Beginning with the E-step, we note that logL.µ jY/, as a function
of Y , is linear in a set of suf� cient statistics; thus the expectation in
(A.1) can be computed by calculating the expectation of these suf� -
cient statistics. Here the suf� cient statistics are the within-block sum
of squares of the relevant continuous variables, the within-cell sum of

the relevant continuous variables, and the cell counts. These can be
represented formally by

T1b D .Zb/>diagfUb.Ub/>gZb (A.2)

and

T2b D .Ub/>Zb; (A.3)

for b D 1; : : : ; B, and

T3 D U>U; (A.4)

respectively, where diag.M/ is a diagonal matrix with diagonal ele-
ments equal to those of M, Zb is the n £ qrel

b submatrix of Z with
columns corresponding to the continuous variables relevant to block b
and rows corresponding to the individuals, and Ub is the n £ C0 sub-
matrix of U with columns corresponding to the cells within block b
and rows again corresponding to the individuals, with C0 D

Qp0
jD1 cj

the number of cells within each block. (Note that the columns of Ub

indicate the cell within block b, if any, to which each individual be-
longs.) Thus the E-step consists of computing

OT .tC1/
1b D E

£
.Zb/>diagfUb.Ub/>gZbjYobs; µ .t/¤

and

OT.tC1/
2b D E

©
.Ub/>ZbjYobs; µ .t/ª;

for b D 1; : : : ; B, and

OT .tC1/
3 D E

¡
U>UjYobs; µ .t/¢:

Details are given in Appendix A.2.
We now turn to the other step of the EM algorithm, the M-step,

which is simple for the BGLoM because it belongs to an exponential
family. More speci� cally, the maximization in (A.1) is accomplished
by computing

¼ .tC1/ D 1
n

OT.tC1/
3 1

and, for b D 1; : : : ; B,

M.tC1/
b D

¡ OT.tC1/
3b

¢¡1 OT.tC1/
2b

and

6
.tC1/
b D 1

trace. OT.tC1/
3b /

© OT.tC1/
1b ¡

¡ OT.tC1/
2b

¢>¡ OT.tC1/
3b

¢¡1 OT.tC1/
2b

ª
;

where 1 is a column vector of 1s, M.tC1/
b is a .C0 £ qrel

b / matrix with
rows equal to the cell means of relevant variables in block b [i.e.,

¹
.tC1/
c for c 2 C .; b/], and OT.tC1/

3b is the .C0 £C0/ submatrix of OT.tC1/
3

with rows and columns corresponding to the cells within block b.

A.2 Computations for the E-step

Here we provide the details of the generic computation of OT .tC1/
1b ,

OT.tC1/
2b , and OT.tC1/

3 . We begin with OT.tC1/
3 , which is by construction

a diagonal matrix with the expected cell counts as diagonal elements.
Thus, we need compute only

E.u¢cjYobs; µ/ D
nX

iD1

E.uicjYobs; µ/; (A.5)

evaluated at µ D µ .t/, for each c. The set of possible cell memberships
for individual i is determined by wobs

i and denoted by C obs.wobs
i ; /.
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Thus, we can compute (A.5) using

E.uicjYobs; µ/

D Ifc2Cobs.wobs
i ;/g¼c

6obs
B.;c/i

¡ 1
2

£ exp
n
¡1

2

¡
zobs
i ¡ ¹obs

ci
¢>¡

6obs
B.;c/i

¢¡1¡
zobs
i ¡ ¹obs

ci
¢o

£
³ X

c02Cobs.wobs
i ;/

¼c0
6obs

B.;c0/i

¡ 1
2

£ exp
n
¡1

2

¡
zobs
i ¡ ¹obs

c0i

¢>¡
6obs

B.;c0/i

¢¡1¡
zobs
i ¡ ¹obs

c0i

¢o´¡1
;

(A.6)

where 6obs
bi is the submatrix of 6b with rows and columns corre-

sponding to the components of zobs
i , and ¹obs

ci is the subvector of

¹c with components corresponding to those of zobs
i . If zobs

i D ;,

then we replace (A.6) with E.uicjYobs; µ/ D Ifc2Cobs.wobs
i ;/g¼c=

P
c02Cobs.wobs

i ;/ ¼c0 .

Next, we address the calculation of OT.tC1/
2b , which is computed el-

ementwise for each b. More speci� cally, we compute the conditional
expectation of the sum of relevant continuous variable j over individu-
als in cell c 2 C .; b/, using

¡ OT.tC1/
2b

¢
cj D E

Á nX

iD1

uiczijjYobs; µ .t/

!

D
nX

iD1

E
©
uicE

¡
zijjYobs; µ .t/;uic

¢
jYobs; µ .t/ª

D
nX

iD1

E
¡
uicjYobs; µ .t/¢E

¡
zijjYobs; µ .t/; uic D 1

¢
; (A.7)

where c 2 C .;b/, Zj D .z1j; : : : ; znj/
> is relevant in block b, and ex-

pression (A.7) follows because uic is an indicatorvariable. [We empha-

size that the subscript j of . OT.tC1/
2b /cj does not necessarily correspond

to the column j of OT.tC1/
2b but instead refers to continuous variable j.]

The conditional expectation of uic in (A.7) is given in (A.5); thus, we
need compute only E.zijjYobs; µ .t/;uic D 1/ for each i. If zij is not ob-
served, then this expectation is computed via a multivariate regression
on zobs

i that assumes zrel
i » N.¹c;6B.;c// because uic D 1. (Here we

use the sweep operator to describe the calculations required for this
regression; readers unfamiliar with the sweep operator might wish to
consult Schafer 1997, sec. 5.2.4.) Speci� cally, we construct

»
.t/
b D

0

@
6

.t/
b .M.t/

b />

M.t/
b Ib

1

A ; (A.8)

where Ib is a .qrel
b £ qrel

b / identity matrix, and then sweep »
.t/
b on the

positions in 6
.t/
b corresponding to the elements of zobs

i . We denote
the upper-left and lower-left submatrices that result from this sweep
operation by 6? and M? , respectively. (Note that the dependencies on
individual,block in which the individual is assumed to be, and iteration
are suppressed in the notation used for these two submatrices and their
elements; however, this should not obscure the fact that the sweep op-
eration is in general repeated many times in each E-step.) Finally, we
can compute

E
¡
zijjYobs; µ;uic D 1

¢
D

8
>><

>>:

zij if zij 2 zobs
i

m?
cj C

X

k:zik2zobs
i

¾ ?
jkzik if zij 2 zmis

i fB.; c/g,

(A.9)

where m?
cj is the element of M? corresponding to cell c and variable Zj,

and ¾ ?
jk is the element of 6? corresponding to variables Zj and Zk. We

emphasize again that the subscripts on m?
cj and ¾ ?

jk refer to the corre-

sponding continuous variables rather than to locations in M? and 6?,
which can differ from the variable number because some continuous
variables may not be relevant.

We turn from OT .tC1/
2b to OT.tC1/

1b , which is also computed elementwise
for each b. Speci� cally, we compute the conditional expectation of the
sum (over individuals in block b) of the product of relevant continuous
variables j and k,

¡ OT.tC1/
1b

¢
jk D E

Á nX

iD1

X

c2C.;b/

uiczijzik

Yobs; µ .t/

!

D
nX

iD1

X

c2C.;b/

E
¡
zijzikjYobs; µ .t/;uic D 1

¢
(A.10)

£ E
¡
uicjYobs; µ .t/¢; (A.11)

where (A.10)–(A.11) follows exactly as (A.7) and the j and k sub-

scripts on .T
.tC1/
1b /jk again refer to the corresponding relevant con-

tinuous variables, not element locations. Because the expectation in
(A.11) has already been calculated in (A.6), we need compute only
each E.zijzik jYobs; µ .t/;uic D 1/. This is done using

E.zijzik/ D

8
>>>>><

>>>>>:

zijzik if zij; zik 2 zobs
i

E.zij/zik if zij 2 zmis
i fB.; c/g and zik 2 zobs

i

zijE.zik/ if zij 2 zobs
i and zik 2 zmis

i fB.; c/g

E.zij/E.zik/ C ¾ ?
jk if zij; zik 2 zmis

i fB.; c/g,

where all expectationsare conditionalon Yobs; µ .t/, and uic D 1; where
Zj and Zk are relevant in block B.; c/; and where ¾ ?

jk is from the output
of the appropriate application of the sweep operator, as in (A.9).

This completes the calculations needed for the E-step.

APPENDIX B: DATA AUGMENTATION ALGORITHM
FOR THE BLOCKED GENERAL LOCATION MODE

WITH INCOMPLETE DATA

The joint posterior distribution, p.µ;Y jYobs/ / L.µ jY/p.µ/, can be
summarized by using Monte Carlo methods to obtain a sample from
p.µ;Y jYobs/. Here we use the data augmentation algorithm (Tanner
and Wong 1987), an iterativealgorithm that constructs a Markov chain
that under mild regularity conditions converges to the joint posterior
distribution (see Roberts 1996, for convergence results). More speci� -
cally, we start at µ .0/ and iterate as follows:

I-step: Draw Y.tC1/ from p.Y jYobs; µ .t//.
P-step: Draw µ .tC1/ from p.µ jY.tC1//.

For suf� ciently large t0, we can consider f.µ .t/; X.t//, t D t0; : : : ; t0 C lg
to be a sample from the joint posterior distribution.Thus, one method
of creating multiple imputed datasets is to select an effectively inde-
pendent subset of .Y.t/; t D t0; : : : ; t0 C l/.

In the I-step, we use the factorization in (1) and sample � rst from

u.t/
i » p.uijYobs; µ .t// and then from .zmis

i .b//.t/ » p.zmis
i .b/jYobs;

µ .t/;u.t/
i /, where ui is the row of U corresponding to individual i and

b D B.; c/, with c such that u.t/
ic D 1. The distribution p.uijYobs; µ/ is

multinomial with cell probabilities given in (A.6) and

p
¡
zmis
i fB.; c/gjYobs; µ .t/;uic D 1

¢

D N
¡
E

£
zmis
i fB.; c/gjYobs; µ .t/; uic D 1

¤
; .6?/mis¢; (B.1)
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where the components of the mean vector are given in (A.9), and
.6?/mis is the submatrix of 6? with rows and columns correspond-
ing to the components of zmis

i fB.; c/g, with 6? the output from the
appropriate sweep operator described in Appendix A.2. The I-step is

completed by tabulating the complete-data suf� cient statistics, T .tC1/
1b

and T.tC1/
2b , for each b, and T.tC1/

3 , using (A.2)–(A.4).

In the P-step, we sample µ .tC1/ using

¼ .tC1/ j Y.tC1/ » Dirichlet
¡
® C T.tC1/

3 1
¢
;

6
.tC1/
b j Y .tC1/ » inverse Wishart

h
trace

¡
T.tC1/

3b

¢
¡ C0;

© OT.tC1/
1b ¡

¡ OT.tC1/
2b

¢>¡ OT.tC1/
3b

¢¡1 OT.tC1/
2b

ª¡1
i
;

and

¹
.tC1/
c j Y .tC1/;6

.tC1/
B.;c/

» N
n

E
¡
¹c jY.tC1/; 6

.tC1/
B.;c/

¢
; 1

.T .tC1/
3 /c

6
.tC1/
B.;c/

o
;

where E.¹c jY.tC1/;6
.tC1/
B.;c/

/ is the row of .T.tC1/
3;B.;c/

/¡1T.tC1/
2;B.;c/

cor-

responding to cell c and .T
.tC1/
3 /c is the diagonal element of T .tC1/

3
corresponding to cell c. (Readers unfamiliar with the inverse Wishart
distributionor how to draw from it might wish to consult Schafer 1997,
pp. 150–151, 184.)

[Received February 2002. Revised January 2003.]
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