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Abstract: Computing posterior modes (e.g., maximum likelihood estimates) for

models involving latent variables or missing data often involves complicated opti-

mization procedures. By splitting this task into two simpler parts, however, EM-

type algorithms often offer a simple solution. Although this approach has proven

useful, in some settings even these simpler tasks are challenging. In particular,

computations involving latent variables are typically difficult to simplify. Thus,

in models such as hierarchical models with complicated latent variable structures,

computationally intensive methods may be required for the expectation step of

EM. This paper describes how nesting two or more EM algorithms can take advan-

tage of closed form conditional expectations and lead to algorithms which converge

faster, are straightforward to implement, and enjoy stable convergence properties.

Methodology to monitor convergence of nested EM algorithms is developed using

importance and bridge sampling. The strategy is applied to hierarchical probit and

t regression models to derive algorithms which incorporate aspects of Monte-Carlo

EM, PX-EM, and nesting in order to combine computational efficiency with easy

implementation.
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1. Introduction

The EM algorithm (Dempster, Laird and Rubin (1977)) is a popular method
for computing maximum likelihood estimates, or more generally posterior modes,
in the presence of missing data, or in models that can be formulated as such,
latent-variable models for example. (Henceforth we refer to both missing data
and latent variables as latent variables.) EM dichotomizes the often complex
computational task of fitting a latent-variable model into two relatively simple
steps, the expectation or E-step and the maximization or M-step. This, along
with stable convergence properties, are arguably the reasons for the EM algo-
rithm’s popularity in practice. This said, however, the EM algorithm has often
been criticized for its slow convergence when the fraction of missing information
is large. There have been many strategies developed in the literature to speed up
the EM algorithm (see McLachlan and Krishnan (1997) for a general discussion).



204 DAVID A. VAN DYK

One set of methods, which directly reduces the fraction of missing information
by either transforming the missing data or adjusting the missing data model, is
especially attractive, in that it maintains the stability and simplicity of EM while
improving its rate of convergence (Fessler and Hero (1994), Meng and van Dyk
(1997, 1998), Liu, Rubin and Wu (1998), van Dyk (2000a)). Here we develop a
new strategy for reducing the fraction of missing information. It involves nesting
two EM algorithms and will be useful in EM algorithms with computationally
expensive E-steps stemming from complex latent structures.

The Monte-Carlo EM algorithm (Wie and Tanner (1990)) accomplishes the
E-step via Monte-Carlo integration. Although Monte-Carlo EM has been a popu-
lar method in practice, with many and diverse applications, it can be very slow to
converge. One especially expensive computational strategy for implementing the
algorithm (McCulloch (1994), Meng and Schilling (1996), Chan and Kuk (1997),
Levine and Casella (1999), and others) is to use a Gibbs sampler (or a Metropolis
algorithm, McCulloch (1997)) to obtain random draws for Monte-Carlo integra-
tion within each E-step. The nesting strategy developed here allows us to take
advantage of closed form conditional expectations, which are relatively quick to
compute, in order to improve the rate of convergence of the EM algorithm in
such situations.

Our nesting strategy can be motivated by considering the intrinsic link be-
tween EM-type algorithms and the Gibbs sampler. Suppose, for example, we
wish to sample from p(θ), where θ = (θ1, θ2, θ3) by using a Gibbs sampler which
samples from each of p(θ1|θ2, θ3), p(θ2|θ1, θ3), and p(θ3|θ1, θ2) in turn. Suppose
also that sampling from p(θ1|θ2, θ3) is expensive relative to sampling from the
other two complete conditionals. In this case, it may be beneficial to sample
once from p(θ1|θ2, θ3) and then to sample from p(θ2|θ1, θ3) and p(θ3|θ1, θ2) K
times each in turn. The benefit stems from the fact that if K is large, we are
essentially sampling from p(θ1|θ2, θ3) and p(θ2, θ3|θ1), that is, we are using a
blocked Gibbs sampler (see Liu, Wong and Kong (1995) and Roberts and Sahu
(1997) for discussion on the advantage of blocking). Thus, the partially blocked
Gibbs sampler will be useful when the advantage of blocking outweighs the cost
of sampling from p(θ2, θ3|θ1) via a nested Gibbs sampler (e.g., when θ2 and θ3
are highly correlated given θ1). This strategy might be helpful when some of
the complete conditionals are particularly difficult to sample (e.g., van Dyk et
al. (2000)).

In the context of the EM algorithm, we can implement a similar strategy
when the latent variables naturally divide into two or more parts, by taking ad-
vantage of the fact that the EM algorithm, which treats only one piece of the
latent structure as missing by integrating over the rest, is faster to converge.
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Although this algorithm will typically not have a closed form M-step, the maxi-
mization can be accomplished by a second, typically closed-form, EM algorithm
that treats the remaining latent structure as missing. The resulting algorithm
has an improved rate of convergence but, because of the nesting, each iteration
will require more time. If the computational complexity of the E-step is rele-
gated to the outer loop, this trade-off can go in favor of the nesting strategy
when considering the actual computing time required.

The paper is organized as follows. In Section 2, we introduce the formal
structure of the nested EM algorithm after a brief review of the EM algorithm.
Properties, including monotone convergence in posterior or likelihood and faster
convergence than the standard algorithm, will also be provided. Section 3 sup-
plies advice on monitoring convergence using importance and bridge sampling,
and on other practical issues. Two generalized linear mixed models are used in
Section 4 to illustrate the current methodology and computational gain, and also
to illustrate the combination of nesting, PX-EM (Liu, Rubin and Wu (1998)),
and the Monte-Carlo EM algorithm. Concluding remarks appear in Section 5.

2. The EM and Nested EM Algorithms

2.1. Review of the EM algorithm

The EM algorithm and its various extensions are based upon a data aug-
mentation scheme, Yaug, defined such that the observed-data Yobs = M(Yaug)
for some many-to-one mapping M. Starting with an initial estimate, θ(0), of
the parameter, the familiar two-step EM procedure iteratively computes θ∗, a
mode of the log posterior, �(θ|Yobs) = logp(θ|Yobs) over θ ∈ Θ. The E-step of the
(t + 1)st iteration computes the conditional expectation of the augmented-data
log posterior, Q(θ|θ(t)) = E (�(θ|Yaug)|Yobs, θ

(t)), where �(θ|Yaug) = log p(θ|Yaug);
the M-step then sets θ(t+1) equal to arg maxθ Q(θ|θ(t)). It can be shown that
this simple procedure increases the loglikelihood at each iteration and converges
to a critical point of �(θ|Yobs), typically a mode in practice. The theoretical
speed of convergence of the algorithm is determined by the matrix “fraction of
missing information” or matrix rate of convergence (Dempster, Laird and Ru-
bin (1977), Meng and Rubin (1994)), given by DMEM = I − IobsI

−1
aug, where

Iaug(θ∗) = −D20Q(θ|θ∗)
∣∣∣
θ=θ∗

is the expected augmented Fisher information ma-

trix and Iobs is the observed Fisher information matrix. (Here D20 denotes the
second partial derivative with respect to the first argument, etc., and we often
denote Iaug(θ∗) by Iaug.) Under mild regularity conditions we define the global
rate of convergence of EM as ρ(DMEM ) = limt→∞ ||θ(t+1) − θ∗||/||θ(t) − θ∗||,
where ρ(M) is the spectral radius of M .
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2.2. The nested EM algorithm

When Q(θ|θ(t)) cannot be computed in closed form the Monte-Carlo EM
algorithm can be useful since Q(θ|θ(t)) can always be approximated via Monte-
Carlo integration if we can draw from p(Yaug|Yobs, θ

(t)) and evaluate �(θ|Yaug)
many times. When the augmented data has complex structure, we may not
be able to draw from p(Yaug|Yobs, θ) directly. Suppose, for example, Yaug can
be subdivided into two (or more) parts, Yaug = (Yobs, Ymis 1, Ymis 2), such that
p(Ymis 1|Yobs, Ymis 2, θ) and p(Ymis 2|Yobs, Ymis 1, θ) are both easy to sample directly,
but p(Yaug|Yobs, θ) is not. In this case we can run a Gibbs sampler to obtain draws
from p(Yaug|Yobs, θ) in order to implement the Monte-Carlo EM algorithm. Of
course an EM algorithm with a Gibbs sampler within each iteration can be rather
expensive computationally. The nested EM algorithm is designed to improve the
performance of EM in this particular setting or, more generally, when the E-step
is computationally expensive but the expected log posterior can be computed
relatively quickly conditional on part of the augmented data.

For clarity, we will briefly examine the hierarchical probit regression model
which will be discussed in detail in Section 4.1. Suppose

ωi = Xiψi + ei ei ∼ Nni(0, I) ψi ∼ Np(µ, T ) for i = 1, . . . ,m, (2.1)

where ωi = (ωi1, . . . , ωini)
� is an (ni × 1) vector of censored responses for which

we only observe Yij = sign(ωij) for each i and j, Xi is an (ni × p) completely
observed matrix of covariates, and ψ = (ψ1, . . . , ψm) are m unobserved (p × 1)
random effects. Given θ = (µ, T ) and ω = (ω1, . . . , ωm), ψ follows a multivariate
normal distribution just as in the standard Gaussian hierarchical model. (Details
appear in Section 4.1.) Likewise given θ, ψ, and the observed data Y = (Yij , i =
1, . . . ,m, j = 1, . . . , ni), ω follows a truncated normal distribution. Although the
joint distribution of the latent variables given Y and θ is not of a standard family,
a Gibbs sampler can be used to obtain draws of the latent variables in order to
run a Monte-Carlo EM algorithm. To make the most of this computationally
expensive E-step, the nested EM algorithm will fix the augmented-data sufficient
statistics involving, for example, ω and run several EM iterations conditional on
these values since the E-step for this inner EM algorithm, based on the normal
distribution p(ψ|ω, Y, θ), is much cheaper.

To formalize this in the general setting, we introduce two nested data-
augmentation schemes Yaug 1 and Yaug 2 such that Yobs = M1(Yaug 1) and Yaug 1 =
M2(Yaug 2), for two many-to-one mappings M1 and M2. Likewise, we define
two expected augmented-data log posteriors, Q1(θ|θ0) = E (�(θ|Yaug 1)|Yobs, θ0)
and Q2(θ|θ0) = E (�(θ|Yaug 2)|Yobs, θ0), as well as the expectation of the cor-
responding function that treats the smaller data augmentation Yaug 1 as ob-
served data, Q21(θ|θ01, θ02) = E (E (�(θ|Yaug 2)|Yaug 1, θ01)|Yobs, θ02). (Note that
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Q21(θ|θ0, θ0) = Q2(θ|θ0), Q1 and Q2 are functions on Θ×Θ and Q21 is a function
on Θ×Θ×Θ). The tth iteration of the nested EM iteration repeats the following
cycle K times, for k = 1, . . . ,K.

Cycle k for k = 1, . . . ,K:

E-step: Compute Q21(θ|θ(t+ k−1
K

), θ(t)) = E (E (�(θ|Yaug 2)|Yaug 1, θ
(t+ k−1

K
))|

Yobs, θ
(t));

M-step: Set θ(t+ k
K

) = arg maxθ Q21(θ|θ(t+ k−1
K

), θ(t)).

Upon completion of the Kth cycle, we set θ(t+1) = θ(t+ K
K

). Computational
gain occurs when the outer expectation in the E-step only needs to be com-
puted in the first cycle of each iteration. In particular, if we construct Yaug 1 so
that E (�(θ|Yaug 2)|Yaug 1, θ01) is linear in Yaug 1, we need only compute Y (t+1)

aug 1 =
E (Yaug 1|Yobs, θ

(t)) once per iteration and then we run K EM cycles with (Yobs,

Y
(t+1)
aug 1 ) treated as observed data. We expect computational gain from this strat-

egy when computing Y
(t+1)
aug 1 is expensive relative to the rest of the E-step and

the M-step.
In the hierarchical probit model, we set Yaug 1 = {Y, ω} and Yaug 2 = {Y, ω, ψ}

and use the Gibbs sampler to approximate E (ωi|Yobs, θ
(t)) and E (ωiω

�
i |Yobs, θ

(t))
for i = 1, . . . ,m in the first cycle. Since E (�(θ|Yaug 2)|Yaug 1, θ

(t+ k−1
K

)) is linear
in these statistics, Q21(θ|θ(t+ k−1

K
), θ(t)) can easily be computed in closed form in

subsequent cycles. Although ψ is drawn in the Gibbs sampler in the first cycle, we
typically discard these samples and compute Q21(θ|θ(t), θ(t)) in the same manner
as in the later cycles. That is, we compute Q21(θ|θ(t), θ(t)) using an iterated
expectation as in the E-step above, rather than taking advantage of the fact that
Q21(θ|θ(t), θ(t)) = Q2(θ|θ(t)). This both streamlines the code and takes advantage
of Rao-Blackwellization.

2.3. Convergence of the nested EM algorithm

The nested EM algorithm enjoys the important convergence properties of EM
including monotone convergence in posterior or likelihood. For the theoretical
results, we assume the E-step is computed exactly.

Theorem 1. Suppose {θ(t), t ≥ 0} is a sequence in the parameter space computed
with the nested EM algorithm, then �(θ(t+1)) ≥ �(θ(t)) for each t ≥ 0.

Proof. It is sufficient to show that Q1(θ(t+1)|θ(t)) ≥ Q1(θ(t)|θ(t)) (see Dempster,
Laird and Rubin (1977, Theorem 1)). Thus, by construction of the algorithm,
we need only show that Q1(θ(t+ k

K
)|θ(t)) ≥ Q1(θ(t+ k−1

K
)|θ(t)) for k = 1, . . . ,K. To
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obtain this, we note

Q1(θ|θ(t)) =Q21(θ|θ′, θ(t)) −
∫ ∫

log p(Yaug 2|Yaug 1, θ)p(Yaug 2|Yaug 1, θ
′)

·p(Yaug 1|Yobs, θ
(t))dYmis 2dYmis 1 + c,

for any θ′ where c is a term not depending on θ. (By
∫ ·dYmis 1 we mean the

integral with respect to Yaug 1 over the region {Yaug 1 : M1(Yaug 1) = Yobs}, like-
wise by

∫ ·dYmis 2 we mean the integral with respect to Yaug 2 over the region
{Yaug 2 : M2(Yaug 2) = Yaug 1}.) We use the above expression to evaluate the
difference

Q1(θ(t+ k
K

)|θ(t)) −Q1(θ(t+ k−1
K

)|θ(t))

=Q21(θ(t+ k
K

)|θ(t+ k−1
K

), θ(t)) −Q21(θ(t+ k−1
K

)|θ(t+ k−1
K

), θ(t)) (2.2)

−
∫ ∫

log

(
p(Yaug 2|Yaug 1, θ

(t+ k
K

))

p(Yaug 2|Yaug 1, θ
(t+ k−1

K
))

)
p(Yaug 2|Yaug 1, θ

(t+ k−1
K

)) (2.3)

·p(Yaug 1|Yobs, θ
(t))dYmis 2dYmis 1. (2.4)

The difference in (2.2) is positive by construction of the algorithm; that the
inner integral in (2.3)-(2.4) is negative for each Yaug 1 follows from the Jensen
inequality.

The next result asserts that the limit points of {θ(t), t ≥ 0} are contained
in {Θ ∈ Θ0 : ∂

∂θ �(θ|Yobs) = 0}, where Θ0 is the interior of Θ. The proof of this
result, which assumes several standard regularity conditions used by Wu (1983),
is omitted, but can be found in van Dyk (1998).

Theorem 2. Assuming Wu’s conditions (6) - (10) and that Q21(ψ|φ1, φ2) is
continuous in all three of its arguments, all limit points of a nested EM sequence
{θ(t), t ≥ 0} are critical points of �(θ|Yobs).

In order to evaluate the performance of the nested EM algorithm relative
to the standard EM implementation which uses Yaug 2 as augmented data, we
derive the matrix rate of convergence. We define Iaug i = −D20Qi(θ|θ∗)|θ=θ∗ for
i = 1, 2 and, using standard EM rate calculations, obtain three matrix rates
of convergence. Noting that the first cycle of a nested EM algorithm corre-
sponds to an iteration of an EM algorithm using data augmentation Yaug 2, we
have (θ(t+ 1

k
) − θ∗) ≈ (θ(t) − θ∗)DM2 with DM2 = I − IobsI

−1
aug 2. (Here ≈ in-

dicates approximate equality for large t.) Second, the cycles within iteration
(t + 1) form an EM algorithm which, under the regularity conditions below,
converges to θ∗t+1 = arg maxθ Q1(θ|θ(t)), so that (θ(t+ k

K
) − θ∗t+1) ≈ (θ(t+ k−1

K
) −

θ∗t+1)DM21(θ(t), θ∗t+1) with DM21(θ(t), θ∗t+1)=I − Iaug 1(θ(t))I−1
aug 2 (θ∗t+1). Finally,

by the definition of θ∗t+1, (θ∗t+1 − θ∗) ≈ (θ(t) − θ∗)DM1 with DM1 =I − IobsI
−1
aug 1.
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DefineDMNEM(θ(t))=∂θ(t+1)
j /∂θ

(t)
i and note asymptotically ∂θ

(t+ 1
K

)
j / ∂θ

(t)
i |θ=θ∗

= DM2 and using the definition of the inner EM mapping for k = 2, . . . ,K,

∂θ
(t+ k

K
)

j

∂θ
(t)
i

=
∂θ(t+ k−1

K
)

∂θ
(t)
i

·

 ∂θ

(t+ k
K

)
j

∂θ(t+ k−1
K

)




�

+
∂θ∗t+1

∂θ
(t)
i

·

∂θ

(t+ k
K

)
j

∂θ∗t+1




�

.

Solving recursively and evaluating at θ(t) = θ∗, we obtain the following result.

Theorem 3. If in addition to the conditions of Theorem 2, Q1(θ|θ′), Q2(θ|θ′)
and Q12(θ|θ′, θ′′) are log convex with modes contained in Θ0 for each θ′, θ′′ ∈ Θ,
the nested EM algorithm has matrix rate of convergence given by

DMNEM = (DM2 −DM1)(DM21(θ∗, θ∗))K−1 +DM1. (2.5)

The regularity conditions can be relaxed; see Theorem 3 in Dempster, Laird
and Rubin (1977).

Since Yaug 1 = M2(Yaug 2), we expect the matrix rate DM1 to be preferable to
DM2 (since Iaug 2 > Iaug 1, using a positive semidefinite ordering). Notice that as
K increases, the matrix rate DMNEM converges to DM1. In fact, for K = 1 and
K = ∞ the matrix rate is exactly DM2 and DM1 respectively. If Iaug 1 = Iaug 2,
that is, the two data augmentations are identical in terms of their information for
the parameters, DMNEM = DM2, that is, the nested EM algorithm is identical
to the EM algorithm but unnecessarily repeats the M-step K times. On the
other hand if Iaug 1 = Iobs, DMNEM = (DM2)K , the nested algorithm will be K
times faster (in terms of the number of iterations), but each iteration will take
K times longer. Thus, as illustrated in the examples in Section 4, the nested
EM algorithm will be advantageous when additional cycles are relatively cheap
computationally, but Iaug 2 is much larger than Iaug 1.

The final result shows how the global rate of convergence depends on K.

Theorem 4. Under the conditions of Theorem 3, the global rate of convergence
of the nested EM algorithm decreases (i.e., improves) with K.

Proof. The global rate is defined to be the spectral radius of the matrix rate.
This can be written as DMNEM

K = I − IobsBK , where BK = [(I−1
aug 2 − I−1

aug 1)
(Imis 2I

−1
aug 2)

K−1 + I−1
aug 1] with Imis 2 = Iaug 2 − Iaug 1. It suffices to show that

B1 > 0 and for each K > 1, BK > BK−1, since the global rate of convergence
of the nested EM algorithm is the largest eigenvalue of I − I

1/2
obsBKI

1/2
obs . Now,

B1 = I−1
aug 2 > 0 and

BK −BK−1 = (I−1
aug 1 − I−1

aug 2)(Iaug 1I
−1
aug 2)(Imis 2I

−1
aug 2)

K−2

= I−1
aug 2(Iaug 2 − Iaug 1)I−1

aug 2(Imis 2I
−1
aug 2)

K−2
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= I−1
aug 2(Imis 2I

−1
aug 2)

K−1,

which is positive definite. This completes the proof.

3. Implementation of the Nested EM Algorithm

3.1. Detecting convergence

In models that are formulated in terms of complex latent structures, conver-
gence of mode-finding algorithms can be difficult to ascertain since �(θ|Yobs) may
be difficult to evaluate. In particular, the integral

p(θ|Yobs) ∝ p(θ)
∫ ∫

p(Yaug 2|θ)dYmis 2dYmis 1 (3.1)

may have no analytical solution. When a Monte-Carlo E-step is used, the sit-
uation is even more complicated since, unless the Monte-Carlo sample size Lt

at iteration t grows with t, {θ(t), t ≥ 0} will not converge, necessitating extra
numerical or graphical methods to determine convergence of the algorithm (see
Wie and Tanner (1990), McCulloch (1994, 1997), and others).

In order to evaluate �(θ(t+1)|Yobs)− �(θ(t)|Yobs) = log p(θ(t+1))− log p(θ(t)) +
log δ(t+1), where δ(t+1) = p(Yobs|θ(t+1))/p(Yobs|θ(t)), a common strategy takes
advantage of the fact that p(Yaug 2|θ) and p(Yaug 1|θ) are often easy to evaluate.
(Here, p(Yaug 1|θ) is defined similarly to (3.1), but the integral is of smaller di-
mension.) The well-known importance sampling estimate of δ(t+1) is (Chan and
Ledolter (1995), and others)

δ̂
(t+1)
i =

1
Lt

Lt∑
l=1

p(Y (l)
aug i|θ(t+1))

p(Y (l)
aug i|θ(t))

for i = 1or 2, (3.2)

where {Y (l)
aug i, l = 1, . . . , Lt} is a sample from p(Yaug i|Yobs, θ

(t)). When using a
Monte-Carlo E-step this technique is especially attractive as the necessary draws
are a byproduct of the E-step.

Intuitively, δ̂(t+1)
1 should be better behaved than δ̂

(t+1)
2 since the Monte-

Carlo integration is of lower dimension. Formally, we can prove that with in-
dependent Monte-Carlo draws, asymptotically RE2(δ̂(t+1)

1 ) ≤ RE2(δ̂(t+1)
2 ) where

RE2(δ̂(t+1)) = E (δ̂(t+1) − δ(t+1))2/(δ(t+1))2 is the relative mean-square error. In
practice, we may not have independent draws, but the result gives guidance as to
the best choice and confirms our intuition. The proof involves showing that the
chi-square distance between p(Yaug 1|Yobs, θ

(t+1)) and p(Yaug 1|Yobs, θ
(t)) is domi-

nated by that between p(Yaug 2|Yobs, θ
(t+1)) and p(Yaug 2|Yobs, θ

(t)), but is omitted
since it is similar to the argument outlined below for the typically superior bridge
sampling estimates.
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An improvement over the importance sampling approximations to δ(t+1) can
be obtained by using samples from both p(Yaug i|Yobs, θ

(t)) and p(Yaug i|Yobs,
θ(t+1)), rather than just the former. Bridge sampling (Meng and Wong (1996))
accomplishes this via the identity

p(Yobs|θ)
p(Yobs|θ′)

∫
p(Yaug i|θ′)φ(Yaug i)p(Yaug i|Yobs, θ)dYmis∫
p(Yaug i|θ)φ(Yaug i)p(Yaug i|Yobs, θ′)dYmis

=
∫
p(Yaug i|θ′)φ(Yaug i)p(Yaug i|θ)dYmis∫
p(Yaug i|θ)φ(Yaug i)p(Yaug i|θ′)dYmis

(3.3)

for any φ(Yaug i) such that 0 < | ∫ φ(Yaug i)p(Yaug i|Yobs, θ
(t))p(Yaug i|Yobs, θ

(t+1))
dYmis| <∞. Since (3.3) equals one, δ(t+1) can be approximated by setting θ = θ(t)

and θ′ = θ(t+1), with

δ̃
(t+1)
i =

1
Lt+1

∑Lt+1

l=1 p(Y (l)
aug i|θ(t+1))φ(Y (l)

aug i)
1
Lt

∑Lt
l=1 p(Ỹ

(l)
aug i|θ(t))φ(Ỹ (l)

aug i)
for i = 1or 2,

where {Ỹ (l)
aug i, l = 1, . . . , Lt+1} is a sample from p(Yaug i|Yobs, θ

(t+1)). Although
in the general bridge sampling setting, an optimal φ (in terms of minimizing
RE2(δ̃(t+1))) is not available without numerical iteration, Meng and Wong (1996)
suggest φ(Yaug i) = 1/

√
p(Yaug i|θ(t))p(Yaug i|θ(t+1)), yielding

δ̃
(t+1)
i = log

1
Lt

∑Lt
l=1

√
p(Y (l)

aug i|θ(t+1))/p(Y (l)
aug i|θ(t))

1
Lt+1

∑Lt+1

l=1

√
p(Ỹ (l)

aug i|θ(t))/p(Ỹ (l)
aug i|θ(t+1))

for i = 1or 2, (3.4)

since it stabilizes the importance ratios and tends to perform well in practice.
Assuming p(Yaug i|Yobs, θ

(s)) has the same support for each s, the asymptotic
relative error for δ̃(t+1)

i with independent samples is given by

RE2(δ̃(t+1)
i )

=
Lt + Lt+1

LtLt+1

([
1 − 1

2
H2

(
p(Yaug i|Yobs, θ

(t)), p(Yaug i|Yobs, θ
(t+1))

) ]−2 − 1
)
,

which is an increasing function of 0≤H2(p(Yaug i|Yobs, θ
(t)), p(Yaug i|Yobs, θ

(t+1))
≤ 2, the square of the Hellinger distance,

H(p1(ω), p2(ω))=

[∫ (√
p1(ω)−

√
p2(ω)

)2

dω

]1/2

=
[
2−2

∫ √
p1(ω)p2(ω)dω

]1/2

.

(3.5)
That δ̃(t+1)

1 is a better estimate of δ(t+1) than is δ̃(t+1)
2 is evident since∫ ∫ (

p(Yaug 2|Yobs, θ
(t))p(Yaug 2|Yobs, θ

(t+1))
)1/2

dYmis 2dYmis 1
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=
∫ (

p(Yaug 1|Yobs, θ
(t))p(Yaug 1|Yobs, θ

(t+1)
)1/2

·
∫ (

p(Yaug 2|Yaug 1, θ
(t))p(Yaug 2|Yaug 1, θ

(t+1)
)1/2

dYmis 2dYmis 1

≤
∫ (

p(Yaug 1|Yobs, θ
(t))p(Yaug 1|Yobs, θ

(t+1)
)1/2

dYmis 1.

Thus by (3.5), H(p(Yaug 1|Yobs, θ
(t)), p(Yaug 1|Yobs, θ

(t+1)))≤H(p(Yaug 2|Yobs, θ
(t)),

p(Yaug 2|Yobs, θ
(t+1))), and we have the following result.

Theorem 5. If for i = 1 or 2 p(Yaug i|Yobs, θ
(s)) has the same support for each

s ≥ 0, then (asymptotically),

RE2(δ̃(t+1)
1 ) ≤ RE2(δ̃(t+1)

2 )

(assuming independent draws).

Bridge sampling is illustrated and compared with importance sample in Sec-
tion 4.1.

3.2. Choosing K and Lt

When using the nested EM algorithm with Monte-Carlo integration, there
are two parameters that typically need to be set by the user: K, the number of
cycles in each EM iteration, and Lt, the number of Monte-Carlo draws in the
first E-step of each iteration. In choosing K, the goal is not to reach convergence
of the inner EM algorithm (i.e., convergence to θ∗t+1), but rather to make as
much progress towards the (local) mode of �(θ|Yobs) as we can with small com-
putational cost. Since the EM algorithm typically makes substantial progress in
its early iterations, we expect the first few cycles to make significant progress
towards the mode, but later cycles to be rather costly relative to their progress.
Thus, we typically recommend a moderate value of K. Of course, K can vary
between iterations, and �(θ(t+ k

K
), Yobs) or some function of the parameter can be

monitored to determine “convergence” of the inner EM algorithm. For example,

log

(
p(θ(t+ k

K
)|Yobs)

p(θ(t)|Yobs)

)
− log

(
p(θ(t+ k−1

K
)|Yobs)

p(θ(t)|Yobs)

)
(3.6)

can be computed at each iteration using importance sampling. (Since we do not
have draws from p(Yaug|Yobs, θ

(t+ k
K

)) and obtaining such draws would defeat the
purpose of nested EM, we cannot use Bridge sampling.) There is no theoretical
guarantee that (3.6) will be positive at each cycle; we only know that the posterior
will increase at each iteration. In practice, however, we expect (3.6) to be positive.

When evaluating �(θ|Yobs) is computationally expensive, we recommend fix-
ing K at some small value (say between 2 and 10). If the inner EM algorithm is



NESTING EM ALGORITHMS 213

slow to converge, a large value of K is better, e.g., K = 10; if it is fast to con-
verge a small value is fine, e.g., K = 3. In fact if the inner algorithm converges
very fast, i.e., Iaug 1 ≈ Iaug 2, there is essentially no reduction in the fraction of
missing information due to nesting and the standard EM algorithm will suffice,
i.e., K = 1. Thus, if there is a choice as to how the latent variables are divided
between Yaug 1 and Yaug 2, it is advantageous to make the information in Yaug 1 as
“small” as possible in order to “decrease” DM1. Since DMNEM is a weighted av-
erage of DM1 and DM2 (fixed), this will enable us to further reduce the fraction
of missing information for the nested EM algorithm. Since this will simultane-
ously increase the difference Iaug 2 − Iaug 1 and thereby increase the fraction of
missing information that controls DM21, the rate of convergence of the inner EM
algorithm, K will have to be increased to take advantage of this gain, see (2.5).

When implementing a Monte-Carlo E-step, it is necessary to choose Lt at
each iteration. Clearly larger values will result in more exact but slower cal-
culations. (Thus, larger values will be useful when verifying that �(θ|Yobs) is
increasing at each iteration while debugging the code.) A typical strategy is
to let Lt grow as a function of t to ensure both quick convergence at first and
more precise calculations later. (When computing modes as a preliminary step in
preparation for the Gibbs sampler and indeed for most inferential purposes, the
position of the modes need not be computed with exacting precision.) Wei and
Tanner (1990), for example, suggest starting with a moderate value and increas-
ing it when graphical inspection shows that the parameter or a function thereof
has stabilized. Chan and Ledolter (1995) suggest drawing several samples of size
L0 and running Gibbs samplers to estimate the Monte-Carlo variance which in
turn can be used to compute the necessary Monte-Carlo sample size for a desired
level of precision. An intermediate strategy, as suggested by McCulloch (1994),
increases Lt by some small amount at each iteration, which ensures accuracy in
the later iterations, is fast in the early iterations, and requires little intervention.

4. Examples

In this section, we describe two applications of the nested (Monte-Carlo) EM
algorithm, fitting hierarchical probit and t models. See van Dyk (2000b) for an
application to speetral analysis that does not involve a Monte-Carlo E-step.

4.1. Hierarchical probit model

Returning to the example introduced in Section 2.2, we outline a Monte-
Carlo EM algorithm for hierarchical probit regression similar to algorithms de-
veloped by McCulloch (1994, 1997) and Chan and Kuk (1997) and describe
how nesting can decrease the required computational time. For model (2.1)
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we set Yaug = {Y, ω, ψ} and implement a Gibbs sampler to obtain draws from
p(ω,ψ|Y, θ(t)), where θ = (µ, T ), for the Monte-Carlo evaluation of

Q(θ|θ(t)) = −m
2

log |T | − 1
2

m∑
i=1

tr
(
T−1E

[
(ψi − µ)(ψi − µ)�|Y, θ(t)

])

in the E-step. Throughout we assume a flat prior on all parameters to com-
pute the maximum likelihood estimates. In particular, we can obtain {ψ(l)

i , l =
1, . . . , Lt, i = 1, . . . ,m} by iteratively drawing from two complete conditional
distributions of the latent variables, first

ψi|ω, Y, θ,∼ Np(ψ̂i(ωi), T − TX�
i WiXiT ), i = 1, . . . ,m,

where ψ̂i(ωi) = µ+ TX�
i Wi(ωi −Xiµ) with Wi = [Ini +X�

i TXI ]−1 and second
p(ωi|ψ, Y, θ) ∝ Nni(Xiψi, Ini), where the normal distribution is truncated so that
sign(ωij) = Yij for j = 1, . . . , ni. Finally, Q(θ|θ(t)) can be evaluated by setting

E
[
ψi|Y, θ(t)

]
≈ 1
Lt

Lt∑
l=1

ψ
(l)
i and E

[
ψiψ

�
i |Y, θ(t)

]
≈ 1
Lt

Lt∑
l=1

ψ
(l)
i [ψ(l)

i ]�.

(4.1)
Here and below ≈ indicates the Monte-Carlo approximation. The M-step then
maximizes Q(θ|θ(t)) by setting

µ(t+1) =
1
m

m∑
i=1

E
[
ψi|Y, θ(t)

]
(4.2)

and

T (t+1) =
1
m

m∑
i=1

(
E
[
ψiψ

�
i |Y, θ(t)

]
− E

[
ψi|Y, θ(t)

]
E
[
ψi|Y, θ(t)

]�)
, (4.3)

completing the tth iteration of the EM algorithm.
In order to reduce Monte-Carlo error, we can rewrite (4.1) in the Rao-

Blackwellizied form

E
[
ψi|Y, θ(t)

]
=E

[
ψ̂i(ωi)|Y, θ(t)

]
≈ ψ̂i(S1i), where S1i≡ 1

Lt

Lt∑
l=1

ω
(l)
i ≈E

[
ωi|Y, θ(t)

]
(4.4)

and

E
[
ψiψ

�
i |Y, θ(t)

]
≈ E

[
ψ̂i(ωi)[ψ̂i(ωi)]�|Y, θ(t)

]
+ T − TX�

i WiXiT. (4.5)

To evaluate the first term on the right hand side of (4.5), write

E
[
ψ̂i(ωi)[ψ̂i(ωi)]�|Y, θ(t)

]
≈
[
(I−TX�

i WiXi)µ
] [

(I−TX�
i WiXi)µ

]�
+
[
(I−TX�

i WiXi)µ
] [
TX�

i WiS1i

]�
+
[
TX�

i WiS1i

] [
(I − TX�

i WiXi)µ
]�

+ TX�
i WiS2iWiXiT,
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where S2i =
∑Lt

l=1 ω
(l)
i [ω(l)

i ]�/Lt ≈ E [ωiω
�
i |Y, θ(t)]. Although the advantage of

the Rao-Blackwellizied estimate may be small when Lt is large, (4.4) and (4.5)
highlight the fact that once we have evaluated S1i and S2i we can reevaluate
E [E [�(θ|Yaug)|Y, ω, θ′]|Y, θ(t)] for any θ′ without the expensive Monte-Carlo step.
In particular, to implement the nested EM algorithm we set Yaug 1 = {Y, ω}
and Yaug 2 = {Y, ψ, ω}. In the first cycle of each iteration we first evaluate
(S1i,S2i), for i = 1, . . . ,m via the Gibbs sampler Monte-Carlo estimates. The
E-step is completed by evaluating (4.4), (4.5) and the M-step consists of (4.2)
and (4.3). In subsequent cycles of each iteration, only (4.4), (4.5), (4.2) and (4.3)
are recomputed using the same (S1i,S2i) for i = 1, . . . ,m.

In order to further improve computational performance, we can introduce
a working parameter to reduce the fraction of missing information (Meng and
van Dyk (1997, 1999), Liu, Rubin and Wu (1998)). For example, we can rewrite
Yaug 2 as {Y, σψ, σω}, where σ2 is an unidentifiable working parameter and define
ζi = σψi and �i = σωi for i = 1, . . . ,m, Yaug 1 = {Y,�}, and Yaug 2 = {Y,�, ζ}.
(See van Dyk and Meng (1999) for other potential working parameters.) In order
to evaluate

Q2(θ|θ(t)) = −n
2

log σ2 − 1
2σ2

m∑
i=1

E
[
(�i −Xiζi)�(�i −Xiζi)|Y, θ(t))

]

−m
2

log |σ2T | − 1
2σ2

m∑
i=1

tr
(
T−1E

[
(ζi − σµ)(ζi − σµ)�|Y, θ(t)

])
,

where n =
∑m

i=1 ni in the E-step, we again run a Gibbs sampler. Because the
observed-data model does not depend on σ2, we can set σ2 to 1 at the begin-
ning of each E-step, in which case ωi = �i and ψi = ζi for each i. Thus, the
introduction of the working parameters does not alter the Gibbs sampler. We
compute (S1i,S2i) for each i exactly as before and approximate E [ζi|Y, θ(t)] and
E [ζiζ�i |Y, θ(t)] with the expressions given in (4.4) and (4.5). To evaluate the first
term of Q2(θ|θ(t)), we also compute

E [��
i Xiζi|Y, θ(t)] ≈ S�

1iXiµ+ tr
(
XiTX

�
i WiS2i

)
− S�

1iXiTX
�
i WiXiµ (4.6)

for i = 1, . . . ,m, which follows from E [ζi|Yaug 1, θ] and the law of iterated expec-
tations. This completes the E-step.

The M-step updates the parameters as follows:

[σ2](t+1) =
1
n

m∑
i=1

(
S2i − 2E [��

i Xiζi|Y, θ(t)] + tr(XiE [ζiζ�i |Y, θ(t)]X�
i )
)
, (4.7)

[σµ](t+1) =
1
m

m∑
i=1

E
[
ζ�i |Y, θ(t)

]
, (4.8)
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and

(σ2T )(t+1) =
1
m

m∑
i=1

(
E
[
ζiζ

�
i |Y, θ(t)

]
− E

[
ζi|Y, θ(t)

]
E
[
ζi|Y, θ(t)

]�)
. (4.9)

Finally, by the invariance of maximum likelihood estimates, we have µ(t+1) =
[σµ](t+1)/

√
[σ2](t+1) and T (t+1) = [σ2T ](t+1)/[σ2](t+1). Thus, in the E-step of

the Monte-Carlo/Parameter-Expanded EM algorithm we first compute (S1i,S2i)
for i = 1, . . . ,m via the Monte-Carlo estimates and evaluate E [ζi|Y, θ(t)],
E [ζiζ�i |Y, θ(t)], and E [��

i Xiζi|Y, θ(t)] as in (4.4), (4.5), and (4.6) respectively.
The iteration is completed by the M-step as given by (4.7) – (4.9) with the trans-
formation to the original parameters. For the nested Monte-Carlo/ Parameter
Expanded EM algorithm, the first cycle of each iteration is exactly the same as
this EM iteration, but in subsequent cycles only (4.4) – (4.9) are recomputed,
and this does not require the Gibbs sampler.

In order to illustrate the computational gain resulting from nesting, we fit
(2.1) to an artificial data set, consisting of m = 20 groups with sizes ni varying
between six and ten, with a total of n = 160 observations. Each observation
consists of a success/failure indicator and a single covariate. Model (2.1) is
fit with this covariate and an intercept. Evaluating the effect of nesting on
Monte-Carlo EM algorithms is made difficult by the many strategies possible for
choosing the Monte-Carlo sample sizes Lt, which can greatly affect the relative
performance of the algorithms. In order to give a general idea of the relative
efficiencies, however, we implemented two strategies for choosing Lt. The first
fixed Lt at 100, (McCulloch (1997) and Chan and Kuk (1997) fix Lt at values
ranging from 50 to 1000) with the idea that in practice the accuracy of the
approximation to the mode would have to be evaluated and the algorithm rerun
with a larger value of Lt if the accuracy is not sufficient. The second strategy
attempted to automate the procedure by setting Lt = 50t. We emphasize that
we are not advocating either of these strategies for general implementation. It is
impossible to give advice regarding the choice of Lt that is generally applicable
and some trial and error will always be necessary. We believe, however, that
these two strategies are typical of the type that are often useful in practice and
illustrate well the benefit of nesting.

Figure 1 illustrates the progress of the EM and nested EM algorithms in
terms of the loglikelihood evaluated at the iterations. The algorithms were run
using the working parameter σ2 and with K = 3, 5, 7, and 15. The upper panel
illustrates that the algorithm that uses no nesting takes roughly two times longer
to reach the vicinity of the mode. We also see that the choice of K is not critical,
as each of the four other algorithms are roughly equivalent. The second panel
highlights the computational gain of nesting by plotting the number of times
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the unnested algorithm takes longer than each of the nested algorithms to first
exceed a given value of the loglikelihood. The lines start out together on the far
left because each algorithm was run with the same starting value. The oscillation
on the far right is due to the oscillation in the loglikelihood. This is illustrated
in the final panel which focuses on values of the loglikelihood near the mode and
shows that a larger number of Monte-Carlo draws is required if more accurate
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Figure 1. Fitting a Hierarchical Probit Model with 100 Monte-Carlo Draws
per Iteration. The first plots shows the increase in loglikelihood (the modal
value is represented by the horizontal line) for an EM algorithm (iterations
indicated by dots) and several nested EM algorithms (iterations represented
as follows: K = 3 by plus signs; K = 5 by × sign; K = 7 by boxes; and
K = 15 by triangles). The second plot shows the number of times longer the
EM algorithm took to first pass a given value of the loglikelihood (horizontal
axis) than each of the nested algorithms. The third plot is a close up of
the top of the first plot. The value of K does not seem to be critical and
nesting tends to reduce the computational time by a factor of about two in
this example.
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results are necessary. Figure 2 is similar to Figure 1, except that the corre-
sponding algorithms were run with Lt = 50t. This results in somewhat slower
convergence, but a steadily increasing loglikelihood. Nesting again decreases the
required computation time, this time by a factor of between three and four. In
this case the smallest value of K, 3, tends to perform somewhat worse than the
other values of K in the earlier iterations.
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Figure 2. Fitting a Hierarchical Probit Model Increasing the Number of
Monte-Carlo Draws by 50 at Each Iteration. The components of this figure
are identical to those of Figure 1. Here, however, the algorithms are run with
50t Monte-Carlo draws at iteration t. By increasing the number of draws
as the algorithms proceed, the maximizer is computed more accurately with
less intervention by the user. Here nesting reduces computational time by a
factor of three or four.

In these figures, the loglikelihood was computed via numerical integration. In
(3.1) the integration over ω can be accomplished analytically, leaving Yij|ψi, θ ∼
Binomial(n = 1, p = Φ(Xijψi)) for i = 1, . . . ,m and j = 1, . . . , ni, where Φ(·) is
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the standard normal cumulative density function and Xij is the jth row of Xi.
Thus, we can compute the likelihood via the p dimensional integral,

p(Y |θ) ∝
m∏

i=1

∫ ni∏
j=1

(Φ(Xijψi))Yij (1 − Φ(Xijψi))(1−Yij )|T |−1/2

· exp
(
(ψi − µ)�T−1(ψi − µ)/2

)
dψi. (4.10)

In this example p = 2 and the integral is relatively easy to evaluate. For larger p,
however, direct evaluation becomes difficult and the bridge sampling techniques
described in Section 3.1 are useful.

Here, we use the numerical evaluation of (4.10) to evaluate the accuracy and
relative accuracy of importance and bridge sampling in this problem. In both
(3.2) and (3.4), theory suggests using Yaug 1 = {Y, ω} in place of Yaug 2 = {Y, ω, ψ}
since the dimension of the numerical integration is reduced. We will use an
alternative augmented data set {Y, ψ}, which could be defined to be Yaug 1 in
the derivation of a different set of nested EM algorithms, since the resulting
numerical integration is of smaller dimension, p rather than ni. That is, we
compute (3.2) and (3.4) with Yaug 1 replaced by {Y, ψ}. The results appear in
Figure 3 for Lt fixed at both 100 and 5000 with K = 1 and K = 7. The plots
show the absolute value of the difference between the step sizes as computed with
either bridge or importance sampling and (4.10), as a function of the iteration
number. (Note the difference in scale used in the several plots.) The dashed line
represents importance sampling, the dotted line bridge sampling, and the solid
line the actual signal as computed with (4.10). As expected, it is clear from the
plots that bridge sampling tends to outperform importance sampling. For the
small steps at the end of the iteration, the Monte-Carlo error swamps the signal,
especially with only 100 Monte-Carlo draws. We emphasize, however, that these
techniques are useful for code-debugging, since in software development, bridge
sampling can be used with large Monte-Carlo sample sizes to verify that the
loglikelihood (or log posterior) is increasing at each iteration.

4.2. Hierarchical t model

As a second example, we consider a Gaussian hierarchical model,

Yi = Xiβi + ei , ei ∼ N
(
0,
σ2

vi
Ini

)
for i = 1, . . . ,m,

with Yi an (ni×1) response vector and Xi an (ni×p) matrix of covariates. In
this model we assume a distribution not only on the regression coefficients,
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Figure 3. Approximating Step Sizes Using Importance and Bridge Sampling.
The four plots compare importance sampling with bridge sampling for com-
puting the step size in loglikelihood of each iteration. The actual step size as
computed by numerical integration is given by the solid line, the other two
lines record the difference between the solid line and what was reported by
importance sampling (dashed line) and bridge sampling (dotted line). The
plots in the left column correspond to 100 Monte-Carlo draws; those in the
right column correspond to 5000 draws. The first row represents the EM
algorithm, the second the nested EM algorithm with K = 7. Notice that for
the early iterations (especially with a larger number of Monte-Carlo draws)
both importance sampling and bridge sampling do a reasonable job relative
to the size of the signal given by the solid line. Bridge sampling, however,
tends to out perform importance sampling. Since the nested algorithm takes
bigger steps, the error in both importance and bridge sampling is larger than
with the standard EM algorithm.

βi ∼ N(µ, T ) as in the common random-effects model, but also on the variances,
through the latent variable, vi ∼ χ2

ν/ν, where ν is typically fixed and represents
the variability among the group variances. We refer to this model as a hierarchical
t-model since the conditional distribution of Yi given βi is multivariate t. In order
to derive an EM algorithm, we define Yaug = {(Yi, βi, vi), i = 1, . . . ,m}, but note
that Q(θ|θ(t)), with θ = (σ, µ, T ), cannot be evaluated in closed form and must be
approximated via Monte-Carlo integration. In particular, given θ we can run a
Gibbs sampler using the complete conditional distributions of the latent variables
which are given by

βi|v, Y, θ ∼ Np(β̂i(Wi(vi)), T − TX�
i Wi(vi)XiT ), i = 1, . . . ,m,
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where Y = (Y1, . . . , Ym), v = (v1, . . . , vm),

β̂i(Wi(vi)) = µ+ TX�
i Wi(vi)(Yi −Xiµ) with Wi(vi) =

[
σ2

vi
Ini +X�

i TXi

]−1

and

vi|β, Y, θ ∼ Gamma

(
ν + 1

2
,

1
2(ν + d2

i )

)
,

when β = (β1, . . . , βm) and d2
i = (Yi − Xiβi)�(Yi − Xiβi)/σ2. (The Gamma

distribution is parameterized so that E [νi|β, Y, θ] = (ν + 1)/(ν + d2
i ).) The M-

step maximizes Q(θ|θ(t)) by setting

µ(t+1) =
1
m

m∑
i=1

E
[
βi|Y, θ(t)

]
, (4.11)

T (t+1) =
1
m

m∑
i=1

(
E
[
βiβ

�
i |Y, θ(t)

]
− E

[
βi|Y, θ(t)

]
E
[
βi|Y, θ(t)

]�)
, (4.12)

and

[σ2](t+1) =
1
n

m∑
i=1

E
[
vi(Yi −Xiβi)�(Yi −Xiβi)|Y, θ(t)

]

=
1
n

m∑
i=1

(
E
[
vi|Y, θ(t)

]
Y �

i Yi − 2Y �
i XiE

[
viβi|Y, θ(t)

]
(4.13)

+ tr
(
XiE

[
viβiβ

�
i |Y, θ(t)

]
X�

i

))
. (4.14)

The five different expectations in (4.11) and (4.14) are approximated using a
Monte-Carlo E-step with the Gibbs sampler described above. Again we use Rao-
Blackwellizied forms:

E
[
βi|Y, θ(t)

]
= E

[
β̂i(Wi(vi))|Y, θ(t)

]
≈ β̂i(S1i) where S1i =

1
Lt

Lt∑
l=1

Wi(v
(l)
i ),

(4.15)
with {v(1)

i , . . . , v
(Lt)
i } being the Lt draws of vi at iteration t (for i = 1, . . . ,m),

E
[
βiβ

�
i |Y, θ(t)

]
= E

[
β̂i(Wi(vi))[β̂i(Wi(vi))]�|Y, θ(t)

]
+ T − TX�

i S1iXiT, (4.16)

where E [β̂i(Wi(vi))[β̂i(Wi(vi))]�|Y, θ(t)]≈ β̂i(S1i)µ�+µ(β̂i(S1i)−µ)�+TX�
i S2iXiT

with S2i given by 1
Lt

∑Lt
l=1Wi(v

(l)
i )(Yi −Xiµ)(Yi −Xiµ)�Wi(v

(l)
i ),

E [vi|Y, θ(t)] ≈ S3i where S3i =
1
Lt

Lt∑
l=1

v
(l)
i , (4.17)
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E [viβi|Y, θ(t)] = E
[
viβ̂i(Wi(vi))|Y, θ(t)

]
≈ µS3i + TX�

i S4i(Y −Xiµ), where

S4i =
1
Lt

Lt∑
l=1

v
(l)
i Wi(v

(l)
i ), (4.18)

and

E [viβiβ
�
i |Y, θ(t)]=E

[
vi

(
β̂i(Wi(vi))[β̂i(Wi(vi))]�+T − TX�

i Wi(vi)XiT
)
|Y, θ(t)

]
≈S3iµµ

� + TX�
i S4i(Y −Xiµ)µ�+

[
TX�

i S4i(Y −Xiµ)µ�
]�

+TX�
i S5iXiT + S3iT − TX�

i S4iXiT, (4.19)

where S5i = 1
Lt

∑Lt
l=1 v

(l)
i Wi(v

(l)
i )(Yi −Xiµ)(Yi −Xiµ)�Wi(v

(l)
i ). Thus, one itera-

tion of the EM algorithm first computes {Sji, j = 1, . . . , 5, i = 1, . . . ,m} using Lt

Monte-Carlo draws of v, then uses these statistics to compute the expectations
given in (4.15) – (4.19), and finally updates the parameters via (4.11) – (4.14).
In the nested EM algorithm we set Yaug 1 = {Y, v} and Yaug 2 = {Y, v, β} so
that {(v(1)

i , . . . , v
(Lt)
i ), i = 1, . . . ,m} only needs to be drawn in the first cycle of

each iteration. In subsequent cycles, the E-step consists of reevaluating {Sji, j =
1, 2, 4, 5, i = 1, . . . ,m} and (4.15) – (4.19) using the updated parameter values,
and the M-step is given by (4.11) and (4.14). Because E (�(θ|Yaug 2)|Yaug 1, θ0)
is not linear in v, the Monte-Carlo estimates Sji for j 	= 3 must be computed
at each cycle of the algorithm. Despite this, nesting significantly reduces the
computational requirement of the algorithm because the Gibbs sampler is only
run during the first cycle of each iteration.

In order to further increase computational efficiency, we introduce a work-
ing parameter into the marginal distribution of vi. In particular, we replace
Yaug 1 = {Y, β, v} with Yaug 1 = {Y, β, u}, where ui = αvi for i = 1, . . . ,m. Com-
putationally, the effect of this change is simply that (4.13) – (4.14) is replaced
by

[σ2](t+1) =
1∑m

i=1 niS3i

m∑
i=1

(
E
[
vi|Y, θ(t)

]
Y �

i Yi − 2Y �
i XiE

[
viβi|Y, θ(t)

]

+ tr(XiE
[
viβiβ

�
i |Y, θ(t)

]
X�

i )
)
.

That is, the division by n is replaced by division by the “sum of the weights”.
See Meng and van Dyk (1997) for discussion of this substitution in the non-
hierarchical t-model.

Figure 4 illustrates the relative computational cost of the EM and the nested
EM algorithms using K = 3, 5, 7, and 15. The hierarchical t model with ν =
10 was fit to data from an orthodontic study (Potthoff and Roy (1964)). The
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distance between the pteryomaxillary fissure and the center of the pituitary was
measured on 16 boys at age 8, 10, 12, and 14. Here Yi are the four measurements
for boy i, and the covariates consist of an intercept term and age. In Figure 4,
Lt was set to 20t. Although there is some variability as a function of K in the
amount of improvement, nesting reduces the computation time by a factor of
between three (when K is small) and ten (when K is large).

•
••
••
••
••

•••
•••

••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•
•
•
•
••

••
••

•••
••••••

•••••••••• • • • • • • • • • • • • • • • • • • •

seconds

seconds

lo
g
li
k
e
li
h
o
o
d

loglikelihood

lo
g
li
k
e
li
h
o
o
d

0

0

0

1
0

50

a
d
v
a
n
ta

g
e

o
f
n
e
st

in
g

2
4

6
8

1
2

100 150

200

200

-100

-1
0
0

-95

-9
5

-90

-9
0

-85

-8
5

-80

-8
0

400 600 800 1000

-7
6
.5

0
-7

6
.4

8
-7

6
.4

6
-7

6
.4

4

Figure 4. Fitting a Hierarchical t-Model Increasing the Number of Monte-
Carlo Draws by 20 at Each Iteration. The components of this figure are
identical to those of Figure 1. Again we increase the number of draws at
each iteration to stabilize the convergence of the algorithms. The nested
algorithms, espescially with large K, show substantial improvement over the
standard algorithm.

5. Discussion

The EM algorithm is a useful tool for computing maximum likelihood esti-
mates and posterior modes for models involving latent variables or missing data.
Even when MCMC methods are used to map out the posterior or likelihood
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more completely, the location of the (multiple) modes is invaluable for determin-
ing starting vales and the EM computer code typically forms the backbone of
the computer code for the Gibbs sampler (so programming effort is kept to a
minimum). In models formulated in terms of multiple latent variables, standard
optimization techniques such as Newton-Raphson type algorithms not only suf-
fer from stability problems when �(θ|Y ) is far from quadratic, but also can be
difficult to implement when numerical integration is required to evaluate �(θ|Y ).
In these settings the (Monte-Carlo) EM algorithm offers a stable albeit slow so-
lution, requiring little programming that is not required by the Gibbs sampler
itself. By nesting we can both maintain the stability of EM and increase the
computational efficiency while requiring essentially no extra effort by those who
implement the algorithm.
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