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Massive Data Sets and Data Streams

Dramatic increase in the quality and quantity of data:
massive new surveys: catalogs containing T/PBs of data,
high resolution spectrography and imaging across the
electromagnetic spectrum,
incredibly detailed movies of dynamic and explosive
processes in the solar atmosphere,
space-based telescopes tailored to specific scientific goals,
complex (computer) models link data to underlying physics,
data volume is growing.... astronomically!!

Massive challenges in
statistical computation!!
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Complex Data and Sophisticated Models

A great leap forward (∼2018):
Large Synoptic Survey
Telescope (1.28 petabytes/year).
But data are not just massive:
they are rich, deep, & complex.
LSST: Trigonometric Parallax,
Proper Motion, and Photometric
data in 5 bands.
Require specialized models,
methods, and computation.
Idiosyncratic stats challenges.
MCMC requires careful use of
well-known strategies.
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Application I: High-Energy Spectral Analysis1

Embed physics models into multi-level statistical models.
X-ray and γ-ray detectors count a typically small number of
photons in each of a large number of pixels.
Must account for complexities of data generation.
State-of-the-art data and careful computational techniques
enable us to fit the resulting complex model.

1V Kashyap, D van Dyk, T Park, A Connors, A Siegminowska, and iCHASC
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Basic Spectral Analysis

Distrib’n of energy of electromagnetic radiation

Photon counts modeled
with Poisson process.

The Poisson parameter
is a function of energy:
Λi = function(Ei).
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The continua, emission lines, and absorption features give
clues as to the physical environment at the source.

Λi =


K C∑

k=1

fk (θC
k ,Ei) +

K E∑
k=1

hk (θE
k ,Ei)


K A∏

k=1

gk (θA
k ,Ei),
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Highly Structured Models
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Searching for Narrow Lines

A simplified latent Poisson Process for the scientific model:

Xi ∼ Poisson
(

Λi = αE−β
i + λLπi

)
.

With a delta function line, we parameterize {πi} in terms of

θL = the location of the emission line.

Use Data Augmentation to fit this finite mixture model:

Zil = indicator that photon l in bin i is from the line

STEP 1: Given Z = {Zil}, sample θ = {α, β, λL, θL}
STEP 2: Given θ, sample Zil ∼ Ber

(
λLπi

αE−β
i +λLπi

)
Unfortunately this sampler fails.
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Why this Gibbs Sampler Fails

Consider a simple model
with given latent counts.

X = (latent) Cell Counts

Extend Src Counts(Z=0)

Point Src Counts (Z=1)

mo
de

l 

10 4 8 1 2 0

Given this Model, what is Z?
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Why this Gibbs Sampler Fails

Consider a simple model
with given latent counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)

mo
de

l 

10 4 8 1 2 0

10 4 ~3 1 2 0

0 0 ~5 0 0 0
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Why this Gibbs Sampler Fails

Given Z , what is
the location of the
emission line?

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)

mo
de

l 

10 4 8 1 2 0

10 4 ~3 1 2 0

0 0 ~5 0 0 0
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Standard Gibbs Sampler

We do not observe the latent Poisson Process,

Xi ∼ Poisson
(

Λi = αE−β
i + λEπi

)
,

rather we observe, Yj ∼ Poisson

(
aj
∑

i

PijΛi + ξj

)

Yobs = {Yj} = obs cell cnts

X = {Xi} = latent cell cnts

Z = emission line indicators

θL = location of emission line

θO = other model parameters

Standard Gibbs sampler:
1 Sample p(X ,Z |θ)

2 Sample p(θ|X ,Z ) =
p(θO|X ,Z )p(θL|X ,Z )

With delta function emission line, this sampler fails.
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The Partially Collapsed Gibbs Sampler

Question: Can we improve convergence by reducing the
conditioning in some of the steps of the Gibbs sampler?

Update θL without conditioning on Z or X?

Update θL without conditioning on Z?

An Incompatible Gibbs Sampler

• Recall the “Simplest Example”:

p(ψ1|ψ2)

p(ψ2|ψ1)
−→ p(ψ1|ψ2)

p(ψ2)
−→ p(ψ2)

p(ψ1|ψ2)
−→ p(ψ1, ψ2)

• Following this we construct:

Sampler 1: (A Blocked Version of the Original Sampler.)

p(X, Z|θ)
p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→
p(X, Z|θ)
p(θO|θL, X, Z)

p(θL|θO)

−→
p(θL|θO)

p(X, Z|θ)
p(θO|θL, X, Z)

−→ p(θL, X, Z|θO)

p(θO|θL, X, Z)

Sampler 2: (Cannot be Blocked: An Incompatible Gibbs Sampler.)

p(X, Z|θ)
p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→
p(X, Z|θ)
p(θO|θL, X, Z)

p(θL|θO, X)

−→
p(θL|θO, X)

p(X, Z|θ)
p(θO|θL, X, Z)

It can be shown that both samplers have the correct stationary
distribution and are faster to converge than the standard sampler.

41
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Computational Gains

Standard sampler doesn’t move from its starting value.
Sampler 1 converges better than Sampler 2.
However, each iteration of Sampler 1 takes ∼8 times longer
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Why MH within PCG Samplers?

We often require MH updates within the PCG sampler
van Dyk and Park (2011) suggest using an initial run to
generate a MH proposal for θL (Path-Adaptive MH).
fk gk , and hk may be complex functions→ MH (PyBLoCXS).
Absorption features apply to all continua and lines. There
is no gain in conditioning on Z .

Recall:

Λi =


K C∑

k=1

fk (θC
k ,Ei) +

K E∑
k=1

hk (θE
k ,Ei)


K A∏

k=1

gk (θA
k ,Ei),

More subtle than “Metropolis within Gibbs”.
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A Closer Look at the PCG Sampler

A Gibbs sampler:
STEP 1: ψ1 ∼ p(ψ1|ψ2)

STEP 2: ψ2 ∼ p(ψ2|ψ1)

A Partially Collapsed Gibbs (PCG) Sampler:
STEP 1: ψ1 ∼ p(ψ1|g(ψ2))

STEP 2: ψ2 ∼ p(ψ2|h(ψ1))

g and/or h are non-invertible functions.
Generalizes blocking & collapsing, involves incompatibility.
Step order can effect stationary distribution.
Improves convergence rate (van Dyk & Park, 2008, JASA).
Spectral analysis, time series, and multiple imputation
(van Dyk & Park; 2011 MCMC Hndbk; 2009 JCGS; 2008 ApJ).
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MH within Gibbs & PCG Samplers

An MH within Gibbs sampler:
STEP 1: ψ1 ∼ K(ψ1|ψ) via MH with limiting dist. p(ψ1|ψ2)

STEP 2: ψ2 ∼ p(ψ2|ψ1)

Using MH within the Partially Collapsed Gibbs Sampler:
STEP 1: ψ1 ∼ K(ψ1|ψ) via MH with limiting dist. p(ψ1)

STEP 2: ψ2 ∼ p(ψ2|ψ1)

If MH is unnecessary, obtain i.i.d. draws from p(ψ1, ψ2).
With MH we must verify the stationary distribution.
Improved convergence if ψ1 and ψ2 are highly correlated.
Need only evaluate p(ψ1) = p(ψ1, ψ2)/p(ψ2|ψ1).
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But... Be Careful!

Another MH within Gibbs Sampler:
STEP 1: ψ1 ∼ p(ψ1|ψ2)

STEP 2: ψ2 ∼M(ψ2|ψ1) via MH with limiting dist. p(ψ2|ψ1)

A naive Sampler:
STEP 1: ψ1 ∼ p(ψ1)

STEP 2: ψ2 ∼M(ψ2|ψ1) via MH with limiting dist. p(ψ2|ψ1)

Simulation Study:

Suppose
(
ψ1
ψ2

)
∼ N2

[(0
0

)
,
(

1 0.9
0.9 1

)]
MH: a Gaussian jumping rule centered at previous draw.
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Be Careful When Combining MH and PCG Sampling

MH within Gibbs Sampler The naive Sampler
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What Goes Wrong

The naive Sampler:

STEP 1: ψ(t)
1 ∼ p(ψ1)

STEP 2: ψ(t)
2 ∼M(ψ2|ψ(t)

1 , ψ
(t−1)
2 ) via Metropolis Hastings

The update of ψ2 depends on both ψ(t)
1 and ψ(t−1)

2 :

The limiting distribution of the MH step is p(ψ2|ψ(t)
1 ).

If the proposal is rejected, ψ2 is set to ψ(t−1)
2 .

BUT: ψ(t)
1 ∼ p(ψ1)—independent of ψ(t−1)

2 at every iteration.

STEP 2 will never produce samples from p(ψ2|ψ1).
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Constructing a Legitimate MH within PCG SamplerThe General Strategy

1. Marginalzing

p(ψ1|ψ′
2)

K(ψ2|ψ′) w/

limit p(ψ2|ψ1)

−→
p(ψ1|ψ′

2)

K(ψ1,ψ2|ψ′) w/

limit p(ψ1,ψ2)

2. Permuting

−→
K(ψ1,ψ2|ψ′) w/

limit p(ψ1,ψ2)

p(ψ1|ψ′
2)

3. Trimming

−→
K(ψ2|ψ′) w/

limit p(ψ2)

p(ψ1|ψ′
2)

Move quantities from the right to the

left of the conditioning sign. This

does not alter the stationary dist’n,

but improves the rate of convergence.

Permute the order of the steps. This

can have minor effects on the rate of

convergence, but does not affect the

stationary distribution.

Remove quantities that are not part

of the transition kernel. This does

not effect the stochastic mapping or

the rate of convergence.

1
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Example I: Back to the Spectral Analysis...

We do not observe the latent Poisson Process,

Xi ∼ Poisson
(

Λi = αE−β
i + λEπi

)
,

rather we observe, Yj ∼ Poisson

(
aj
∑

i

PijΛi + ξj

)

Yobs = {Yj} = obs cell cnts

X = {Xi} = latent cell cnts

Z = emission line indicators

θL = location of emission line

θO = other model parameters

Updating θL is costly:
p(θL|Yobs)

p(θL|X ,Yobs)

must both be evaluated on a grid.

Use an adaptive Metropolis jumping rule instead.



Computation in Astronomy Spectral Analysis and PCG MH within PCG Stellar Evolution

Constructing the MH within PCG Sampler

Updating θL without conditioning on X or Z.

• With no Metropolis Steps, we get a blocked version of the original sampler.

Sampler 1 without Metropolis:

p(X, Z|θ)
p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→
p(X, Z|θ)
p(θO|θL, X, Z)

p(θL, X, Z|θO)

−→
p(θL, X, Z|θO)

p(X, Z|θ)
p(θO|θL, X, Z)

−→ p(θL, X, Z|θO)

p(θO|θL, X, Z)

• But With a Metropolis step for θL, blocking is not possible.

Sampler 1 with Metropolis:

p(X, Z|θ)
p(θO|θL, X, Z)

M(θL|θO, X, Z)

−→
p(X, Z|θ)
p(θO|θL, X, Z)

M(θL, X, Z|θO)

−→
M(θL, X, Z|θO)

p(X, Z|θ)
p(θO|θL, X, Z)

−→
M(θL|θO)

p(X, Z|θ)
p(θO|θL, X, Z)

With e.g., M(θL, X, Z|θO) having jumping rule, p(X, Z|θ)J(θL|θL�, θO).

“Sampler 1 with Metropolis” is a generalization, not

a special case, of Metropolis within Gibbs Sampler.

1



Computation in Astronomy Spectral Analysis and PCG MH within PCG Stellar Evolution

Efficiency of the MH within PCG Sampler

Sampler 1 converges by far the best, but.....
each iteration takes ∼8 times longer than Sampler 2
and fifty times longer than Sampler 3 (on average).

PCG I

PCG II

PCG 1
w/ MH
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Example II: Absorption Features

An absorbed spectrum with two continua

Λi =
{

f1(θC
1 ,Ei) + f2(θC

2 ,Ei)
}

g(θA,Ei),

An MH within PCG sampler
Again we let Z equal the indicator for the finite mixture.
Each of θC

1 , θC
2 , and θA may require MH.

Z is beneficial for θC
1 and θC

2 , but not for θA.

Sampler:
Sampler:

p(Z|θ)
M(θA|θC1 , θC2 , Z)

M(θC1 , θC2 |θA, Z)

−→
p(Z|θ)
M(θA, Z|θC1 , θC2 )

M(θC1 , θC2 |θA, Z)

−→
M(θA, Z|θC1 , θC2 )

p(Z|θ)
M(θC1 , θC2 |θA, Z)

−→
M(θA|θC1 , θC2 )

p(Z|θ)
M(θC1 , θC2 |θA, Z)

2



Computation in Astronomy Spectral Analysis and PCG MH within PCG Stellar Evolution

Example III: Instrumental Calibration...

We do not observe the latent Poisson Process,

Xi ∼ Poisson
(

Λi = αE−β
i + λEπi

)
,

rather we observe, Yj ∼ Poisson

(
aj
∑

i

PijΛi + ξj

)
with

Effective Area: A = (a1, . . . ,aJ).
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Two Possible Target Distributions

We consider inference under:
A PRAGMATIC BAYESIAN TARGET: π0(A, θ) = p(A)p(θ|A,Y ).
THE FULLY BAYESIAN POSTERIOR: π(A, θ) = p(A|Y )p(θ|A,Y ).

Concerns:
Statistical Fully Bayesian target is “correct”.

Cultural Astronomers have concerns about letting the
current data influence calibration products.

Computational Both targets pose challenges,
but pragmatic Bayesian target is easier to sample.

Practical How different are p(A) and p(A|Y )?

With MCMC we sample a different effective area curve at each
iteration according to its conditional distribution.
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Pragmatic Bayes: PCG Sampler

Simple MCMC for π0(A, θ) = p(A)p(θ|A,Y ):
Sample effective area uniformly from calibration sample:
A ∼ π0(A) = p(A).
Sample model parameters in the usual way, conditioning
on the current sample of the effective area:
θ ∼ p(θ|A,Y ).

Unfortunately, update of θ uses MH (pyBLoCXS in Sherpa).

The naive Sampler Revisited:
STEP 1: A(t) ∼ p(A)

STEP 2: θ(t) ∼M(θ|A(t), θ(t−1)) via Metropolis.
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Two Simple Solutions

Two possible samplers
1 A PCG (Simple Collapsed) Gibbs Sampler:

STEP 1: A(t) ∼ p(A)
STEP 2: Sample θ(t−1+`/L) ∼M(θ|A(t), θ(t−1))

L times via MH to obtain θ(t) ∼ p(θ|A(t)).

2 A pure MH Sampler:
Jumping Rule: (A?, θ?) ∼ p(A?)M(θ?|A?, θ(t−1)).

Tradeoff: MH is faster, PCG gives independent draws.
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Application II: Stellar Evolution2

Complex Data and Sophisticated Models

1 Complex computer models and simulations are taking the
place of the analytic likelihood function.

2 Sophisticated data allows us to fit such models, but an
entirely new set of methods is required.

3 This sort of modeling, computing, and inference is coming
to many more areas of Astronomy.

4 I will discuss one example in detail: stellar evolution.

Challenge is acute when complex models are
combined with massive data streams.

2N Stein, D van Dyk, S DeGennaro, E Jeffery, W Jefferys, and T von Hippel
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Compter Model for Sun-Like Stellar Evolution
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Computer model predicts how a the spectrum of a sun-like
star evolves as a function of input parameters.
We aim to embed these models into a sophisticated
multi-level model for statistical inference.
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The Data: Color Magnitude Diagrams

Apparent Magnitude Difference (Color)
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Color-Magnitude Diagram
Plot Magnitude Difference vs.
Magnitude.
Identifies stars at different
stages of their lives.
Evolution of a CMD.
Facilitates physical intuition as
to likely values of parameters.
“Chi-by-eye” fitting.
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Embedding Computer Model into Statistical Model
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Between 1/3 and 1/2 of “stars” are unresolved binaries.
Star clusters: same age, metallicity, distance, & absorption.
Cluster data is contaminated with field stars.
Data observed with Gaussian measurement errors.
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White Dwarfs Physics

Sun-like stars are powered by thermal-nuclear reactions.
White dwarfs are the cooling embers after reactions cease.
Different physical processes require different models.
White dwarf colors are highly informative for parameters.
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The Missing Link: White Dwarf Mass

Computer 
Model  

for 
Stellar 

Evolution 

Metallicity 
Initial Mass 

Progenitor Age 

(Total) Age 

White Dwarf 
Age 

Compute WD 
Latent Heat 

WD Age 
WD Mass 

WD Radius 
Surface Temp 

Computer Model for White Dwarf Cooling 

Emergent 
Spectrum 

WD Radius 
WD Mass 

Surface Temp 

Expected 
Magnitudes 

Computer Model for WD Atmosphere 

Must include IFMR: white dwarf mass = f (initial mass).
Parametric Bridge between Computer Models.
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Opening Up the Black Box: The Final Model

Age 
Metallicity 

Initial Mass 
Distance 

Absorption 

Observed 
Magnitudes 

Gaussian  
Measurement 

Error 

Field Star 
Contamination 

+ 

Computer Model for  
Stellar Evolution 

Main Sequence 
Comp Model 

White Dwarf 
Comp Model 

IFMR 

WD mass 
Age 

on MS 

Age 
Distance 

Absorption 

Initial Mass 
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Model Fitting: Complex Posterior Distributions

Highly non-linear relationship among stellar parameters.
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Model Fitting: Complex Posterior Distributions
Multiple Modes

The classification of
certain stars as field
or cluster stars can

cause multiple
modes in the

distributions of other
parameters.
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Basic MCMC Strategy

Metropolis within Gibbs Sampling
Hundreds of parameters

Stellar: Mass, Mass Ratio, Cluster Membership
Cluster: Age, Metallicity, Distance, Absorption

Strong posterior correlations among the parameters.
Evaluation of Computer Stellar Evolution Model is Very Costly.

Instead we use a tabulated form to avoid online evaluation.
Evaluation points are not evenly spaced, but chosen to
capture the complexity of the underlying function.
Tables provided by developers of computer models.



Computation in Astronomy Spectral Analysis and PCG MH within PCG Stellar Evolution

Correlation Reduction with alternative Prior Dist’n

Field/Cluster Indicator is Highly Correlated with Masses
Data are uninformative for the masses of field stars.
Data are highly informative for cluster star masses.
Cannot easily jump from field to cluster star designation.

Solution: Replace prior for
masses given field star

membership by approximation
of the posterior given cluster

star membership.

mass if a cluster star

mass if a field star

Does not effect statistical inference & enables efficient mixing.



Computation in Astronomy Spectral Analysis and PCG MH within PCG Stellar Evolution

Correlation Reduction via Dynamic Transformations

Strong Linear and Non-Linear Correlations Among Parameters

Static and/or dynamic (power) transformations remove
non-linear relationships.
A series of preliminary runs is used to evaluate and
remove linear correlations.
We tune a linear transformation to the correlations of the
posterior distribution on the fly.
Results in a dramatic improvement in mixing.

In practice MCMC requires careful
implementation of well-known strategies.
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Correlation Reduction via Dynamic Transformations
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Collapsing to Handling Multiple Modes

Computation is especially challenging when fitting the IFMR
Hundreds of parameters

Stellar: Mass, Mass Ratio, Cluster Membership
Cluster: Age, Metallicity, Distance, Absorption

General: IFMR slope, IFMR intercept
Strategy: numerically integrate out stellar parameters and
use Metropolis on remaining six parameters.
Marginal posterior factors into Nstars 2D integrals.
Computer code for MCMC is easy to parallelize.

Result: Fast Mixing but computationally
expensive code.
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FItting the Initial-Final Mass Relationship
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How best to combine results from three clusters?
Is there one relationship? Depend on other variables?
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Diagnosing Complex Models

Double-Line Eclipsing Binaries:
direct measures of component
masses.
Double line Spectroscopic:
direct measure of mass ratio.
Direct check of a quantity that
resides deep in our statistical
model and is highly model
dependent.
Use discrepancies to diagnose
and tune computer models,
and/or build a joint model.
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Thanks...

Stellar Evolution:
Nathan Stein
Steven DeGennaro
Elizabeth Jeffery
William H. Jefferys
David Stenning
Ted von Hippel

X-ray Spectral Analysis:
Taeyoung Park
Alanna Connors
Vinay Kashyap
Aneta Siegminowska

And

iCHASC:
Imperial-California-Harvard
AstroStatistics Collaboration
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