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Outline of Presentation

A. An idea from EM-type algorithms:
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The EM Algorithm

• The EM algorithm is a stable computation method designed to compute θ̂,

the value of θ that optimizes

p(θ|Y ) =

∫

p(θ, ψ|Y )dψ.

• Here we embed the posterior distribution into a density on a larger space.

The EM Algorithm

E-step: Given θ(t) compute

Q(θ|θ(t)) = E
[

log p(θ|Y, ψ) | Y, θ(t)
]

.

M-step: Set data via the M-step

θ(t+1) = argmaxθ Q(θ|θ(t))

The Corresponding Gibbs Sampler

Step 1: Sample ψ ∼ p(ψ | Y, θ(t))

Step 2: Sample θ(t+1) ∼ p(θ | Y, ψ)

It is well known that the algorithms

exhibit similar convergence behavior.
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Improving the Rate of Convergence of EM

The EM Matrix Rate of Convergence

• EM is approximately an liner iteration, (θ(t+1) − θ̂) ≈ DM(θ(t) − θ̂), with

matrix rate of convergence

DM = I − IobsI
−1
aug,

where

Iobs =
∂2

∂θ · ∂θ
log p(θ | Y )

∣

∣

∣

θ=θ̂
and Iaug =

∂2

∂θ · ∂θ
logQ(θ | θ̂)

∣

∣

∣

θ=θ̂

• Meng and van Dyk (1996) showed that replacing φ with g(φ) can only

improve the rate of convergence of EM.

• A similar strategy in the context of the corresponding Gibbs Sampler would

construct a sampler on a smaller space.

4



The ECM, ECME, and AECM Algorithms

• We can replace Step 2 of this Gibbs sampler with K draws:

θk ∼ p(θk|Y, θ−k, ψ)

• Likewise the ECM algorithm replace the M-step of EM by a series of K

conditional maximization or CM-steps:

θ(t+
k
K

) = argmax E
[

log p(θ|Y, ψ) | Y, θ(t)
]

with θ
(t+ k

K
)

j = θ
(t+ k−1

K
)

j for j 6= k.

• To improve the rate of convergence of ECM, Liu and Rubin (1995) suggested

replacing one or more of these CM-steps with:

θ(t+
k
K

) = argmax log p(θ|Y ) with θ
(t+ k

K
)

j = θ
(t+ k−1

K
)

j for j 6= k.

• In the more general framework of AECM, Meng and van Dyk (1997)

replaced ψ with some function gk(ψ) in each of the CM-steps of ECM.

There is no Gibbs-like analogy to either ECME or AECM.

5



The Basic Idea

Replacing ψ with gk(ψ) in the CM-step,

θ(t+
k
K

) = argmax E
[

log p(θ|Y, ψ) | Y, θ(t)
]

with θ
(t+ k

K
)

j = θ
(t+ k−1

K
)

j for j 6= k.

improves the computational performance by reducing conditioning.

Big Questions:

1. Can we employ a similar idea in the framework of Gibbs?

2. What happens if we replace the draw

θk ∼ p(θk|Y, ψ, θ−k) with θ ∼ p(θk|Y, g(ψ), θ
−k)?

Meng and van Dyk (1997) showed that the order of the steps of ECME and

AECM can effect the celebrated monotone convergence of EM-type algorithms.

3. Is there a similar effect in the analogous Gibbs-type samplers?

Our Goal is to Answer these Questions.
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The Basic Idea

Replacing ψ with gk(ψ) in the CM-step,

θ(t+
k
K

) = argmax E
[

log p(θ|Y, ψ) | Y, θ(t)
]

with θ
(t+ k

K
)

j = θ
(t+ k−1

K
)

j for j 6= k.

improves the computational performance by reducing conditioning.

Big Questions:

1. Can we employ a similar idea in the framework of Gibbs?

2. What happens if we replace the draw

θk ∼ p(θk|Y, ψ, θ−k) with θ ∼ p(θk|Y, g(ψ), h(θ
−k))?

Meng and van Dyk (1997) showed that the order of the steps of ECME and

AECM can effect the celebrated monotone convergence of EM-type algorithms.

3. Is there a similar effect in the analogous Gibbs-type samplers?

Our Goal is to Answer these Questions.
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Reducing Conditioning in Gibbs: The Simplest Example

Consider a simple two-step Gibbs sampler:

Step 1: ψ(t+1) ∼ p(ψ|θ(t))

Step 2: θ(t+1) ∼ p(θ|ψ(t+1))
=⇒

Step 1: ψ(t+1) ∼ p(ψ|θ(t))

Step 2: θ(t+1) ∼ p(θ),

where we replace ψ(t+1) with g(ψ(t+1)) = c in Step 2.

The Markov chain

M = {(ψ(t), θ(t)), t = 0, 1, . . .}

has stationary dist’n p(ψ)p(θ)

• with target margins but

• without the correlation of

the target distribution,

AND converges quickly!

draws of ψ

draws of θ

iteration t

iteration t+ 1
2

We regain the joint target distribution with a one-step shifted chain.
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Heads Up!

Reducing the conditioning within Gibbs-type samplers involves new

challenges:

• The order of the draws may effect the stationary distribution of

the chain.

• The conditional distributions may not be compatible with any

joint distribution.

• The steps sometimes can be blocked to form an ordinary Gibbs

sampler with fewer steps.
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A Surrogate Distribution

• The joint distribution of our modified simple Gibbs sampler is

p(ψ)p(θ)

rather than

p(ψ, θ).

• These are two joint distributions with the same marginal distributions but

with different correlation structures.

• By taking one conditional distribution from each we create a chain with

1. a stationary distribution that oscillates between the two joint

distributions,

2. reduced autocorrelation due to the lower correlation in the surrogate joint

distribution, and

3. a stationary distribution for the marginal chains that is equal to the

corresponding margin of the target distribution.
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Empirical

Illustration with

a t model

• The loss of the correla-

tion structure is our key

to success.

• Two ‘data sets’ of size
two are fit with 10 and 2
degrees of freedom.

• These algorithms are
based on the method
of Marginal Augmenta-

tion (Meng and van Dyk,
1999; van Dyk and Meng,
2001).

• Idea: Use both condi-
tionals of the joint distri-
bution with reduced cor-
relation.
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The Basic Spectral Models

• Spectral Analysis: Modeling the distribution of photon energies.

• Data: Counts in narrow energy bins.

• Counts modeled with Poisson process, with parameter varying with energy.

1. The continuum, a GLM for the baseline spectrum (e.g., αE−β),

2. Several emission lines, a mixture of Gaussians added to the continuum.

3. Several absorption features multiply by the continuum.

4. The continuum indicates the temperature of the source while the emission

and absorption lines gives clues as to the relative abundances of elements.
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Searching for Narrow Lines

• A simplified latent Poisson Process for the scientific model,

Xi ∼ Poisson
(

Λi = αE
−β
i + λLπi

)

.

• We sometimes construct a delta function emission line model so that

1. the emission line is contained entirely in one bin, but

2. we do not know which bin.

I.e., {πi} can be parameterized in terms of a single unknown parameter,

θL = the location of the emission line.

• Using Data Augmentation to fit this finite mixture model:

Zil =

(

indicator that photon l in bin i

corresponds to the emission line

)

1. Given Z = {Zil} we can sample θ = {α, β, λL, θL}

2. Given θ we can sample Z, via Zil ∼ Ber
(

λLπi

αE
−β

i
+λLπi

)

In This Case the Gibbs Sampler Fails.
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Why the Gibbs Sampler Fails

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)

m
od

el
 

10 4 8 1 2 0

Given this Model, what is Z?
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Why the Gibbs Sampler Fails

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)
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Why the Gibbs Sampler Fails

Consider this simple (spectral) model

with given (latent) cell counts.

X = (latent) Cell Counts

Continuum Counts(Z=0)

Line Counts (Z=1)

m
od

el
 

10 4 8 1 2 0

10 4 ~3 1 2 0

0 0 ~5 0 0 0

Given Z, what is the location of the emission line?
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Highly Structured Models

This model is a simplification. To see how the actual samplers work, we need to

model the data collection mechanism.
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Highly Structured Models

Modeling the Chandra data collection mechanism.

submaximal effective
            area

instrument
response

absorbtion and 

pile-up

              

background

energy (keV)

co
un

ts
 p

er
 u

ni
t

1 2 3 4 5 6

0
50

15
0

++++++++
++++++++

+

+

+

+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

energy (keV)

co
un

ts
 p

er
 u

ni
t

1 2 3 4 5 6

0
40

80
12

0

++++++++
+++++

+++

+

+

+
+
+

+

++++++++++++++++++
++

+
+++++++++++++++++++++++++++++++++++++++++++++++++++

energy (keV)

co
un

ts
 p

er
 u

ni
t

1 2 3 4 5 6

0
50

15
0

25
0

+

++

+
++++++++++++

+

+

+

+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

energy (keV)

co
un

ts
 p

er
 u

ni
t

1 2 3 4 5 6

0
50

10
0

15
0

++++++++
+++++++

+

+

+

+
+

+

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

energy (keV)

co
un

ts
 p

er
 u

ni
t

1 2 3 4 5 6

0
40

80
12

0

+++++++
++++

++
+
++

+

+

++
+

+

+++
++++++++++++

+++
++
+
+
+
+++++++++++++++

++++++++++++++++++++++++++++++++++

X

Y

• The method of Data

Augmentation: EM algo-

rithms and Gibbs sam-

plers.

• We can separate a com-

plex problem into a se-

quence of problems, each

of which is easy to solve.

We wish to directly model the sources and data collection mechanism and use

statistical procedures to fit the resulting highly-structured models and address the

substantive scientific questions.
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The Standard Gibbs Sampler

We do not observe the latent Poisson Process,

Xi ∼ Poisson
(

Λi = αE
−β
i + λLπi

)

,

Rather we observe, Yj ∼ Poisson

(

aj

∑

i

PijΛi + ξj

)

Yobs = {Yj} = obs cell cnts

X = {Xi} = latent cell cnts

Z = emission line indicators

θL = location of emission line

θO = other model parameters

The standard Gibbs sampler simulates:

1. p(X,Z|θ)

2. p(θ|X,Z) = p(θO|X,Z)p(θL|X,Z)

We tacitly condition on Yobs throughout.

With a delta function emission line model, this sampler fails.
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An Incompatible Gibbs Sampler

• Recall the “Simplest Example”:

p(ψ|θ)

p(θ|ψ)
−→

p(ψ|θ)

p(θ)
−→

p(θ)

p(ψ|θ)
−→ p(θ, ψ)

• Following this we construct:

Sampler 1: (A Blocked Version of the Original Sampler.)

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL|θO)

−→

p(θL|θO)

p(X,Z|θ)

p(θO|θL, X, Z)

−→
p(θL, X, Z|θO)

p(θO|θL, X, Z)

Sampler 2: (Cannot be Blocked: An Incompatible Gibbs Sampler.)

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL|θO, X)

−→

p(θL|θO, X)

p(X,Z|θ)

p(θO|θL, X, Z)

It can be shown that both samplers have the correct stationary
distribution and are faster to converge than the standard sampler.
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Computational Gains

• Compare Standard Sampler, Sampler 1, and Sampler 2 in a spectral analysis.

• Standard sampler doesn’t move from its starting value.

• Sampler 1 has much better convergence characteristics than Sampler 2.

• However, each iteration of Sampler 1 is more expensive.
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Verifying the Stationary Distribution of Sampler 2

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL, Z|θO, X)

−→

p(θL, Z|θO, X)

p(X,Z|θ)

p(θO|θL, X, Z)

−→

p(θL|θO, X)

p(X,Z|θ)

p(θO|θL, X, Z)

We move Z to the left of the condition-

ing sign in Step 3.

We permute the order of the steps.

We remove Z from the draw in Step 1,

since the transition kernel does not de-

pend on this quantity.

None of these operations effect the chain’s stationary distribution.
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The General Strategy

1. Marginalzing

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL|θO, X, Z)

−→

p(X,Z|θ)

p(θO|θL, X, Z)

p(θL, Z|θO, X)

2. Permuting

−→

p(θL, Z|θO, X)

p(X,Z|θ)

p(θO|θL, X, Z)

3. Trimming

−→

p(θL|θO, X)

p(X,Z|θ)

p(θO|θL, X, Z)

Move quantities from the right to the

left of the conditioning sign. This does

not alter the stationary distribution,

but improves the rate of convergence.

Permute the order of the steps. This

can have minor effects on the rate of

convergence, but does not affect the sta-

tionary distribution.

Remove quantities that are not part of

the transition kernel. This does not ef-

fect the stochastic mapping or the rate

of convergence.
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The Advantage of Partially Collapsing

An Outline of a proof:

• The dependence of consecutive iterations of the Gibbs Sampler flows through

what is conditioned upon in the first step of each iteration.

• The maximal autocorrelation can only decrease if we reduce this

conditioning. Compare K(θ | θ′) with K(θ | g(θ′)).

• The Spectral Radius of the Chain

– generally governs convergence,

– is bounded above by the maximal autocorrelation, and

– does not depend on which step begins the iteration, as long as the order

of steps is not altered.

By reducing conditioning in any step (i.e., partially collapsing) we
reduce both a bound on the spectral radius of the chain and the
maximal autocorrelation for the chain that starts with that step.
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