Breakthrough
in Conformal Mapping

By James Case _ several infinite families of “slit domains”
such that any D with sufficiently many

Few analytical techniques are better  boundary points can be so mapped onto just
known to students of applied mathematics one (suitably normalized) member of each

than conformal mapping. It 1s the classical famuly.
method for solving problems in continuum Nehari described five such families, three

mechanics, electrostatics, and other fields consisting of unbounded domains and the
involving the two-dimensional Laplace and ~ remaining two of subsets of the unit disk. D
Poisson equations. To employ the method, can be mapped conformally onto (1) the
one needs an explicit mapping function  entire umit disk lwl < 1 from which n - 1
from some standard domain—such as the concentric circular slits have been removed,
unit disk or upper half plane—to the region or (i1) an annulus v < Iwl < 1 from which
of interest. For a broad class of simply con-  n — 2 concentric circular slits have been
nected domains, and a few doubly connect- removed. Alternatively, D can be mapped
ed ones, the Schwarz—Christoffel (SC) tor- onto the entire w-plane (including the point
mula provides the required map. But until at 1nf1

1nity) from which (i11) n parallel recti-

quite recently, there was no analogue of the linear slits, (iv) » rectilinear slits radiating

SC formula for multiply connected do- outward from a common center, or (v) n
mains. Today, however, the “connectivity = concentric circular slits have been removed.

barrier” has been breached in at least two ~ Nehari also explained how the functions

places. mapping D 1nto the various classes (1)—(v)
_ are related to one another.
Background: Broad Outlines Finally, let u and v be any two points of

of a Theory of Conformal Mapping D, and let S(u,v) denote the class of func-

In 1952, Zeev Nehari published what  tions f on D, analytic and univalent, for
remains the standard treatise on conformal which f(u) =0 and f(v) = c0.™ As 15 true for
mapping [7]. The seventh and final chapter, simply connected domains, S(u,v) consti-
on multiply connected domains, begins with tutes a “normal family,” so that every con-
a proof that the annulus p < Izl < 1 can be tinuous functional o defined on S(u,v) actu-
mapped conformally and univalently onto ally attains its maximum and minimum for
v < lwl < 1 1f and only 1f i = v. Hence, there at least one function in the class. In particu- -
can be no canonical domain, such as the unit lar, the functions f € S(u,v) that furnish the
disk or the upper half-plane, to which every maximum and minimum values of the func-

doubly connected domain with sufficiently tional U(f) = | f'(u)| map D conformally
many boundary points 18 conformally equiv- onto an unbounded concentric circular slit
alent. Because Riemann was aware that 1t 1s domain and an unbounded radial slit do-

possible to map any doubly connected main, respectively. As in the doubly con-

domain in the z-plane conformally and uni- nected case, the Riemann moduli of D

valently onto an annulus v < Iwl < 1, the determine which slit domain in each class 1s

conformal invariant v 1S known as the “Rie- the conformal image of D.

mann modulus” of the domain 1n question. As of about 1950, then, the broad outlines
To map an annulus p < Izl < 1 onto a par- of a theory of conformal mapping of multi-

ticular doubly connected (polygonal, say) ply connected domains were in hand. Only
subset of the w-plane, one must first (or the means of mapping a given D onto an

simultaneously) identify the Riemann mod- appropriate D’ in (i)—(v) were missing. And
ulus of the target domain. To illustrate what  there the field pretty well languished for the
can be done with off-the-shelf numerical better part of fifty years. Even the intense

mapping software, T.A. Driscoll and L.N. development that SC mapping techniques
Trefethen offer the examples shown 1n have undergone since the late 1970s—when

Figure 1 [5]. The number beneath each map ~ interactive computing became wide-

is what they call the “conformal modulus”  spread—had failed to alter the status quo.
.

The situation for multiply connected do- Breakthrough
mains is more complex. In this article, D Quite recently, the situation began to

represents a domain of connectivity n>21in ~ change dramatically. In a paper published in
the z-plane. D’s “conformal type” is then 2004 in the Journal d’Analyse Mathéma-

determined by 3n — 6 real parameters—  fiqgue, Tom Delullo, Alan Elcrat, and John
which Nehari also described as Riemann  Pfaltzgraft derived a Schwartz—Christoffel
moduli—in such a way that D can be  formula mapping the exterior of a finite col-
mapped conformally onto an image D' of  lection of non-intersecting disks onto the
the same connectivity if and only if D and ~ exterior of a like number of disjoint poly-
D’ agree in all 3n — 6 Riemann moduli.

Although there is no single canonical do- ~*Actually Nehari asks that members of
main onto which all such D can be mapped S(u,v) have a pole of unit order and unit

conformally and univalently, there do exist ~ residue at v.




Figure 1. An annulus can be mapped conformally and univalently onto a doubly connected
polygon only if the two share a common Riemann modulus. As a practical matter, it seems nec-
essary to calculate the modulus and the mapping function simultaneously, by successive ap-
proximation. Figures 1 and 2 from Schwarz-Christoffel Mapping [5].

oons. In a session in Sydney, at I[CIAM 03,
listening to Elcrat speak on his then unpub-
lished work with Pfaltzgraff and DeLillo,
Darren Crowdy was led to suspect that a
more abstract approach to the questions at
issue might lead to additional results. His
first paper [1] on the subject, containing an
SC tormula for mapping the interior of the
unit disk with m circular holes onto the inte-
rior of a bounded polygon with m polygonal
holes, appeared in 2005. A subsequent pub-
lication [2] extended his results to unbound-
ed domains.

The phrase “an SC formula” requires ex-
planation. Christoffel (in 1867) and
Schwarz (in 1869) published ver-
sions of the mapping formula that
now bears both their names. Perhaps
the most familiar version maps the
upper half of the z-plane onto a user-
specified polygonal subset of the

of variables.

The geometrical significance of the prod-
uct form of an SC mapping function is that
arg f' = X, arg f.. Thus, for instance, the
product of functions of the form f, =
(z - zk)(‘"B;.-) 1s the derivative of a function f
mapping the upper halt of the z-plane onto a
closed simply connected polyhedral subset
of the w-plane with interior angles oyw =
(1 — B at each of the vertices w, = /(2.

The mapping from the unit circle to the
same polygon can then be obtained from the

Mobius transformation that maps the unit
circle onto the upper halt plane. To close the

I f(R U {co})

w-plane. The characteristic feature Figure 2. /naccurate estimates of the pre-images of
of all SC mapping functions fis that the several vertices can frustrate efforts to find the SC

their derivatives f’ can be expresse
as products 1I. f, of simpler “canonical
functions” f,. In fact, according to Driscoll
and Trefethen, almost every known contor-
mal mapping 1s an SC map 1in the foregoing
sense, possibly disguised by a prior change

d formula that maps the unit circle onto a given polygon.

boundary polygon, the multipliers (3, must
of course add up to 2. To construct such a map,
1t 18 necessary to choose the “pre-vertices”
z, with some care, as shown 1n Figure 2. The

See Conformal Mapping on page 12
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map from the annulus p < Izl < 1 to a poly-
hedral region with a single polyhedral hole
involves canonical functions of the form

Ozyr) = IT, (1 —p2i-12)(1 - p2-1z-1), (1)

in which j runs from 1 to oco. This doubly
periodic complex-valued function 1s closely
related to the classical Jacobi elliptic theta
functions, and 1s 1n fact the Schottky—Klein
prime function associated with the annulus
b < lzl < 1.

Crowdy’s 2005 derivation uses properties
of the so-called “Schottky group” of
Mdbius transformations, along with the
“Schottky—Klein prime function” associated
with any compact Riemann surface. In a
minisymposium at the 2006 SIAM Annual
Meeting, Crowdy explained prime functions
for the benefit of those in the audience
(including this reporter) whose ignorance of
them was complete. To that end, he 1llustrat-
ed the steps by which a plane from which 2g
circular holes have been removed can be
deformed 1nto a compact Riemann surface
of genus g [6] (see Figure 3). In the absence
of holes, the construction would yield the
familiar Riemann sphere. With two holes, it
yields a torus. With 2g holes, it yields a
sphere with g “handles.”
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Figure 3. Constructing the Riemann surface of a pla-
nar figure with 2g holes. From Indra’s Pearls [6].

For the non-intersecting circles C;, 1 = 1,
. ., m, that lie within the unit c1rcle
U Izl < 1, the reflections C/, i =1, .
through U will lie without. By follewmg the
steps indicated in Figure 3, 1t 1s possible to
construct the compact Riemann surface of
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genus m that corresponds in a natural
way to the unit circle from which the
interiors of the circles C;,i=1, . ]
have been removed. The Mobius trans-
formations 0,(z) that carry the interiors
of the circles C/ onto the interiors of
their pre-images C; in U are the gener-
ators of the so-called Schottky group of
transformations on the Riemann sur-
face.

Given a compact Riemann surface,
and an arbitrarily chosen point ¢ of that
surface, there exists a unique (typically
transcendental) function w(z,() with
the following properties:

B w has a simple zero at z = ;

B w is holomorphic in z everywhere on
the Riemann surface; and

B w possesses certain transformation
properties under the action of the

Schottky group of Mobius transforma-
tions.

The prime function corresponding to
the Riemann sphere 1s just w(z,() =z — C

Any meromorphic function on the

Riemann sphere, such as a polynomial or
rational function, can be factored into a
product (or quotient) of such prime func-
tions with different zeros ¢. An explicit for-
mula, in the form of an infinite product, can
be given for w(z,C) in terms of the elements

of the Schottky group. The product is
known to converge if the circles C; are suf-
ficiently small and well separated. In terms
of the prime function, Crowdy was able to
give a moderately compact formula for the
map from a circle with m disjoint circular

holes to a polyhedron with m polyhedral
holes.

Alternative Approaches

The methods used by DeLillo, Elcrat, and
Ptaltzgraff to derive a formula mapping the
exterior of a collection of non-intersecting
circles onto the exterior of a similar number
of polygons can also be made to yield such
a formula. To that end, let wy; = f(z;,),
where z;; = ¢; + r; exp(ib; ;) 18 the kth pre-
vertex on the ith circle C; with center c; and
radius r;, making wy; the kth corner on the
ith target polygon I'; = f(C;). With
Co = U, the index i can be allowed to run
from 0 to m, while j goes from 0 to oo, and
k goes from 1 to K; on each circle C;. The

desired mapping is then obtained by quadra-
ture from the fact that:

f I(Z;A) = Ank (7 — Zk’(})ﬁk.{l
(2)

Hf Hj Hu {Hk(z ~ L, Pro Hk(z — Lk, )ﬁk-"}-
Here v 1s a multi-index specifying—in a

manner that need not concern us here—a
See Conformal Mapping on page 13
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sequence of reflections through one after
another of the circles C,, . . ., C,,, which, for
each fixed i and j, 1s to run through all
sequences of j reflections not terminating 1n
a reflection through C. In practice, that
would include a great many sequences
indeed if m were not small and if the infinite
product in j were not truncated after a small
number of terms. A is merely a vector con-
taining all the parameters appearing on the
right side of (2). DeLillo [3] confirms at
length that Crowdy’s more compact formu-
la does in fact agree with (2). A possibly
unexpected development is the presence of
Poincaré 6, series in the mapping formulas
for domains D of arbitrary connectivity.

The components of A include the m + 1
centers and m + 1 radii of the circles
Co - .., C,, as well as the positions (argu-
ments) of the prevertices z;;, on those cir-
cles. Once ¢y =0, ry = 1, and 6y ; = 0 are
chosen, 3m + Ky + . . . + K,, — 1 free real
parameters remain to satisfy an equal num-
ber of equations specifying the locations of
the given vertices w; .

In yet another paper on the subject,
DeLillo et al. launch [4] an attack on the
parameter problem patterned on Trefethen'’s
original SCPACK, a Fortran package dating
back to the late 1970s. The idea is to choose

an initial parameter vector A, and to inte-
grate f'(z;A) along the arcs of the circles C;
joining successive prevertices z;, = ¢; + 1,
to obtain initial estimates of the Ky + . .. + K,
side lengths Iwy, ; — wy i, 2m centroids, and
m rotation angles 0, of the images I'; = f;
(C;) of the C; relative to C. Then, after judi-
cious adjustment of A, the process 1s repeat-
ed to obtain improved estimates, and so on.
The authors report that, in several trial
cases, convergence to the desired parame-
ters of the desired map has been achieved.
This work appears to be in its infancy, with
significant improvements in numerical tech-
nique still to come. Whether or not
Crowdy’s prime functions eventually lead to
improved numerical mapping methods for
multiply connected domains, they have
already stimulated activity in a long dor-

mant branch of geometric function theory.
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By way of disclosure, I should note that I
first met Phil when I was a graduate student
at Brown University. There I enjoyed his
wonderful holiday lectures, which covered a
wide breadth of subjects related to mathe-
matics, science, and philosophy. It 1s that
wonderful breadth of interests and intellec-
tual curiosity that is also on display in Phil’s
book reviews and other writings.

Best wishes, Phil!

One of the great disappointments of
2007, occurring in the waning days of the
year, was the U.S. science budget. After
years of hard work by many people, numer-
ous reports, and support from industrial
leaders, the president of the United States
had called for a major emphasis on science

and engineering in his 2006 State of the
Union Address (in which he even mentioned
the word “supercomputer”). Congress craft-
ed a bill with bipartisan support that called
for the doubling of science budgets, includ-
ing those of the National Science Foun-
dation and the Department of Energy’s
Office of Science, over a ten-year period.
The Administration put forward a budget for
2008 that implemented the first step of this
increase, and NSF launched the Cyber-
enabled Discovery and Innovation initiative
(see my column in the December 2007 1ssue
of SIAM News) under the assumption that
such an increase would be passed.

In the end, though, Congress cobbled
together an omnibus appropriations bill sev-
eral months into fiscal year 2008 (which be-
gan on October 1, 2007) in which funding
for science did not grow appreciably. The
increase in NSF’s funding for research, for
example, is nominally 2.5% (and less when
adjustments are made for certain trans-
fers)—smaller than inflation by com-
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