Analytic Number Theory

Test No 1, 17 February 2016

Full name:

College ID No:

Please add your name and College ID No at the top of any extra papers you use for your answers.
Question 1. Let $F(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ be a Dirichlet series such that there are complex numbers s_{1} and s_{2} with $F\left(s_{1}\right)$ divergent and $F\left(s_{2}\right)$ convergent.
a) Suppose that $F(s)$ converges at some $s=s_{0}$. Show that $F(s)$ converges whenever $\operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)$, and that

$$
F(s)=\left(s-s_{0}\right) \int_{1}^{\infty} S(x) x^{s_{0}-s-1} d x
$$

where

$$
S(x)=\sum_{n \leq x} f(n) n^{-s_{0}}
$$

[5 points for Part a]
b) Conclude that the set

$$
S_{1}=\{\operatorname{Re}(s) \mid s \in \mathbb{C} \text { and } F(s) \text { is a convergent series }\},
$$

has a finite infimum.
[2 points for Part b]

Question 2. Let $a_{n}, n \geq 1$, be a sequence in $\{+1,-1\}$, and $A(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}$ be a Dirichlet series, $s \in \mathbb{C}$. Assume that

$$
\lim _{X \rightarrow \infty} \frac{\log S(X)}{\log X}=\alpha \in(0,1)
$$

where $S(X)=\sum_{n \leq X} a_{n}$.
a) Prove that for every s with $\operatorname{Re} s>\alpha$, the Dirichlet series $A(s)$ is convergent. [6 points for Part a]
b) Prove that if $A(s)$ is convergent for some s, then $\operatorname{Re} s \geq \alpha$. [5 points for Part b]
[Hint for part b: Use the relation $|S(N)|=\left|\sum_{n=1}^{N} a_{n} n^{-s} n^{s}\right|$ and conclude that $|S(N)| \leq M N^{s}$, for some real constant M independent of N.]
c) Conclude that the abscissa of convergence of $A(s)$ is equal to α. [2 points for part c]

