Analytic Number Theory Test No 1, 17 February 2016

Full name:

College ID No:

Please add your name and College ID No at the top of any extra papers you use for your answers.

Question 1. Let $F(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be a Dirichlet series such that there are complex numbers s_1 and s_2 with $F(s_1)$ divergent and $F(s_2)$ convergent.

a) Suppose that F(s) converges at some $s = s_0$. Show that F(s) converges whenever $\operatorname{Re}(s) > \operatorname{Re}(s_0)$, and that

$$F(s) = (s - s_0) \int_1^\infty S(x) x^{s_0 - s - 1} dx$$

where

$$S(x) = \sum_{n \le x} f(n) n^{-s_0}.$$

[5 points for Part a]

b) Conclude that the set

 $S_1 = \{ \operatorname{Re}(s) \mid s \in \mathbb{C} \text{ and } F(s) \text{ is a convergent series} \},\$

has a finite infimum.

[2 points for Part b]

Question 2. Let a_n , $n \ge 1$, be a sequence in $\{+1, -1\}$, and $A(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ be a Dirichlet series, $s \in \mathbb{C}$. Assume that

$$\lim_{X \to \infty} \frac{\log S(X)}{\log X} = \alpha \in (0, 1),$$

where $S(X) = \sum_{n \le X} a_n$.

- a) Prove that for every s with $\operatorname{Re} s > \alpha$, the Dirichlet series A(s) is convergent. [6 points for Part a]
- b) Prove that if A(s) is convergent for some s, then $\operatorname{Re} s \ge \alpha$. [5 points for Part b] [Hint for part b: Use the relation $|S(N)| = |\sum_{n=1}^{N} a_n n^{-s} n^s|$ and conclude that $|S(N)| \le MN^s$, for some real constant M independent of N.]
- c) Conclude that the abscissa of convergence of A(s) is equal to α . [2 points for part c]