Analytic Number Theory

Solution key of Test No 1, 17 February 2016

Solution of Question 1. First we verify whether f is multiplicative by considering the following four cases. Let $(m, n)=1$ for some $m, n \in \mathbb{N}$.

1) If at least one of n and m is even, then $f(m n)=f(m) f(n)=0$.
2) If $m \equiv 1(\bmod 4)$, and $n \equiv 1(\bmod 4)$, then $f(m n)=(-1)^{(m n-1) / 2}=1$ and $f(m) f(n)=$ $(-1)^{(m-1) / 2} \cdot(-1)^{(n-1) / 2}=1 \cdot 1=1$.
3) If $m \equiv 3(\bmod 4)$, and $n \equiv 1(\bmod 4)$, then $f(m n)=(-1)^{(m n-1) / 2}=-1$ and $f(m) f(n)=$ $(-1)^{(m-1) / 2} \cdot(-1)^{(n-1) / 2}=(-1) \cdot 1=-1$.
4) If $m \equiv 3(\bmod 4)$, and $n \equiv 3(\bmod 4)$, then $f(m n)=(-1)^{(m n-1) / 2}=1$ and $f(m) f(n)=$ $(-1)^{(m-1) / 2} \cdot(-1)^{(n-1) / 2}=(-1) \cdot(-1)=1$.

The series

$$
\sum_{n=1}^{\infty}|f(n)|\left|n^{-s}\right|=\sum_{k=0}^{\infty} 1 \cdot\left|(2 k+1)^{-s}\right|=\sum_{k=0}^{\infty}(2 k+1)^{-\operatorname{Re}(s)},
$$

which converges if and only if $\operatorname{Re}(s)>1$.
By a theorem in the lectures, for every s with $\operatorname{Re}(s)>1$ we have

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p \text { prime }}\left\{\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}\right\}
$$

For $p=2$,

$$
\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=f(1)=1
$$

for primes p of the form $4 k+3$, we have

$$
\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=1-p^{-s}+p^{-2 s}-p^{-3 s}+p^{-4 s}-\cdots=\frac{1}{1+p^{-s}}
$$

and for primes p of the form $4 k+1$ we have

$$
\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=1+p^{-s}+p^{-2 s}+p^{-3 s}-p^{-4 s}+\cdots=\frac{1}{1-p^{-s}}
$$

Thus,

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\left(\prod_{p \equiv 3} \frac{1}{1+p^{-s}}\right)\left(\prod_{p \equiv 1} \frac{1}{1-p^{-s}}\right)
$$

Solution of Question 2.
Using the Euler's product formula

$$
\zeta(s)=\prod_{p}\left(\frac{1}{1-p^{-s}}\right)
$$

for $\operatorname{Re}(s)>1$, we have

$$
\frac{\zeta^{3}(s)}{\zeta(2 s)}=\prod_{p}\left(\frac{1}{\left(1-p^{-s}\right)^{3}}\right) \prod_{p}\left(1-p^{-2 s}\right)=\prod_{p} \frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{3}}=\prod_{p} \frac{1+p^{-s}}{\left(1-p^{-s}\right)^{2}}=\prod_{p} \frac{1+p^{-s}}{1-2 p^{-s}+p^{-2 s}}
$$

On the other hand, since $d(n) \leq n$, we have

$$
\sum_{n=1}^{\infty}\left|d\left(n^{2}\right)\right|\left|n^{-s}\right| \leq \sum_{n=1}^{\infty}\left|n^{-s+2}\right|=\sum_{n=1}^{\infty} n^{-\operatorname{Re}(s)+2}
$$

The above series is convergent for every s with $\operatorname{Re}(s)>3$. This implies that the abscissa of absolute convergent of the Dirichlet series is less than or equal to 3 .

Since $d\left(n^{2}\right)$ is a multiplicative function, by a theorem in the lectures, for every s with $\operatorname{Re}(s)>3$ we must have

$$
\sum_{n=1}^{\infty} d\left(n^{2}\right) n^{-s}=\prod_{p}\left(\sum_{e=0}^{\infty} d\left(p^{2 e}\right) p^{-e s}\right)=\prod_{p}\left(\sum_{e=0}^{\infty}(2 e+1) p^{-e s}\right) .
$$

Thus, to prove the identity in the question, it is enough to show that

$$
\frac{1+p^{-s}}{1-2 p^{-s}+p^{-2 s}}=\sum_{e=0}^{\infty}(2 e+1) p^{-e s} .
$$

This can be verified as follows:

$$
\begin{aligned}
\left(1-2 p^{-s}+p^{-2 s}\right) \cdot & \sum_{e=0}^{\infty}(2 e+1) p^{-e s} \\
& =\sum_{e=0}^{\infty}(2 e+1) p^{-e s}-\sum_{e=0}^{\infty} 2(2 e+1) p^{-(e+1) s}+\sum_{e=0}^{\infty}(2 e+1) p^{-(e+2) s} \\
& =\left(1+3 p^{-s}+\sum_{e=2}^{\infty}(2 e+1) p^{-e s}\right)-\left(2 p^{-s}+\sum_{e=2}^{\infty} 2(2 e-1) p^{-e s}\right)+\sum_{e=2}^{\infty}(e-3) p^{-e s} \\
& =1+p^{-s}+\sum_{e=2}^{\infty}(2 e+1-4 e+2+2 e-3) p^{-e s}=1+p^{-s} .
\end{aligned}
$$

