Analytic Number Theory
Solution key of Test No 1, 17 February 2016

Solution of Question 1.

Part a) By the hypotheses the sum $F\left(s_{0}\right)=\sum_{n=1}^{\infty} f(n) n^{-s_{0}}$ is convergent. We use the partial summation formula with the arithmetic function $g(n)=f(n) n^{-s_{0}}$ and the function $G(x)=x^{s_{0}-s}$, for $x>0$. The function $G(x)$ is continuous and has a continuous derivative. By the summation formula, we have

$$
\sum_{n=1}^{N} g(n) G(n)=\left(\sum_{n=1}^{N} g(n)\right) G(N)-\int_{1}^{N}\left(\sum_{n \leq t} g(n)\right) G^{\prime}(t) d t
$$

[2 points for this part, correct form of the summation by parts, and the conditions on G.]
Hence,

$$
\begin{aligned}
\sum_{n=1}^{N} f(n) n^{-s} & =\sum_{n=1}^{N} f(n) n^{-s_{0}} \cdot n^{s_{0}-s} \\
& =\left(\sum_{n=1}^{N} f(n) n^{-s_{0}}\right) \cdot N^{s_{0}-s}-\int_{1}^{N} S(x)\left(s_{0}-s\right) x^{s_{0}-s-1} d x \\
& =\left(\sum_{n=1}^{N} f(n) n^{-s_{0}}\right) \cdot N^{s_{0}-s}\left(s-s_{0}\right) \int_{x=1}^{N} S(x) x^{s_{0}-s-1} d x
\end{aligned}
$$

[1 points for the above calculations.] Taking limit as N tends to ∞,

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f(n) n^{-s_{0}}=F\left(s_{0}\right)
$$

is finite by the assumption, which implies that

$$
\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} f(n) n^{-s_{0}}\right) \cdot N^{s_{0}-s}=0
$$

[1 point for this term.]
Therefore,

$$
F(s)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f(n) n^{-s}=\left(s_{0}-s\right) \int_{x=1}^{\infty} S(x) x^{s_{0}-s-1} d x
$$

Finally, the infinite integral is finite since $|S(X)|$ is uniformly bounded from above, and $\operatorname{Re}(s)>\operatorname{Re} s_{0}$. [1 point for the convergence of this term.]

Part b)

By the hypotheses, $\operatorname{Re}\left(s_{2}\right) \in S_{1}$, and hence S_{1} is not empty. [1 point.]
On the other hand, since $F\left(s_{1}\right)$ is divergent, by part a), $F(s)$ must be divergent for every s with $\operatorname{Re}(s)<\operatorname{Re}\left(s_{1}\right)$. This means that S_{1} is bounded from below by $\operatorname{Re}\left(s_{1}\right)$. [1 point.]

In particular, S_{1} has a finite infimum.

Solution of Question 2.

Part a) Choose $\delta>0$ with $\operatorname{Re}(s)=\alpha+\delta$. Use the partial summation with $f(n)=a_{n}$ and the C^{1} function $F(x)=x^{-s}$, we obtain

$$
\sum_{n=1}^{N} a_{n} n^{-s}=S(N) N^{-s}+\int_{1}^{N} S(x) s x^{-s-1} d x
$$

[2 point for initiating the correct idea with the correct arithmetic function and $F(x)$.]
By the relation

$$
\lim _{X \rightarrow \infty} \frac{\log |S(X)|}{\log X}=\alpha
$$

there is $N_{0}>1$ such that for all $X \geq N_{0}$ we have

$$
\log |S(X)| \leq(\alpha+\delta / 2) \log X
$$

In other words,

$$
|S(X)| \leq X^{\alpha+\delta / 2}
$$

[2 point for understanding the right way to use the value of the limit.]
Hence,

$$
\lim _{N \rightarrow \infty} S(N) N^{-s} \leq \lim _{N \rightarrow \infty} N^{\alpha+\delta / 2} N^{-(\alpha+\delta)}=\lim _{N \rightarrow \infty} N^{-\delta / 2}=0 .
$$

[1 point.]
Similarly,

$$
\left|s \int_{N_{0}}^{N} S(x) x^{-s-1} d x\right| \leq|s| \int_{N_{0}}^{N} x^{\alpha+\delta / 2} x^{-\alpha-\delta-1} d x \leq|s| \int_{n_{0}}^{N} x^{-1-\delta / 2} d x<\infty
$$

[1 point.]
The above bounds prove that $A(s)$ is a convergent series.

Part b) Let us denote the partial sums of the series $A(s)$ with

$$
A(N)=\sum_{n=1}^{N} a_{n} n^{-s}
$$

Since $A(s)$ is convergent, there is $M>0$ such that for all $N \geq 1$ we have $\left|A_{N}(s)\right| \leq M$. Moreover, since
the series $A(s)$ converges, we must have $s \geq 0$. These imply that

$$
\begin{aligned}
|S(N)|=\left|\sum_{n=1}^{N} a_{n} \cdot n^{-s} \cdot n^{s}\right| & =\left|\sum_{n=1}^{N}(A(n)-A(n-1)) \cdot n^{s}\right| \\
& =\left|\sum_{n=1}^{N} A(n) n^{s}-\sum_{n=1}^{N} A(n-1) \cdot n^{s}\right| \\
& =\left|\sum_{n=1}^{N} A(n) n^{s}-\sum_{n=0}^{N-1} A(n) \cdot(n+1)^{s}\right| \\
& =\left|\sum_{n=1}^{N-1} A(n)\left(n^{s}-(n+1)^{s}\right)+A(N) N^{s}\right| \\
& \leq M \sum_{n=1}^{N-1}\left((n+1)^{s}-n^{s}\right)+M N^{s} \\
& \leq 2 M N^{s}
\end{aligned}
$$

[3 point for the calculations, and 1 point for the correct constant M.]
The above equation implies that

$$
\log |S(N)| \leq \log 2+\log M+s \log N
$$

Hence,

$$
\alpha=\lim _{N \rightarrow \infty} \frac{\log |S(N)|}{\log N} \leq s
$$

[1 point.]

Part c)

By Part a, the series $A(\alpha+1)$ is convergent and by Part b for every s with $\operatorname{Re} s<\alpha, A(s)$ is divergent. Thus, the series $A(s)$ has a finite abscissa of convergence, which we denote by σ_{1}.
[1 point for any argument that shows the abscissa of convergence exists and is finite.]
By Part a of the question, for every s with $\operatorname{Re}(s)>\alpha, A(s)$ is convergent. This implies that $\sigma_{1} \leq \alpha$.
On the other hand, by Part b of the question, if $A(s)$ is convergent, then $s \geq \alpha$. This implies that $\sigma_{1} \geq \alpha$. Combining the two inequalities, we conclude that $\sigma_{1}=\alpha$.
[1 point.]

Using Question 2 above, we can answer Problem 8 in Problem Sheet No 2.
Recall Problem 8
Problem 8. Show that $\sigma_{1}=0$ and $\sigma_{0}=1$ for the series $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-s}$. For each $\alpha \in[0,1]$ construct an example in which $\sigma_{1}=\alpha$ and $\sigma_{0}=1$.

Solution of Problem 8. Let $s=\sigma+i t$.
We know that

$$
\sum_{n=1}^{\infty} \frac{\left|(-1)^{n-1}\right|}{\left|n^{s}\right|}=\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}
$$

is convergent if and only if $\sigma>1$. This implies that $\sigma_{0}=1$.
On the other hand, for $\sigma \leq 0$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\sigma}}$ is divergent. However, for every $\sigma>0$, by the alternating series test the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\sigma}}$ is convergent. (need to see that the sequence $1 / n^{\sigma}$ is monotone decreasing!). This implies that $\sigma_{1}=0$. This implies the first part of the problem.

We need to build an example of a Dirichlet series such that $\sigma_{1}=\alpha$ and $\sigma_{0}=1$. If $\alpha=0$, the series $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-s}$ provides the answer to the problem. If $\alpha=1$, we take the series $\sum_{n=1}^{\infty} 1 / n^{s}$. So, below we assume that $\alpha \in(0,1)$.

Define the function $h(x)=x^{\alpha}$, for $x>0$. The function $h(x)$ is strictly increasing and for every integer $n \geq 1$ we have

$$
|h(n+1)-h(n)| \leq 1 \cdot \sup _{t \in[n, n+1]}\left|h^{\prime}(t)\right|=\sup _{t \in[n, n+1]} \alpha t^{\alpha-1} \leq 1 \cdot \frac{1}{n} \leq 1
$$

Inductively we define the sequence of numbers $a_{n} \in\{+1,-1\}$, for $n \geq 1$, such that the partial sums $S(n)=\sum_{n=1}^{N} a_{n}$ satisfies

$$
\begin{equation*}
\left|S(n)-n^{\alpha}\right|=|S(n)-h(n)| \leq 1 \tag{1}
\end{equation*}
$$

We set $a_{1}=+1$. It satisfies Equation (1) for $n=1$.
Assume that a_{i} are defined for $1 \leq i \leq n$, and $S(i)$ satisfies Equation (1) for $i \leq n$.
Define,

$$
a_{n+1}= \begin{cases}+1 & \text { if } S(n) \leq h(n+1) \\ -1 & \text { if } S(n)>h(n+1)\end{cases}
$$

We need to show that Equation (1) holds for $n+1$.
When $a_{n+1}=+1$ we have

$$
\begin{aligned}
& h(n)-1 \leq S(n) \leq h(n+1) \\
& \Longrightarrow \quad h(n) \leq S(n+1) \leq h(n+1)+1 \\
& \Longrightarrow \quad h(n)-h(n+1) \leq S(n+1)-h(n+1) \leq+1 \\
& \Longrightarrow \quad|S(n+1)-h(n+1)| \leq+1
\end{aligned}
$$

When $a_{n+1}=-1$ we have

$$
\begin{gathered}
h(n+1)<S(n) \leq h(n)+1 \\
\Longrightarrow \quad h(n+1)-1 \leq S(n+1) \leq h(n) \\
\Longrightarrow \quad-1 \leq S(n+1)-h(n+1) \leq h(n)-h(n+1) \\
\Longrightarrow \quad|S(n+1)-h(n+1)| \leq+1
\end{gathered}
$$

This finishes the proof of Equation (1) for $n+1$. By induction, we have the infinite sequence a_{n} so that the partial sums $S(n)$ satisfies Equation (1) for all n. In particular, we have

$$
\begin{aligned}
\lim _{X \rightarrow \infty}\left|\frac{\log S(X)}{\log X}-\alpha\right|= & \lim _{X \rightarrow \infty}\left|\frac{\log S(X)}{\log X}-\frac{\log X^{\alpha}}{\log X}\right| \\
& =\lim _{X \rightarrow \infty}\left|\frac{\log S(X)-\log X^{\alpha}}{\log X}\right|=\lim _{N \rightarrow \infty}\left|\frac{\log S(N)-\log N^{\alpha}}{\log N}\right| \leq \lim _{N \rightarrow \infty} \frac{1}{\log N}=0
\end{aligned}
$$

That is,

$$
\begin{equation*}
\lim _{X \rightarrow \infty} \frac{\log S(X)}{\log X}=\alpha \tag{2}
\end{equation*}
$$

The Dirichlet series we introduce is

$$
A(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

It is clear that for $A(s)$ we have $\sigma_{0}=1$. By Question 2 above, $\sigma_{1}=\alpha$.

