
Analytic Number Theory

Solution key of Test No 1, 17 February 2016

Solution of Question 1.

Part a) By the hypotheses the sum F (s0) =
P1

n=1 f(n)n
�s0 is convergent. We use the partial summation

formula with the arithmetic function g(n) = f(n)n�s0 and the function G(x) = x

s0�s, for x > 0. The

function G(x) is continuous and has a continuous derivative. By the summation formula, we have

NX

n=1

g(n)G(n) =
� NX

n=1

g(n)
�
G(N)�

Z
N

1
(
X

nt

g(n))G0(t) dt.

[2 points for this part, correct form of the summation by parts, and the conditions on G.]

Hence,

NX

n=1

f(n)n�s =
NX

n=1

f(n)n�s0 · ns0�s

=
⇣ NX

n=1

f(n)n�s0

⌘
·N s0�s �

Z
N

1
S(x)(s0 � s)xs0�s�1

dx

=
⇣ NX

n=1

f(n)n�s0

⌘
·N s0�s(s� s0)

Z
N

x=1
S(x)xs0�s�1

dx

[1 points for the above calculations.] Taking limit as N tends to 1,

lim
N!1

NX

n=1

f(n)n�s0 = F (s0)

is finite by the assumption, which implies that

lim
N!1

⇣ NX

n=1

f(n)n�s0

⌘
·N s0�s = 0

[1 point for this term.]

Therefore,

F (s) = lim
N!1

NX

n=1

f(n)n�s = (s0 � s)

Z 1

x=1
S(x)xs0�s�1

dx.

Finally, the infinite integral is finite since |S(X)| is uniformly bounded from above, and Re(s) > Re s0.

[1 point for the convergence of this term.]

Part b)

By the hypotheses, Re(s2) 2 S1, and hence S1 is not empty. [1 point.]

On the other hand, since F (s1) is divergent, by part a), F (s) must be divergent for every s with

Re(s) < Re(s1). This means that S1 is bounded from below by Re(s1). [1 point.]

In particular, S1 has a finite infimum.
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Solution of Question 2.

Part a) Choose � > 0 with Re(s) = ↵ + �. Use the partial summation with f(n) = a

n

and the C

1

function F (x) = x

�s, we obtain

NX

n=1

a

n

n

�s = S(N)N�s +

Z
N

1
S(x)sx�s�1

dx

[2 point for initiating the correct idea with the correct arithmetic function and F (x).]

By the relation

lim
X!1

log |S(X)|
logX

= ↵

there is N0 > 1 such that for all X � N0 we have

log |S(X)|  (↵+ �/2) logX.

In other words,

|S(X)|  X

↵+�/2

[2 point for understanding the right way to use the value of the limit.]

Hence,

lim
N!1

S(N)N�s  lim
N!1

N

↵+�/2
N

�(↵+�) = lim
N!1

N

��/2 = 0.

[1 point.]

Similarly,

���s
Z

N

N0

S(x)x�s�1
dx

���  |s|
Z

N

N0

x

↵+�/2
x

�↵���1
dx  |s|

Z
N

n0

x

�1��/2
dx < 1.

[1 point.]

The above bounds prove that A(s) is a convergent series.

Part b) Let us denote the partial sums of the series A(s) with

A(N) =
NX

n=1

a

n

n

�s

Since A(s) is convergent, there is M > 0 such that for all N � 1 we have |A
N

(s)|  M . Moreover, since
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the series A(s) converges, we must have s � 0. These imply that

|S(N)| =
���

NX

n=1

a

n

· n�s · ns

��� =
���

NX

n=1

(A(n)�A(n� 1)) · ns

���

=
���

NX

n=1

A(n)ns �
NX

n=1

A(n� 1) · ns

���

=
���

NX

n=1

A(n)ns �
N�1X

n=0

A(n) · (n+ 1)s
���

=
���
N�1X

n=1

A(n)(ns � (n+ 1)s) +A(N)N s

���

 M

N�1X

n=1

((n+ 1)s � n

s) +MN

s

 2MN

s

[3 point for the calculations, and 1 point for the correct constant M .]

The above equation implies that

log |S(N)|  log 2 + logM + s logN.

Hence,

↵ = lim
N!1

log |S(N)|
logN

 s.

[1 point.]

Part c)

By Part a, the series A(↵+1) is convergent and by Part b for every s with Re s < ↵, A(s) is divergent.

Thus, the series A(s) has a finite abscissa of convergence, which we denote by �1.

[1 point for any argument that shows the abscissa of convergence exists and is finite.]

By Part a of the question, for every s with Re(s) > ↵, A(s) is convergent. This implies that �1  ↵.

On the other hand, by Part b of the question, if A(s) is convergent, then s � ↵. This implies that

�1 � ↵. Combining the two inequalities, we conclude that �1 = ↵.

[1 point.]
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Using Question 2 above, we can answer Problem 8 in Problem Sheet No 2.

Recall Problem 8

Problem 8. Show that �1 = 0 and �0 = 1 for the series
P1

n=1(�1)n�1
n

�s. For each ↵ 2 [0, 1] construct

an example in which �1 = ↵ and �0 = 1.

Solution of Problem 8. Let s = � + it.

We know that
1X

n=1

|(�1)n�1|
|ns| =

1X

n=1

1

n

�

is convergent if and only if � > 1. This implies that �0 = 1.

On the other hand, for �  0, the series
P1

n=1
(�1)n�1

n

� is divergent. However, for every � > 0, by

the alternating series test the series
P1

n=1
(�1)n�1

n

� is convergent. (need to see that the sequence 1/n� is

monotone decreasing!). This implies that �1 = 0. This implies the first part of the problem.

We need to build an example of a Dirichlet series such that �1 = ↵ and �0 = 1. If ↵ = 0, the series
P1

n=1(�1)n�1
n

�s provides the answer to the problem. If ↵ = 1, we take the series
P1

n=1 1/n
s. So, below

we assume that ↵ 2 (0, 1).

Define the function h(x) = x

↵, for x > 0. The function h(x) is strictly increasing and for every integer

n � 1 we have

|h(n+ 1)� h(n)|  1 · sup
t2[n,n+1]

|h0(t)| = sup
t2[n,n+1]

↵t

↵�1  1 · 1
n

 1.

Inductively we define the sequence of numbers a

n

2 {+1,�1}, for n � 1, such that the partial sums

S(n) =
P

N

n=1 an satisfies

|S(n)� n

↵| = |S(n)� h(n)|  1. (1)

We set a1 = +1. It satisfies Equation (1) for n = 1.

Assume that a
i

are defined for 1  i  n, and S(i) satisfies Equation (1) for i  n.

Define,

a

n+1 =

8
<

:
+1 if S(n)  h(n+ 1)

�1 if S(n) > h(n+ 1).

We need to show that Equation (1) holds for n+ 1.

When a

n+1 = +1 we have

h(n)� 1  S(n)  h(n+ 1)

=) h(n)  S(n+ 1)  h(n+ 1) + 1

=) h(n)� h(n+ 1)  S(n+ 1)� h(n+ 1)  +1

=) |S(n+ 1)� h(n+ 1)|  +1
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When a

n+1 = �1 we have

h(n+ 1) < S(n)  h(n) + 1

=) h(n+ 1)� 1  S(n+ 1)  h(n)

=) �1  S(n+ 1)� h(n+ 1)  h(n)� h(n+ 1)

=) |S(n+ 1)� h(n+ 1)|  +1

This finishes the proof of Equation (1) for n+ 1. By induction, we have the infinite sequence a

n

so that

the partial sums S(n) satisfies Equation (1) for all n. In particular, we have

lim
X!1

���
logS(X)

logX
� ↵

��� = lim
X!1

���
logS(X)

logX
� logX↵

logX

���

= lim
X!1

���
logS(X)� logX↵

logX

��� = lim
N!1

���
logS(N)� logN↵

logN

���  lim
N!1

1

logN
= 0.

That is,

lim
X!1

logS(X)

logX
= ↵. (2)

The Dirichlet series we introduce is

A(s) =
1X

n=1

a

n

n

�s

.

It is clear that for A(s) we have �0 = 1. By Question 2 above, �1 = ↵.
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