
Analytic Number Theory

Solutions

Solution to Problem 1. We have

β =

⎧

⎨

⎩

1/2 if |t| ≤ e2,

1− 1/ log |t| if |t| ≥ e2.

If |t| ≤ e2, we have x−β = x−1/2 = O(x−1) iff x1/2 = O(1) on the interval 1 ≤ x ≤ |t|. The

function x1/2 ≤ e on the interval [1, |t|] ⊆ [1, e2].

If |t| ≥ e2, we have x−β = x1/ log |t|−1 = O(x−1) iff x1/ log |t| = O(1) iff elog x/ log |t| = O(1),

all on the interval 1 ≤ x ≤ |t|. The function log x/ log |t| ≤ 1 on the interval [1, |t|].

For σ ≥ α,

M
∑

n=1

n−σ ≤
M
∑

n=1

n−α = 1 +

∫ |t|

1
x−α dx = 1 +

1

1− α
x1−α

∣

∣

∣

|t|

1

= 1−
1

1− α
+

1

1− α
|t|1−α = 1 + 100|t|1−α = O(|t|1−α).

For σ ≥ β, we have

M
∑

n=1

n−σ ≤
M
∑

n=1

n−β ≤
M
∑

n=1

n−1 ≤ 1 +

∫ |t|

1
x−1 dx = O(log |t|).

Similarly, for σ ≥ α,

∞
∑

n=M

n−σ−1 ≤
∞
∑

n=M

n−α−1 ≤ M−α−1 +

∫ ∞

M
x−α−1 dx ≤ M−α−1 +

1

−α
x−α

∣

∣

∣

∞

M

≤ M−α−1 +
1

α
M−α = O(M−α) = O(|t|−α).

If σ is a constant ≥ β, for every t (since β depends on t), we must have σ ≥ 1. Then,
∑∞

n=M n−σ−1 ≤
∑∞

n=M n−2 = O(1/|t|). However, we can assume that σ depends on t as well

and proceed as above to obtain

∞
∑

n=M

n−σ−1 ≤
∞
∑

n=M

n−β(n)−1 ≤ M−β(M)−1 +

∫ ∞

M
x−β(x)−1 dx

=
e

M2
+ e ·

∫ ∞

M
x−2 dx ≤

e

M2
+

e

M
= O(M−1) = O(|t|−1).
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By the proof of Theorem 4.3, for 1 ≤ Re(s) ≤ 2 we have

|ζ(s)| ≤
1

|s− 1|
+

∑

n≤|t|

n−σ + |s|
∑

n≥|t|

n−σ−1.

Then, for σ = Re s ≥ α, using the above inequalities, we conclude that

|ζ(s)| ≤
1

|σ + it− 1|
+O(|t|1−α)+|σ+it|O(|t|−α) = O(1)+O(|t|1−α)+O(|t|−α+1) = O(|t|−α+1).

If Re s ≥ β(t), then we obtain

|ζ(s)| ≤
1

|σ + it− 1|
+O(log |t|) + |σ + it|O(|t|−1) = O(1) +O(log |t|) +O(1) = O(log |t|).

Solution to Problem 2. Let Γ be the circle of radius 1/(4 log |t|) about s = σ + it. For

|t| ≥ 3 we have
1

4 log |t|
≤

1

4
.

Let w = x+ iy ∈ Γ. We have, x ≥ 3/4− 1/4 = 1/2, and |y| ≥ |t|− 1/4 ≥ 3− 1/4 ≥ 2.

Moreover, for |t| ≥ e2, we have

x ≥ Re s−
1

4 log |t|
≥ 1−

3

4 log |t|
.

Similarly,

|y − t| ≤
1

4 log |t|
,

which implies

log |y| ≤ log(|t|+
1

4 log |t|
).

Now there is t0 > 3 such that for all |t| ≥ t0 we have

1−
3

4 log |t|
≥ 1−

1

log(t+ 1
4 log |t|)

.

Combining the above bounds, we conclude that for |t| ≥ t0 we have x ≥ 1 − 1
log y . (In other

words, Γ lies to the right-hand side of the curve (β(t), t).)

For 2 ≤ |t| ≤ t0 and 0 ≤ Re s ≤ 2, the function ζ ′(s) is holomorphic. In particular, |ζ ′(s)|

is bounded from above on this compact region. That is |ζ ′(s)| = O(1). It remains to prove

the bound in the Question for |t| ≥ t0.
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By the inequality in Question 1 (for σ ≥ β applied at the point x+ iy) we have |ζ(w)| ≤

O(log |y|). However, since |y − t| ≤ 1/(4 log |t|), we have log |y| = O(log |t|).

By the Cauchy integral formula, we have

|ζ ′(s)| ≤
∣

∣

∣

1

2πi

∫

Γ

ζ(w)

(w − s)2
dw

∣

∣

∣
≤

1

2π

∫

Γ

|ζ(w)|

|w − s|2
|dw|

≤
1

2π
O(log |t|) · 16 log2 |t| · 2π

1

4 log t
= O(log2 |t|).

Solution to Problem 3. Fix x ≥ 2 and define

A = {(p, e) | p ∈ N, e ∈ N, pe ≤ x}.

For each n ∈ N we let An = {(p, n) | p ∈ N, pn ≤ x}. Then, we have A = ∪n≥1An. We note

that An = ∅, for n > log x/ log 2. Moreover, for every n ≥ 2, #An ≤ #A2 ≤ x1/2. These

imply that

ψ(x)− θ(x) =
∑

A

log p−
∑

A1

log p =
∑

A2

log p+
∑

A3

log p+
∑

A4

log p+ · · ·

≤
log x

log 2

∑

A2

log p ≤
log x

log 2

∑

p2≤x

log p ≤
log x

log 2

∑

m≤x1/2

logm

≤ log x · (x1/2 log(x1/2) +O(x1/2)) = O(x1/2 log2 x).

Above we have used that
∑

n≤N log n = N logN +O(N).

Using the partial summation formula with the functions f(n) and F (n) we obtain

∑

p≤x

1 =
∑

n≤x

f(n)F (n) = S(x)F (x)−

∫ x

1
S(x)F ′(x)dx,

where

S(x) =
∑

n≤x

f(n) =
∑

p≤x

log p = θ(x).

Thus,

π(x) =
θ(x)

log x
+

∫ x

2
θ(x)

1

x log x
dx,

since S(x) = 0 for x < 2.
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If ψ(x) = x+O(E(x)) then we have

θ(x) = ψ(x)−O(x1/2 log2 x) = x+O(E(x)) −O(x1/2 log2 x) = x+O(E(x)).

Therefore,

π(x) =
x+O(E(x))

log x
+

∫ x

2

t+O(E(t))

t log2 t
dt

=
x

log x
+

O(E(t))

log x
+

∫ x

2

1

log2 t
dt+

∫ x

2

O(E(t))

t log2 t
dt

=
x

log x
+

O(E(x))

log x
+

(

Li(x)− C −
x

log x

)

+

∫ x

2

O(E(t))

t log2 t
dt

≤ Li(x) +O(E(x)) +

∫ x

2
t−1/2 dt

= Li(x) +O(E(x)) +O(x1/2) = Li(x) +O(E(x)).

Solution to Problem 4. Let β = 1 + δ and choose δ = F (2x)1/2

2x . Then,

ψ1(βx)− ψ1(x) =

∫ βx

x
ψ(t) dt ≥ ψ(x)

F (2x)1/2

2
.

Thus,

ψ(x)
F (2x)1/2

2
≤ ψ1(βx)− ψ1(x) = ψ1(x+

F (2x)1/2

2
)− ψ1(x)

=
1

2
(x+

F (2x)1/2

2
)2 +O(F (x+

F (2x)1/2

2
))− (

1

2
x2 +O(F (x)))

=
1

2
x2 +

1

2
xF (2x)1/2 +

1

4
F (2x) +O(F (x+

1

2
F (2x)1/2))−

1

2
x2 −O(F (x))

=
1

2
xF (2x)1/2 +

1

4
F (2x) +O(F (x+

1

2
F (2x)1/2))−O(F (x))

Since F (x) in increasing and non-negative, we have F (x) ≤ F (x+ 1
2F (2x)1/2). Thus, O(F (x+

1
2F (2x)1/2))−O(F (x)) = O(F (x+ 1

2F (2x)1/2)). Also, since F (x) ≤ x2 we have 1
2F (2x)1/2 ≤ x.

Thus, O(F (x+ 1
2F (2x)1/2)) = O(F (2x)). Therefore, by the above inequalities, we have

ψ(x)
F (2x)1/2

2
≤

1

2
xF (2x)1/2 +

1

4
F (2x) +O(F (2x)),

which diving through by F (2x)1/2

2 implies that

ψ(x) ≤ x+O(F (2x)1/2).

The lower bound on ψ(x) is obtained in a similar fashion.
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Solution to Problem 5. In Problems Sheet 3 we saw that formally,

ζ4(s)

ζ(2s)
=

∞
∑

n=1

d2(n)n−s.

By Theorem 4.2, the left-hand side of the above equation is defined for Re s > 0, except for

the singularities at s = 1 for ζ(s) and s = 1/2 for ζ(2s). (Indeed, By Corollary 6.7, ζ(s)

extends over C but we don’t need that here.) Below we show that the right-hand side of the

above equation is defined for Re s > 1.

By Theorem 2.9, for every ϵ > 0 there is a constant cϵ such that d(n) ≤ cϵnϵ. This implies

that for every s with Re s > 1 + 2ϵ the series

∞
∑

n=1

d2(n)|n−s| ≤ cϵ

∞
∑

n=1

n2ϵ−σ

is finite. Since ϵ was arbitrary, the right-hand side of the equation is absolutely convergent

for Re s > 1.

As c > 1, by the above equation on the vertical line c+ iR, we have

1

2πi

∫ c+i∞

c−i∞

ζ4(s)

ζ(2s)

xs+1

s(s+ 1)
ds =

1

2πi

∫ c+i∞

c−i∞

(

∞
∑

n=1

d2(n)n−s
) xs+1

s(s+ 1)
ds

Now, to switch the places of the sum and the integral, we need to verify that

∞
∑

n=1

∫ c+i∞

c−i∞
|d2(n)n−s xs+1

s(s+ 1)
| |ds| ≤

∞
∑

n=1

d2(n)n−c
∫ c+i∞

c−i∞
|

xs+1

s(s+ 1)
| |ds| < ∞.

However, the integral
∫ c+i∞
c−i∞ | xs+1

s(s+1) | |ds| is finite and independent of n. By the above argument,

the series is convergent for c > 1.

Now, using the values of the integrals in Lemma 5.5,

1

2πi

∫ c+i∞

c−i∞

(

∞
∑

n=1

d2(n)n−s
) xs+1

s(s+ 1)
ds =

∞
∑

n=1

d2(n)x
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds

=
∑

n≤x

d2(n)x(1 − n/x)

=
∑

n≤x

d2(n)(x− n).
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The function xs+1/(s(s+1)) has poles of order 1 at s = 0 and s = −1. The function ζ(2s)

has no zero for Re s ≥ 1/2. The function ζ4(s) has a pole of order 4 at s = 1. Let R ∈ R

denote the residue of ζ4(s) at s = 1. By the residue theorem,

1

2πi

∫ c+i∞

c−i∞

ζ4(s)

ζ(2s)

xs+1

s(s+ 1)
ds =

1

2πi

∫ 7/8+i∞

7/8−i∞

ζ4(s)

ζ(2s)

xs+1

s(s+ 1)
ds+Res(

ζ4(s)

ζ(2s)

xs+1

s(s+ 1)
; s = 1)

=
1

2πi

∫ 7/8+i∞

7/8−i∞

ζ4(s)

ζ(2s)

xs+1

s(s+ 1)
ds+

R

π2/6

x2

2

In the last equality of the above equation we have used ζ(2) =
∑∞

n=1 n
−2 = π2/6.

For Re s > 1,
1

ζ(s)
=

∞
∑

n=1

µ(n)n−s,

So on the line 7/8 + iR, we have

∣

∣

1

ζ(2s)

∣

∣ ≤
∞
∑

n=1

|µ(n)n−2s| ≤
∞
∑

n=1

n−7/4 < ∞.

Let C1 be an upper bound for |1/ζ(2s)| on the line 7/8 + iR.

We have
∣

∣

∣

1

2πi

∫ 7/8+i∞

7/8−i∞

ζ4(s)

ζ(2s)

xs+1

s(s+ 1)
ds
∣

∣

∣
≤

C1

2π

∫ 7/8+i∞

7/8−i∞
|ζ4(s)|

∣

∣

∣

xs+1

s(s+ 1)

∣

∣

∣
|ds|

≤
C1x15/8

2π

∫ 7/8+i∞

7/8−i∞
|ζ4(s)|

∣

∣

∣

1

s(s+ 1)

∣

∣

∣
|ds|

≤
C1x15/8

2π

(

∫ 7/8+2i

7/8−2i
+2

∫ 7/8+i∞

7/8+2i

)

|ζ4(s)|
∣

∣

∣

1

s(s+ 1)

∣

∣

∣
|ds|

≤ C2x
15/8 + C3x

15/8
∫ 7/8+i∞

7/8+2i
|ζ4(s)|

1

t2
dt

≤ C2x
15/8 + C3x

15/8
∫ 7/8+i∞

7/8+2i
|ζ4(s)|

1

t2
dt

For some constants C2 and C3 independent of x.

For α = 7/8 ∈ [1/100, 99/100], the inequality in Question 1 gives us |ζ(7/8 + it)| ≤ |t|1/8.

Then, there is a constant C4 such that
∫ 7/8+i∞

7/8+2i
|ζ4(s)|

1

t2
dt ≤

∫ ∞

2
(t1/8)4

1

t2
≤

∫ ∞

2
t−3/2 ≤ C4.
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Combining the above bounds we have

∑

n≤x

d2(n)(x− n) =
3R

π
x2 +O(x15/8).

This is stronger than the estimate in the question. One can find the exact value of R by

identifying the coefficient of 1/(s − 1) in the expansion of ζ4(s), but we are not concerned

with this value here.

Solution to Problem 6. For x ≥ 1, let us define A(x) =
∑

n≤x d
2(n), andH(x) =

∫ x
1 A(t)dt.

By the estimate in Question 5,

H(x) =

∫ x

1
A(t) dt =

∑

n≤x

d2(n)(x− n) = x2P (log x) +O(x15/8),

where P is a cubic polynomial, say, P (x) = a0 + a1 log x+ a2x2 + a3x3.

Then,

H(x) = a3x
2 log3 x+O(x2 log2 x).

This implies that

H(x) = a3x
2 log3 x+ o(x2 log3 x)

Since d(n) ≥ 0, for n ≥ 1, the function A(x) is increasing. Given α < 1 < β, we can apply

the argument in the proof of Lemma 5.3 to conclude that

A(x)

x log3 x
≤

H(βx)−H(x)

(β − 1)x2 log3 x

=
a3β2x2 log

3 β + a3β2x2 log
3 x+ o(x2 log2 x)− a3x2 log

3 x− o(x2 log2 x)

(β − 1)x2 log3 x

Hence,

lim sup
x→∞

A(x)

x log3 x
≤

a3(β2 − 1)

(β − 1)
= a3(β + 1).

Since β > 1 was arbitrary we must have

lim sup
x→∞

A(x)

x log3 x
≤ 2a3.
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In a similar fashion one can show that

lim inf
x→∞

A(x)

x log3 x
≥

a3(1− α2)

(1− α)
= a3(1 + α)

which produces,

lim inf
x→∞

A(x)

x log3 x
≥ 2a3.

Combining the two bounds we conclude that the following limit exists and

lim
x→∞

A(x)

x log3 x
= 2a3.

That is,

A(x) ∼ 2a3x log
3 x.
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