Analytic Number Theory

Solutions

Solution to Problem 1. We have

$$
\beta= \begin{cases}1 / 2 & \text { if }|t| \leq e^{2} \\ 1-1 / \log |t| & \text { if }|t| \geq e^{2}\end{cases}
$$

If $|t| \leq e^{2}$, we have $x^{-\beta}=x^{-1 / 2}=O\left(x^{-1}\right)$ iff $x^{1 / 2}=O(1)$ on the interval $1 \leq x \leq|t|$. The function $x^{1 / 2} \leq e$ on the interval $[1,|t|] \subseteq\left[1, e^{2}\right]$.

If $|t| \geq e^{2}$, we have $x^{-\beta}=x^{1 / \log |t|-1}=O\left(x^{-1}\right)$ iff $x^{1 / \log |t|}=O(1)$ iff $e^{\log x / \log |t|}=O(1)$, all on the interval $1 \leq x \leq|t|$. The function $\log x / \log |t| \leq 1$ on the interval $[1,|t|]$.

For $\sigma \geq \alpha$,

$$
\left.\begin{array}{rl}
\sum_{n=1}^{M} n^{-\sigma} \leq \sum_{n=1}^{M} n^{-\alpha}=1+\int_{1}^{|t|} x^{-\alpha} & d x
\end{array}\right)=1+\left.\frac{1}{1-\alpha} x^{1-\alpha}\right|_{1} ^{|t|} .
$$

For $\sigma \geq \beta$, we have

$$
\sum_{n=1}^{M} n^{-\sigma} \leq \sum_{n=1}^{M} n^{-\beta} \leq \sum_{n=1}^{M} n^{-1} \leq 1+\int_{1}^{|t|} x^{-1} d x=O(\log |t|)
$$

Similarly, for $\sigma \geq \alpha$,

$$
\begin{aligned}
\sum_{n=M}^{\infty} n^{-\sigma-1} \leq \sum_{n=M}^{\infty} n^{-\alpha-1} \leq M^{-\alpha-1}+\int_{M}^{\infty} x^{-\alpha-1} d x & \leq M^{-\alpha-1}+\left.\frac{1}{-\alpha} x^{-\alpha}\right|_{M} ^{\infty} \\
& \leq M^{-\alpha-1}+\frac{1}{\alpha} M^{-\alpha}=O\left(M^{-\alpha}\right)=O\left(|t|^{-\alpha}\right)
\end{aligned}
$$

If σ is a constant $\geq \beta$, for every t (since β depends on t, we must have $\sigma \geq 1$. Then, $\sum_{n=M}^{\infty} n^{-\sigma-1} \leq \sum_{n=M}^{\infty} n^{-2}=O(1 /|t|)$. However, we can assume that σ depends on t as well and proceed as above to obtain

$$
\begin{aligned}
\sum_{n=M}^{\infty} n^{-\sigma-1} \leq \sum_{n=M}^{\infty} n^{-\beta(n)-1} & \leq M^{-\beta(M)-1}+\int_{M}^{\infty} x^{-\beta(x)-1} d x \\
& =\frac{e}{M^{2}}+e \cdot \int_{M}^{\infty} x^{-2} d x \leq \frac{e}{M^{2}}+\frac{e}{M}=O\left(M^{-1}\right)=O\left(|t|^{-1}\right)
\end{aligned}
$$

By the proof of Theorem 4.3 , for $1 \leq \operatorname{Re}(s) \leq 2$ we have

$$
|\zeta(s)| \leq \frac{1}{|s-1|}+\sum_{n \leq|t|} n^{-\sigma}+|s| \sum_{n \geq|t|} n^{-\sigma-1} .
$$

Then, for $\sigma=\operatorname{Re} s \geq \alpha$, using the above inequalities, we conclude that

$$
|\zeta(s)| \leq \frac{1}{|\sigma+i t-1|}+O\left(|t|^{1-\alpha}\right)+|\sigma+i t| O\left(|t|^{-\alpha}\right)=O(1)+O\left(|t|^{1-\alpha}\right)+O\left(|t|^{-\alpha+1}\right)=O\left(|t|^{-\alpha+1}\right) .
$$

If $\operatorname{Re} s \geq \beta(t)$, then we obtain

$$
|\zeta(s)| \leq \frac{1}{|\sigma+i t-1|}+O(\log |t|)+|\sigma+i t| O\left(|t|^{-1}\right)=O(1)+O(\log |t|)+O(1)=O(\log |t|)
$$

Solution to Problem 2. Let Γ be the circle of radius $1 /(4 \log |t|)$ about $s=\sigma+i t$. For $|t| \geq 3$ we have

$$
\frac{1}{4 \log |t|} \leq \frac{1}{4}
$$

Let $w=x+i y \in \Gamma$. We have, $x \geq 3 / 4-1 / 4=1 / 2$, and $|y| \geq|t|-1 / 4 \geq 3-1 / 4 \geq 2$.
Moreover, for $|t| \geq e^{2}$, we have

$$
x \geq \operatorname{Re} s-\frac{1}{4 \log |t|} \geq 1-\frac{3}{4 \log |t|}
$$

Similarly,

$$
|y-t| \leq \frac{1}{4 \log |t|},
$$

which implies

$$
\log |y| \leq \log \left(|t|+\frac{1}{4 \log |t|}\right)
$$

Now there is $t_{0}>3$ such that for all $|t| \geq t_{0}$ we have

$$
1-\frac{3}{4 \log |t|} \geq 1-\frac{1}{\log \left(t+\frac{1}{4 \log |t|}\right)}
$$

Combining the above bounds, we conclude that for $|t| \geq t_{0}$ we have $x \geq 1-\frac{1}{\log y}$. (In other words, Γ lies to the right-hand side of the curve $(\beta(t), t)$.)

For $2 \leq|t| \leq t_{0}$ and $0 \leq \operatorname{Re} s \leq 2$, the function $\zeta^{\prime}(s)$ is holomorphic. In particular, $\left|\zeta^{\prime}(s)\right|$ is bounded from above on this compact region. That is $\left|\zeta^{\prime}(s)\right|=O(1)$. It remains to prove the bound in the Question for $|t| \geq t_{0}$.

By the inequality in Question 1 (for $\sigma \geq \beta$ applied at the point $x+i y$) we have $|\zeta(w)| \leq$ $O(\log |y|)$. However, since $|y-t| \leq 1 /(4 \log |t|)$, we have $\log |y|=O(\log |t|)$.

By the Cauchy integral formula, we have

$$
\begin{aligned}
& \left|\zeta^{\prime}(s)\right| \leq\left|\frac{1}{2 \pi i} \int_{\Gamma} \frac{\zeta(w)}{(w-s)^{2}} d w\right| \leq \frac{1}{2 \pi} \int_{\Gamma} \frac{|\zeta(w)|}{|w-s|^{2}}|d w| \\
& \quad \leq \frac{1}{2 \pi} O(\log |t|) \cdot 16 \log ^{2}|t| \cdot 2 \pi \frac{1}{4 \log t}=O\left(\log ^{2}|t|\right)
\end{aligned}
$$

Solution to Problem 3. Fix $x \geq 2$ and define

$$
A=\left\{(p, e) \mid p \in \mathbb{N}, e \in \mathbb{N}, p^{e} \leq x\right\}
$$

For each $n \in \mathbb{N}$ we let $A_{n}=\left\{(p, n) \mid p \in \mathbb{N}, p^{n} \leq x\right\}$. Then, we have $A=\cup_{n \geq 1} A_{n}$. We note that $A_{n}=\emptyset$, for $n>\log x / \log 2$. Moreover, for every $n \geq 2$, \# $A_{n} \leq \# A_{2} \leq x^{1 / 2}$. These imply that

$$
\begin{aligned}
\psi(x)-\theta(x)=\sum_{A} \log p-\sum_{A_{1}} \log p= & \sum_{A_{2}} \log p+\sum_{A_{3}} \log p+\sum_{A_{4}} \log p+\cdots \\
\leq \frac{\log x}{\log 2} \sum_{A_{2}} \log p \leq & \frac{\log x}{\log 2} \sum_{p^{2} \leq x} \log p \leq \frac{\log x}{\log 2} \sum_{m \leq x^{1 / 2}} \log m \\
& \leq \log x \cdot\left(x^{1 / 2} \log \left(x^{1 / 2}\right)+O\left(x^{1 / 2}\right)\right)=O\left(x^{1 / 2} \log ^{2} x\right) .
\end{aligned}
$$

Above we have used that $\sum_{n \leq N} \log n=N \log N+O(N)$.
Using the partial summation formula with the functions $f(n)$ and $F(n)$ we obtain

$$
\sum_{p \leq x} 1=\sum_{n \leq x} f(n) F(n)=S(x) F(x)-\int_{1}^{x} S(x) F^{\prime}(x) d x
$$

where

$$
S(x)=\sum_{n \leq x} f(n)=\sum_{p \leq x} \log p=\theta(x)
$$

Thus,

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \theta(x) \frac{1}{x \log x} d x
$$

since $S(x)=0$ for $x<2$.

If $\psi(x)=x+O(E(x))$ then we have

$$
\theta(x)=\psi(x)-O\left(x^{1 / 2} \log ^{2} x\right)=x+O(E(x))-O\left(x^{1 / 2} \log ^{2} x\right)=x+O(E(x))
$$

Therefore,

$$
\begin{aligned}
\pi(x) & =\frac{x+O(E(x))}{\log x}+\int_{2}^{x} \frac{t+O(E(t))}{t \log ^{2} t} d t \\
& =\frac{x}{\log x}+\frac{O(E(t))}{\log x}+\int_{2}^{x} \frac{1}{\log ^{2} t} d t+\int_{2}^{x} \frac{O(E(t))}{t \log ^{2} t} d t \\
& =\frac{x}{\log x}+\frac{O(E(x))}{\log x}+\left(\operatorname{Li}(x)-C-\frac{x}{\log x}\right)+\int_{2}^{x} \frac{O(E(t))}{t \log ^{2} t} d t \\
& \leq \operatorname{Li}(x)+O(E(x))+\int_{2}^{x} t^{-1 / 2} d t \\
& =\operatorname{Li}(x)+O(E(x))+O\left(x^{1 / 2}\right)=\operatorname{Li}(x)+O(E(x)) .
\end{aligned}
$$

Solution to Problem 4. Let $\beta=1+\delta$ and choose $\delta=\frac{F(2 x)^{1 / 2}}{2 x}$. Then,

$$
\psi_{1}(\beta x)-\psi_{1}(x)=\int_{x}^{\beta x} \psi(t) d t \geq \psi(x) \frac{F(2 x)^{1 / 2}}{2}
$$

Thus,

$$
\begin{aligned}
\psi(x) \frac{F(2 x)^{1 / 2}}{2} & \leq \psi_{1}(\beta x)-\psi_{1}(x)=\psi_{1}\left(x+\frac{F(2 x)^{1 / 2}}{2}\right)-\psi_{1}(x) \\
& =\frac{1}{2}\left(x+\frac{F(2 x)^{1 / 2}}{2}\right)^{2}+O\left(F\left(x+\frac{F(2 x)^{1 / 2}}{2}\right)\right)-\left(\frac{1}{2} x^{2}+O(F(x))\right) \\
& =\frac{1}{2} x^{2}+\frac{1}{2} x F(2 x)^{1 / 2}+\frac{1}{4} F(2 x)+O\left(F\left(x+\frac{1}{2} F(2 x)^{1 / 2}\right)\right)-\frac{1}{2} x^{2}-O(F(x)) \\
& =\frac{1}{2} x F(2 x)^{1 / 2}+\frac{1}{4} F(2 x)+O\left(F\left(x+\frac{1}{2} F(2 x)^{1 / 2}\right)\right)-O(F(x))
\end{aligned}
$$

Since $F(x)$ in increasing and non-negative, we have $F(x) \leq F\left(x+\frac{1}{2} F(2 x)^{1 / 2}\right)$. Thus, $O(F(x+$ $\left.\left.\frac{1}{2} F(2 x)^{1 / 2}\right)\right)-O(F(x))=O\left(F\left(x+\frac{1}{2} F(2 x)^{1 / 2}\right)\right)$. Also, since $F(x) \leq x^{2}$ we have $\frac{1}{2} F(2 x)^{1 / 2} \leq x$. Thus, $O\left(F\left(x+\frac{1}{2} F(2 x)^{1 / 2}\right)\right)=O(F(2 x))$. Therefore, by the above inequalities, we have

$$
\psi(x) \frac{F(2 x)^{1 / 2}}{2} \leq \frac{1}{2} x F(2 x)^{1 / 2}+\frac{1}{4} F(2 x)+O(F(2 x)),
$$

which diving through by $\frac{F(2 x)^{1 / 2}}{2}$ implies that

$$
\psi(x) \leq x+O\left(F(2 x)^{1 / 2}\right)
$$

The lower bound on $\psi(x)$ is obtained in a similar fashion.

Solution to Problem 5. In Problems Sheet 3 we saw that formally,

$$
\frac{\zeta^{4}(s)}{\zeta(2 s)}=\sum_{n=1}^{\infty} d^{2}(n) n^{-s}
$$

By Theorem 4.2, the left-hand side of the above equation is defined for $\operatorname{Re} s>0$, except for the singularities at $s=1$ for $\zeta(s)$ and $s=1 / 2$ for $\zeta(2 s)$. (Indeed, By Corollary $6.7, \zeta(s)$ extends over \mathbb{C} but we don't need that here.) Below we show that the right-hand side of the above equation is defined for $\operatorname{Re} s>1$.

By Theorem 2.9, for every $\epsilon>0$ there is a constant c_{ϵ} such that $d(n) \leq c_{\epsilon} n^{\epsilon}$. This implies that for every s with $\operatorname{Re} s>1+2 \epsilon$ the series

$$
\sum_{n=1}^{\infty} d^{2}(n)\left|n^{-s}\right| \leq c_{\epsilon} \sum_{n=1}^{\infty} n^{2 \epsilon-\sigma}
$$

is finite. Since ϵ was arbitrary, the right-hand side of the equation is absolutely convergent for $\operatorname{Re} s>1$.

As $c>1$, by the above equation on the vertical line $c+i \mathbb{R}$, we have

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} d s=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(\sum_{n=1}^{\infty} d^{2}(n) n^{-s}\right) \frac{x^{s+1}}{s(s+1)} d s
$$

Now, to switch the places of the sum and the integral, we need to verify that

$$
\sum_{n=1}^{\infty} \int_{c-i \infty}^{c+i \infty}\left|d^{2}(n) n^{-s} \frac{x^{s+1}}{s(s+1)}\right||d s| \leq \sum_{n=1}^{\infty} d^{2}(n) n^{-c} \int_{c-i \infty}^{c+i \infty}\left|\frac{x^{s+1}}{s(s+1)}\right||d s|<\infty
$$

However, the integral $\int_{c-i \infty}^{c+i \infty}\left|\frac{x^{s+1}}{s(s+1)}\right||d s|$ is finite and independent of n. By the above argument, the series is convergent for $c>1$.

Now, using the values of the integrals in Lemma 5.5,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(\sum_{n=1}^{\infty} d^{2}(n) n^{-s}\right) \frac{x^{s+1}}{s(s+1)} d s & =\sum_{n=1}^{\infty} d^{2}(n) x \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{(x / n)^{s}}{s(s+1)} d s \\
& =\sum_{n \leq x} d^{2}(n) x(1-n / x) \\
& =\sum_{n \leq x} d^{2}(n)(x-n)
\end{aligned}
$$

The function $x^{s+1} /(s(s+1))$ has poles of order 1 at $s=0$ and $s=-1$. The function $\zeta(2 s)$ has no zero for $\operatorname{Re} s \geq 1 / 2$. The function $\zeta^{4}(s)$ has a pole of order 4 at $s=1$. Let $R \in \mathbb{R}$ denote the residue of $\zeta^{4}(s)$ at $s=1$. By the residue theorem,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} d s & =\frac{1}{2 \pi i} \int_{7 / 8-i \infty}^{7 / 8+i \infty} \frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} d s+\operatorname{Res}\left(\frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} ; s=1\right) \\
& =\frac{1}{2 \pi i} \int_{7 / 8-i \infty}^{7 / 8+i \infty} \frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} d s+\frac{R}{\pi^{2} / 6} \frac{x^{2}}{2}
\end{aligned}
$$

In the last equality of the above equation we have used $\zeta(2)=\sum_{n=1}^{\infty} n^{-2}=\pi^{2} / 6$.
For $\operatorname{Re} s>1$,

$$
\frac{1}{\zeta(s)}=\sum_{n=1}^{\infty} \mu(n) n^{-s},
$$

So on the line $7 / 8+i \mathbb{R}$, we have

$$
\left|\frac{1}{\zeta(2 s)}\right| \leq \sum_{n=1}^{\infty}\left|\mu(n) n^{-2 s}\right| \leq \sum_{n=1}^{\infty} n^{-7 / 4}<\infty
$$

Let C_{1} be an upper bound for $|1 / \zeta(2 s)|$ on the line $7 / 8+i \mathbb{R}$.
We have

$$
\begin{aligned}
\left|\frac{1}{2 \pi i} \int_{7 / 8-i \infty}^{7 / 8+i \infty} \frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} d s\right| & \leq \frac{C_{1}}{2 \pi} \int_{7 / 8-i \infty}^{7 / 8+i \infty}\left|\zeta^{4}(s)\right|\left|\frac{x^{s+1}}{s(s+1)}\right||d s| \\
& \leq \frac{C_{1} x^{15 / 8}}{2 \pi} \int_{7 / 8-i \infty}^{7 / 8+i \infty}\left|\zeta^{4}(s)\right|\left|\frac{1}{s(s+1)}\right||d s| \\
& \leq \frac{C_{1} x^{15 / 8}}{2 \pi}\left(\int_{7 / 8-2 i}^{7 / 8+2 i}+2 \int_{7 / 8+2 i}^{7 / 8+i \infty}\right)\left|\zeta^{4}(s)\right|\left|\frac{1}{s(s+1)}\right||d s| \\
& \leq C_{2} x^{15 / 8}+C_{3} x^{15 / 8} \int_{7 / 8+2 i}^{7 / 8+i \infty}\left|\zeta^{4}(s)\right| \frac{1}{t^{2}} d t \\
& \leq C_{2} x^{15 / 8}+C_{3} x^{15 / 8} \int_{7 / 8+2 i}^{7 / 8+i \infty}\left|\zeta^{4}(s)\right| \frac{1}{t^{2}} d t
\end{aligned}
$$

For some constants C_{2} and C_{3} independent of x.
For $\alpha=7 / 8 \in[1 / 100,99 / 100]$, the inequality in Question 1 gives us $|\zeta(7 / 8+i t)| \leq|t|^{1 / 8}$.
Then, there is a constant C_{4} such that

$$
\int_{7 / 8+2 i}^{7 / 8+i \infty}\left|\zeta^{4}(s)\right| \frac{1}{t^{2}} d t \leq \int_{2}^{\infty}\left(t^{1 / 8}\right)^{4} \frac{1}{t^{2}} \leq \int_{2}^{\infty} t^{-3 / 2} \leq C_{4}
$$

Combining the above bounds we have

$$
\sum_{n \leq x} d^{2}(n)(x-n)=\frac{3 R}{\pi} x^{2}+O\left(x^{15 / 8}\right)
$$

This is stronger than the estimate in the question. One can find the exact value of R by identifying the coefficient of $1 /(s-1)$ in the expansion of $\zeta^{4}(s)$, but we are not concerned with this value here.

Solution to Problem 6. For $x \geq 1$, let us define $A(x)=\sum_{n \leq x} d^{2}(n)$, and $H(x)=\int_{1}^{x} A(t) d t$. By the estimate in Question 5,

$$
H(x)=\int_{1}^{x} A(t) d t=\sum_{n \leq x} d^{2}(n)(x-n)=x^{2} P(\log x)+O\left(x^{15 / 8}\right)
$$

where P is a cubic polynomial, say, $P(x)=a_{0}+a_{1} \log x+a_{2} x^{2}+a_{3} x^{3}$.
Then,

$$
H(x)=a_{3} x^{2} \log ^{3} x+O\left(x^{2} \log ^{2} x\right)
$$

This implies that

$$
H(x)=a_{3} x^{2} \log ^{3} x+o\left(x^{2} \log ^{3} x\right)
$$

Since $d(n) \geq 0$, for $n \geq 1$, the function $A(x)$ is increasing. Given $\alpha<1<\beta$, we can apply the argument in the proof of Lemma 5.3 to conclude that

$$
\begin{aligned}
\frac{A(x)}{x \log ^{3} x} & \leq \frac{H(\beta x)-H(x)}{(\beta-1) x^{2} \log ^{3} x} \\
& =\frac{a_{3} \beta^{2} x^{2} \log ^{3} \beta+a_{3} \beta^{2} x^{2} \log ^{3} x+o\left(x^{2} \log ^{2} x\right)-a_{3} x^{2} \log ^{3} x-o\left(x^{2} \log ^{2} x\right)}{(\beta-1) x^{2} \log ^{3} x}
\end{aligned}
$$

Hence,

$$
\limsup _{x \rightarrow \infty} \frac{A(x)}{x \log ^{3} x} \leq \frac{a_{3}\left(\beta^{2}-1\right)}{(\beta-1)}=a_{3}(\beta+1)
$$

Since $\beta>1$ was arbitrary we must have

$$
\limsup _{x \rightarrow \infty} \frac{A(x)}{x \log ^{3} x} \leq 2 a_{3} .
$$

In a similar fashion one can show that

$$
\liminf _{x \rightarrow \infty} \frac{A(x)}{x \log ^{3} x} \geq \frac{a_{3}\left(1-\alpha^{2}\right)}{(1-\alpha)}=a_{3}(1+\alpha)
$$

which produces,

$$
\liminf _{x \rightarrow \infty} \frac{A(x)}{x \log ^{3} x} \geq 2 a_{3}
$$

Combining the two bounds we conclude that the following limit exists and

$$
\lim _{x \rightarrow \infty} \frac{A(x)}{x \log ^{3} x}=2 a_{3} .
$$

That is,

$$
A(x) \sim 2 a_{3} x \log ^{3} x
$$

