Analytic Number Theory Solutions

Solution to Problem 1. We have

$$\beta = \begin{cases} 1/2 & \text{if } |t| \le e^2, \\ 1 - 1/\log|t| & \text{if } |t| \ge e^2. \end{cases}$$

If $|t| \le e^2$, we have $x^{-\beta} = x^{-1/2} = O(x^{-1})$ iff $x^{1/2} = O(1)$ on the interval $1 \le x \le |t|$. The function $x^{1/2} \le e$ on the interval $[1, |t|] \subseteq [1, e^2]$.

If $|t| \ge e^2$, we have $x^{-\beta} = x^{1/\log|t|-1} = O(x^{-1})$ iff $x^{1/\log|t|} = O(1)$ iff $e^{\log x/\log|t|} = O(1)$, all on the interval $1 \le x \le |t|$. The function $\log x/\log|t| \le 1$ on the interval [1, |t|].

For $\sigma \geq \alpha$,

$$\begin{split} \sum_{n=1}^{M} n^{-\sigma} &\leq \sum_{n=1}^{M} n^{-\alpha} = 1 + \int_{1}^{|t|} x^{-\alpha} \, dx = 1 + \frac{1}{1-\alpha} x^{1-\alpha} \Big|_{1}^{|t|} \\ &= 1 - \frac{1}{1-\alpha} + \frac{1}{1-\alpha} |t|^{1-\alpha} = 1 + 100 |t|^{1-\alpha} = O(|t|^{1-\alpha}). \end{split}$$

For $\sigma \geq \beta$, we have

$$\sum_{n=1}^{M} n^{-\sigma} \le \sum_{n=1}^{M} n^{-\beta} \le \sum_{n=1}^{M} n^{-1} \le 1 + \int_{1}^{|t|} x^{-1} \, dx = O(\log|t|).$$

Similarly, for $\sigma \geq \alpha$,

$$\begin{split} \sum_{n=M}^{\infty} n^{-\sigma-1} &\leq \sum_{n=M}^{\infty} n^{-\alpha-1} \leq M^{-\alpha-1} + \int_{M}^{\infty} x^{-\alpha-1} \, dx \leq M^{-\alpha-1} + \frac{1}{-\alpha} x^{-\alpha} \Big|_{M}^{\infty} \\ &\leq M^{-\alpha-1} + \frac{1}{\alpha} M^{-\alpha} = O(M^{-\alpha}) = O(|t|^{-\alpha}). \end{split}$$

If σ is a constant $\geq \beta$, for every t (since β depends on t), we must have $\sigma \geq 1$. Then, $\sum_{n=M}^{\infty} n^{-\sigma-1} \leq \sum_{n=M}^{\infty} n^{-2} = O(1/|t|)$. However, we can assume that σ depends on t as well and proceed as above to obtain

$$\sum_{n=M}^{\infty} n^{-\sigma-1} \le \sum_{n=M}^{\infty} n^{-\beta(n)-1} \le M^{-\beta(M)-1} + \int_{M}^{\infty} x^{-\beta(x)-1} dx$$
$$= \frac{e}{M^2} + e \cdot \int_{M}^{\infty} x^{-2} dx \le \frac{e}{M^2} + \frac{e}{M} = O(M^{-1}) = O(|t|^{-1}).$$

By the proof of Theorem 4.3, for $1 \leq \operatorname{Re}(s) \leq 2$ we have

$$|\zeta(s)| \le \frac{1}{|s-1|} + \sum_{n \le |t|} n^{-\sigma} + |s| \sum_{n \ge |t|} n^{-\sigma-1}.$$

Then, for $\sigma = \operatorname{Re} s \ge \alpha$, using the above inequalities, we conclude that

$$|\zeta(s)| \le \frac{1}{|\sigma + it - 1|} + O(|t|^{1-\alpha}) + |\sigma + it|O(|t|^{-\alpha}) = O(1) + O(|t|^{1-\alpha}) + O(|t|^{-\alpha+1}) = O(|t|^{-\alpha+1}).$$

If $\operatorname{Re} s \geq \beta(t)$, then we obtain

$$|\zeta(s)| \le \frac{1}{|\sigma + it - 1|} + O(\log|t|) + |\sigma + it|O(|t|^{-1}) = O(1) + O(\log|t|) + O(1) = O(\log|t|).$$

Solution to Problem 2. Let Γ be the circle of radius $1/(4 \log |t|)$ about $s = \sigma + it$. For $|t| \ge 3$ we have

$$\frac{1}{4\log|t|} \le \frac{1}{4}.$$

Let $w = x + iy \in \Gamma$. We have, $x \ge 3/4 - 1/4 = 1/2$, and $|y| \ge |t| - 1/4 \ge 3 - 1/4 \ge 2$. Moreover, for $|t| \ge e^2$, we have

$$x \ge \operatorname{Re} s - \frac{1}{4\log|t|} \ge 1 - \frac{3}{4\log|t|}$$

Similarly,

$$|y-t| \le \frac{1}{4\log|t|},$$

which implies

$$\log|y| \le \log(|t| + \frac{1}{4\log|t|}).$$

Now there is $t_0 > 3$ such that for all $|t| \ge t_0$ we have

$$1 - \frac{3}{4\log|t|} \ge 1 - \frac{1}{\log(t + \frac{1}{4\log|t|})}.$$

Combining the above bounds, we conclude that for $|t| \ge t_0$ we have $x \ge 1 - \frac{1}{\log y}$. (In other words, Γ lies to the right-hand side of the curve $(\beta(t), t)$.)

For $2 \leq |t| \leq t_0$ and $0 \leq \text{Re } s \leq 2$, the function $\zeta'(s)$ is holomorphic. In particular, $|\zeta'(s)|$ is bounded from above on this compact region. That is $|\zeta'(s)| = O(1)$. It remains to prove the bound in the Question for $|t| \geq t_0$.

By the inequality in Question 1 (for $\sigma \ge \beta$ applied at the point x + iy) we have $|\zeta(w)| \le O(\log |y|)$. However, since $|y - t| \le 1/(4 \log |t|)$, we have $\log |y| = O(\log |t|)$.

By the Cauchy integral formula, we have

$$\begin{split} |\zeta'(s)| &\leq \left|\frac{1}{2\pi i} \int_{\Gamma} \frac{\zeta(w)}{(w-s)^2} \, dw\right| \leq \frac{1}{2\pi} \int_{\Gamma} \frac{|\zeta(w)|}{|w-s|^2} |dw| \\ &\leq \frac{1}{2\pi} O(\log|t|) \cdot 16 \log^2|t| \cdot 2\pi \frac{1}{4\log t} = O(\log^2|t|). \end{split}$$

Solution to Problem 3. Fix $x \ge 2$ and define

$$A = \{ (p, e) \mid p \in \mathbb{N}, e \in \mathbb{N}, p^e \le x \}.$$

For each $n \in \mathbb{N}$ we let $A_n = \{(p,n) \mid p \in \mathbb{N}, p^n \leq x\}$. Then, we have $A = \bigcup_{n \geq 1} A_n$. We note that $A_n = \emptyset$, for $n > \log x / \log 2$. Moreover, for every $n \geq 2$, $\#A_n \leq \#A_2 \leq x^{1/2}$. These imply that

$$\begin{split} \psi(x) - \theta(x) &= \sum_{A} \log p - \sum_{A_1} \log p = \sum_{A_2} \log p + \sum_{A_3} \log p + \sum_{A_4} \log p + \cdots \\ &\leq \frac{\log x}{\log 2} \sum_{A_2} \log p \leq \frac{\log x}{\log 2} \sum_{p^2 \leq x} \log p \leq \frac{\log x}{\log 2} \sum_{m \leq x^{1/2}} \log m \\ &\leq \log x \cdot (x^{1/2} \log(x^{1/2}) + O(x^{1/2})) = O(x^{1/2} \log^2 x). \end{split}$$

Above we have used that $\sum_{n\leq N}\log n=N\log N+O(N).$

Using the partial summation formula with the functions f(n) and F(n) we obtain

$$\sum_{p \le x} 1 = \sum_{n \le x} f(n)F(n) = S(x)F(x) - \int_1^x S(x)F'(x)dx,$$

where

$$S(x) = \sum_{n \le x} f(n) = \sum_{p \le x} \log p = \theta(x).$$

Thus,

$$\pi(x) = \frac{\theta(x)}{\log x} + \int_2^x \theta(x) \frac{1}{x \log x} \, dx,$$

since S(x) = 0 for x < 2.

If $\psi(x) = x + O(E(x))$ then we have

$$\theta(x) = \psi(x) - O(x^{1/2}\log^2 x) = x + O(E(x)) - O(x^{1/2}\log^2 x) = x + O(E(x)).$$

Therefore,

$$\begin{aligned} \pi(x) &= \frac{x + O(E(x))}{\log x} + \int_2^x \frac{t + O(E(t))}{t \log^2 t} dt \\ &= \frac{x}{\log x} + \frac{O(E(t))}{\log x} + \int_2^x \frac{1}{\log^2 t} dt + \int_2^x \frac{O(E(t))}{t \log^2 t} dt \\ &= \frac{x}{\log x} + \frac{O(E(x))}{\log x} + \left(\operatorname{Li}(x) - C - \frac{x}{\log x}\right) + \int_2^x \frac{O(E(t))}{t \log^2 t} dt \\ &\leq \operatorname{Li}(x) + O(E(x)) + \int_2^x t^{-1/2} dt \\ &= \operatorname{Li}(x) + O(E(x)) + O(x^{1/2}) = \operatorname{Li}(x) + O(E(x)). \end{aligned}$$

Solution to Problem 4. Let $\beta = 1 + \delta$ and choose $\delta = \frac{F(2x)^{1/2}}{2x}$. Then,

$$\psi_1(\beta x) - \psi_1(x) = \int_x^{\beta x} \psi(t) \, dt \ge \psi(x) \frac{F(2x)^{1/2}}{2}.$$

Thus,

$$\begin{split} \psi(x) \frac{F(2x)^{1/2}}{2} &\leq \psi_1(\beta x) - \psi_1(x) = \psi_1(x + \frac{F(2x)^{1/2}}{2}) - \psi_1(x) \\ &= \frac{1}{2}(x + \frac{F(2x)^{1/2}}{2})^2 + O(F(x + \frac{F(2x)^{1/2}}{2})) - (\frac{1}{2}x^2 + O(F(x))) \\ &= \frac{1}{2}x^2 + \frac{1}{2}xF(2x)^{1/2} + \frac{1}{4}F(2x) + O(F(x + \frac{1}{2}F(2x)^{1/2})) - \frac{1}{2}x^2 - O(F(x)) \\ &= \frac{1}{2}xF(2x)^{1/2} + \frac{1}{4}F(2x) + O(F(x + \frac{1}{2}F(2x)^{1/2})) - O(F(x)) \end{split}$$

Since F(x) in increasing and non-negative, we have $F(x) \le F(x + \frac{1}{2}F(2x)^{1/2})$. Thus, $O(F(x + \frac{1}{2}F(2x)^{1/2})) - O(F(x)) = O(F(x + \frac{1}{2}F(2x)^{1/2}))$. Also, since $F(x) \le x^2$ we have $\frac{1}{2}F(2x)^{1/2} \le x$. Thus, $O(F(x + \frac{1}{2}F(2x)^{1/2})) = O(F(2x))$. Therefore, by the above inequalities, we have

$$\psi(x)\frac{F(2x)^{1/2}}{2} \le \frac{1}{2}xF(2x)^{1/2} + \frac{1}{4}F(2x) + O(F(2x)).$$

which diving through by $\frac{F(2x)^{1/2}}{2}$ implies that

$$\psi(x) \le x + O(F(2x)^{1/2}).$$

The lower bound on $\psi(x)$ is obtained in a similar fashion.

Solution to Problem 5. In Problems Sheet 3 we saw that formally,

$$\frac{\zeta^4(s)}{\zeta(2s)} = \sum_{n=1}^{\infty} d^2(n) n^{-s}.$$

By Theorem 4.2, the left-hand side of the above equation is defined for $\operatorname{Re} s > 0$, except for the singularities at s = 1 for $\zeta(s)$ and s = 1/2 for $\zeta(2s)$. (Indeed, By Corollary 6.7, $\zeta(s)$ extends over \mathbb{C} but we don't need that here.) Below we show that the right-hand side of the above equation is defined for $\operatorname{Re} s > 1$.

By Theorem 2.9, for every $\epsilon > 0$ there is a constant c_{ϵ} such that $d(n) \leq c_{\epsilon} n^{\epsilon}$. This implies that for every s with $\operatorname{Re} s > 1 + 2\epsilon$ the series

$$\sum_{n=1}^{\infty} d^2(n) |n^{-s}| \le c_{\epsilon} \sum_{n=1}^{\infty} n^{2\epsilon - \sigma}$$

is finite. Since ϵ was arbitrary, the right-hand side of the equation is absolutely convergent for Re s > 1.

As c > 1, by the above equation on the vertical line $c + i\mathbb{R}$, we have

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\zeta^4(s)}{\zeta(2s)} \frac{x^{s+1}}{s(s+1)} \, ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\sum_{n=1}^{\infty} d^2(n) n^{-s}\right) \frac{x^{s+1}}{s(s+1)} \, ds$$

Now, to switch the places of the sum and the integral, we need to verify that

$$\sum_{n=1}^{\infty} \int_{c-i\infty}^{c+i\infty} |d^2(n)n^{-s} \frac{x^{s+1}}{s(s+1)}| \, |ds| \le \sum_{n=1}^{\infty} d^2(n)n^{-c} \int_{c-i\infty}^{c+i\infty} |\frac{x^{s+1}}{s(s+1)}| \, |ds| < \infty.$$

However, the integral $\int_{c-i\infty}^{c+i\infty} |\frac{x^{s+1}}{s(s+1)}| |ds|$ is finite and independent of n. By the above argument, the series is convergent for c > 1.

Now, using the values of the integrals in Lemma 5.5,

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(\sum_{n=1}^{\infty} d^2(n)n^{-s}\right) \frac{x^{s+1}}{s(s+1)} \, ds = \sum_{n=1}^{\infty} d^2(n)x \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{(x/n)^s}{s(s+1)} \, ds$$
$$= \sum_{n \le x} d^2(n)x(1-n/x)$$
$$= \sum_{n \le x} d^2(n)(x-n).$$

The function $x^{s+1}/(s(s+1))$ has poles of order 1 at s = 0 and s = -1. The function $\zeta(2s)$ has no zero for $\text{Re } s \ge 1/2$. The function $\zeta^4(s)$ has a pole of order 4 at s = 1. Let $R \in \mathbb{R}$ denote the residue of $\zeta^4(s)$ at s = 1. By the residue theorem,

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\zeta^4(s)}{\zeta(2s)} \frac{x^{s+1}}{s(s+1)} \, ds = \frac{1}{2\pi i} \int_{7/8-i\infty}^{7/8+i\infty} \frac{\zeta^4(s)}{\zeta(2s)} \frac{x^{s+1}}{s(s+1)} \, ds + \operatorname{Res}(\frac{\zeta^4(s)}{\zeta(2s)} \frac{x^{s+1}}{s(s+1)}; s=1)$$
$$= \frac{1}{2\pi i} \int_{7/8-i\infty}^{7/8+i\infty} \frac{\zeta^4(s)}{\zeta(2s)} \frac{x^{s+1}}{s(s+1)} \, ds + \frac{R}{\pi^2/6} \frac{x^2}{2}$$

In the last equality of the above equation we have used $\zeta(2) = \sum_{n=1}^{\infty} n^{-2} = \pi^2/6$.

For $\operatorname{Re} s > 1$,

$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \mu(n) n^{-s},$$

So on the line $7/8 + i\mathbb{R}$, we have

$$\left|\frac{1}{\zeta(2s)}\right| \le \sum_{n=1}^{\infty} |\mu(n)n^{-2s}| \le \sum_{n=1}^{\infty} n^{-7/4} < \infty.$$

Let C_1 be an upper bound for $|1/\zeta(2s)|$ on the line $7/8 + i\mathbb{R}$.

We have

$$\begin{split} \left| \frac{1}{2\pi i} \int_{7/8-i\infty}^{7/8+i\infty} \frac{\zeta^4(s)}{\zeta(2s)} \frac{x^{s+1}}{s(s+1)} \, ds \right| &\leq \frac{C_1}{2\pi} \int_{7/8-i\infty}^{7/8+i\infty} |\zeta^4(s)| \left| \frac{x^{s+1}}{s(s+1)} \right| |ds| \\ &\leq \frac{C_1 x^{15/8}}{2\pi} \int_{7/8-i\infty}^{7/8+i\infty} |\zeta^4(s)| \left| \frac{1}{s(s+1)} \right| |ds| \\ &\leq \frac{C_1 x^{15/8}}{2\pi} \Big(\int_{7/8-2i}^{7/8+2i} +2 \int_{7/8+2i}^{7/8+i\infty} \Big) |\zeta^4(s)| \left| \frac{1}{s(s+1)} \right| |ds| \\ &\leq C_2 x^{15/8} + C_3 x^{15/8} \int_{7/8+2i}^{7/8+i\infty} |\zeta^4(s)| \frac{1}{t^2} \, dt \\ &\leq C_2 x^{15/8} + C_3 x^{15/8} \int_{7/8+2i}^{7/8+i\infty} |\zeta^4(s)| \frac{1}{t^2} \, dt \end{split}$$

For some constants C_2 and C_3 independent of x.

For $\alpha = 7/8 \in [1/100, 99/100]$, the inequality in Question 1 gives us $|\zeta(7/8 + it)| \le |t|^{1/8}$. Then, there is a constant C_4 such that

$$\int_{7/8+2i}^{7/8+i\infty} |\zeta^4(s)| \frac{1}{t^2} dt \le \int_2^\infty (t^{1/8})^4 \frac{1}{t^2} \le \int_2^\infty t^{-3/2} \le C_4.$$

Combining the above bounds we have

$$\sum_{n \le x} d^2(n)(x-n) = \frac{3R}{\pi}x^2 + O(x^{15/8})$$

This is stronger than the estimate in the question. One can find the exact value of R by identifying the coefficient of 1/(s-1) in the expansion of $\zeta^4(s)$, but we are not concerned with this value here.

Solution to Problem 6. For $x \ge 1$, let us define $A(x) = \sum_{n \le x} d^2(n)$, and $H(x) = \int_1^x A(t) dt$. By the estimate in Question 5,

$$H(x) = \int_{1}^{x} A(t) dt = \sum_{n \le x} d^{2}(n)(x-n) = x^{2} P(\log x) + O(x^{15/8}),$$

where P is a cubic polynomial, say, $P(x) = a_0 + a_1 \log x + a_2 x^2 + a_3 x^3$.

Then,

$$H(x) = a_3 x^2 \log^3 x + O(x^2 \log^2 x).$$

This implies that

$$H(x) = a_3 x^2 \log^3 x + o(x^2 \log^3 x)$$

Since $d(n) \ge 0$, for $n \ge 1$, the function A(x) is increasing. Given $\alpha < 1 < \beta$, we can apply the argument in the proof of Lemma 5.3 to conclude that

$$\begin{aligned} \frac{A(x)}{x\log^3 x} &\leq \frac{H(\beta x) - H(x)}{(\beta - 1)x^2\log^3 x} \\ &= \frac{a_3\beta^2 x^2\log^3\beta + a_3\beta^2 x^2\log^3 x + o(x^2\log^2 x) - a_3x^2\log^3 x - o(x^2\log^2 x)}{(\beta - 1)x^2\log^3 x} \end{aligned}$$

Hence,

$$\limsup_{x \to \infty} \frac{A(x)}{x \log^3 x} \le \frac{a_3(\beta^2 - 1)}{(\beta - 1)} = a_3(\beta + 1).$$

Since $\beta > 1$ was arbitrary we must have

$$\limsup_{x \to \infty} \frac{A(x)}{x \log^3 x} \le 2a_3.$$

In a similar fashion one can show that

$$\liminf_{x \to \infty} \frac{A(x)}{x \log^3 x} \ge \frac{a_3(1 - \alpha^2)}{(1 - \alpha)} = a_3(1 + \alpha)$$

which produces,

$$\liminf_{x \to \infty} \frac{A(x)}{x \log^3 x} \ge 2a_3.$$

Combining the two bounds we conclude that the following limit exists and

$$\lim_{x \to \infty} \frac{A(x)}{x \log^3 x} = 2a_3.$$

That is,

$$A(x) \sim 2a_3 x \log^3 x.$$