Analytic Number Theory

Solutions
Solution to Problem 1. We have
1/2 if [t < €2,
1—1/log|t| if [t| > €2
If |t| < €%, we have % = 2=1/2 = O(z~") iff 2'/2 = O(1) on the interval 1 < z < [t|. The
function z'/2 < e on the interval [1, [t|] C [1,€?].

If |t| > €2, we have =F = g!/1ogltl=1 — O(z=1) iff 21/ 108t = O(1) iff elo8@/logltl = O(1),
all on the interval 1 < z < |¢|. The function log z/log [t| < 1 on the interval [1, |¢]].
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For o > 3, we have
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Similarly, for ¢ > «,
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If o is a constant > f, for every t (since 8 depends on t), we must have ¢ > 1. Then,

Yoo yn o< Y0, n2 = O(1/[t]). However, we can assume that o depends on ¢ as well

and proceed as above to obtain
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By the proof of Theorem 4.3, for 1 < Re(s) < 2 we have

1
I¢(s)] < 51| + > s Y
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Then, for 0 = Res > a, using the above inequalities, we conclude that

1

| < m+0(Itllfo‘)+ld+it\0(lt\*“) = O()+O(t]'"=)+O([t=**) = O(|t|~**1).
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If Res > 5(t), then we obtain

1

| < ST + O(log |t]) + |o +it|O(t| ') = O(1) + O(log |t]) + O(1) = O(log |t|).
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Solution to Problem 2. Let T" be the circle of radius 1/(4log |t|) about s = o + it. For
[t| > 3 we have

1 1
<
4loglt| ~— 4
Let w=xz+iy €. We have,  >3/4—1/4=1/2, and |y| > [t| —1/4>3—1/4> 2.
Moreover, for |t| > €2, we have
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Similarly,
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which implies
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Now there is tg > 3 such that for all |t| > ¢y we have
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Combining the above bounds, we conclude that for [¢| > to we have © > 1 — @. (In other
words, T lies to the right-hand side of the curve (5(t),t).)

For 2 < |t| <ty and 0 < Res < 2, the function ¢’(s) is holomorphic. In particular, |¢'(s)]
is bounded from above on this compact region. That is |('(s)| = O(1). It remains to prove

the bound in the Question for [¢] > .



By the inequality in Question 1 (for o > 8 applied at the point x + iy) we have |((w)| <
O(log |y|). However, since |y — t| < 1/(4log |t]), we have log|y| = O(log [t]).

By the Cauchy integral formula, we have
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Solution to Problem 3. Fix x > 2 and define
A={(pe) | peN,eeN,p°<ux}.

For each n € N we let A4, = {(p,n) | p € N,p"” < z}. Then, we have A = U,>14,. We note
that A, = 0, for n > logz/log2. Moreover, for every n > 2, #A, < #Ay < z'/2. These
imply that

G(x) —0(x) = logp—» logp=> logp+ Y logp+ » logp+- -
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10g2; 08P = log 2 o 08P = log 2 Z s
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<logz - (/2 log(z'/?) + O(2'/?)) = O(z'/*log? ).
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Above we have used that >, _ylogn = Nlog N + O(N).

Using the partial summation formula with the functions f(n) and F(n) we obtain
T
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where

S(@) =Y f(n)=) logp=0(x).
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Thus,

since S(x) =0 for z < 2.



If ¢(z) = z + O(E(x)) then we have

0(x) = (x) — O($1/2 log? x)=x+ O(E(z)) — O($1/2 log? x) =z + O(E(z)).

Therefore,
(z) = x+ O(E(z)) +/ t+ O(f(t)) &t
log x 9 tlog“t
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T +O(E(z)) +(Li(x)—C— T >+/’” O(E)) .
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- log log log x tlog?t

< Li(z) + O(E(z)) + /; Y2 dt

= Li(z) + O(E(z)) + O(z'/?) = Li(z) + O(E(x)).

Solution to Problem 4. Let 8 = 1+ & and choose § = 20 Then,
13— a) = [ w0z v T
Thus,
S K R S P P e
e F2 e o+ FEIT) (L o(p)
= 204 ZaP(20)" + F(20) + O(F(x + 3 F(20)'?)) — 22 — O(F (x)

= %mF(Zm)l/Q + iF(zx) + O(F(z + %F(zx)m)) — O(F(z))

Since F(z) in increasing and non-negative, we have F(z) < F(z+1F(22)'/2). Thus, O(F(z+
1P (22)Y2))—O(F(z)) = O(F(z+3F(2z)"/?)). Also, since F(z) < 2% we have £ F(22)'/2 < z.
Thus, O(F(z + 1F(22)'/2)) = O(F(2z)). Therefore, by the above inequalities, we have
F2x)'? 1
A\ <
2 -2

which diving through by F(2+)1/2

() 2F(22)2 + iF(Qa:) +O(F(22)),

implies that
() < x4+ O(F(2x)'?).

The lower bound on () is obtained in a similar fashion.
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Solution to Problem 5. In Problems Sheet 3 we saw that formally,
¢(s) - 2 -
= d
n=1
By Theorem 4.2, the left-hand side of the above equation is defined for Res > 0, except for

the singularities at s = 1 for ((s) and s = 1/2 for ((2s). (Indeed, By Corollary 6.7, ((s)
extends over C but we don’t need that here.) Below we show that the right-hand side of the

above equation is defined for Re s > 1.
By Theorem 2.9, for every € > 0 there is a constant ¢ such that d(n) < c¢.n. This implies
that for every s with Res > 1 + 2¢ the series

ZdZ |n s|<czn260
n=1

is finite. Since € was arbitrary, the right-hand side of the equation is absolutely convergent
for Res > 1.
As ¢ > 1, by the above equation on the vertical line ¢ + iR, we have
1 c+ioco 4 s+1 1 c+i0co s+1
i Cls) & 1 Z &(n 557 ds
270 Je—ioo €(28) s(s+1) 270 S o—ioo (s+1)

Now, to switch the places of the sum and the integral, we need to verify that
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c+i00 S+
2 z 2
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/C |d ( 1) |d8| d /C ‘ |s(s 1)||d$| < 0o

n=1 —100

c+zoo s+l |
s s+1)

the series is convergent for c>1.

However, the integral f |ds| is finite and independent of n. By the above argument,

Now, using the values of the integrals in Lemma 5.5,
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The function 2°7!/(s(s+1)) has poles of order 1 at s = 0 and s = —1. The function ¢(2s)
has no zero for Res > 1/2. The function ¢*(s) has a pole of order 4 at s = 1. Let R € R
denote the residue of ¢*(s) at s = 1. By the residue theorem,

ct+ioco 4 s+1 7/8+ic0 4 s+1 4 s+1
) e 1 o) e S
270 Je—ico C(25) s(s+1) 270 J7/8-i00 C(25) s(s +1) C(2s) s(s+1)
1 [7/8+ico r4 251 2
= ¢ (s) ds + f T
27” 7/8—i00 C(QS) 5( ) u /6 2
In the last equality of the above equation we have used ¢(2) =2 n=2 = 72/6.
For Res > 1,
1 o0
ORI
So on the line 7/8 + iR, we have
o0 o0
Z —23| < Zn—7/4 < 00
n=1 n=1
Let C; be an upper bound for |1/{(2s)| on the line 7/8 + iR.
We have
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For some constants Co and C5 independent of x.
For o = 7/8 € [1/100,99/100], the inequality in Question 1 gives us |¢(7/8 + it)| < [t|/5.
Then, there is a constant Cy such that
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[ e [Cayy < [T
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Combining the above bounds we have
S P(n)(@ — n) = a4 O(19/5),
™
n<z

This is stronger than the estimate in the question. One can find the exact value of R by
identifying the coefficient of 1/(s — 1) in the expansion of ¢*(s), but we are not concerned

with this value here.

Solution to Problem 6. For z > 1, let us define A(xz) =

By the estimate in Question 5,

d*(n), and H(z) = [}" A(t)dt.

n<x

H(z) = /x A(t)dt = Z d(n)(z — n) = 22P(log z) + O(a1/8),

1 n<zx

where P is a cubic polynomial, say, P(z) = ag + aj log x + asx? + azx>.

Then,
H(z) = azz?log® x + O(x?log? ).
This implies that
H(z) = azz*log® = + o(z? log® x)
Since d(n) > 0, for n > 1, the function A(z) is increasing. Given a < 1 < 3, we can apply
the argument in the proof of Lemma 5.3 to conclude that

Aw) _ H(fa)— H@)
rlogdz = (B —1)a2log®x

azB?x?log® B + azB?x?log® x + o(x? log? x) — azz? log® x — o(z? log? x)
(B —1)a2log®x

Hence,
. A(x) az(B? — 1)
lim s ) < —a3(B+1).
linbupxlog“x S az(f+1)

Since 8 > 1 was arbitrary we must have

A
lim sup (9? < 2as.
z—oo xlog®x
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In a similar fashion one can show that

2
lim inf A(a:?)) > as(1 — o)
z—o0 glog”x (1-a)

=a3(l+ )

which produces,

lim inf (z)
z—oo gxlog” x

Z 20,3.

Combining the two bounds we conclude that the following limit exists and

A
lim (:Eg)
z—o0 xlog® x

= 2a3.

That is,
A(z) ~ 2azzlog® z.
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