Analytic Number Theory

Solutions

Solution to Problem 1. Recall that for $\operatorname{Re} s>\operatorname{Re} s_{0}$ we have

$$
F(s)=\left(s-s_{0}\right) \int_{1}^{\infty} S(x) x^{s_{0}-s-1} d x
$$

where $S(x)=\sum_{n \leq x} f(n) n^{-s_{0}}$. We proved in Problem 7 that the integral is finite. Now, fix $\delta>0$ and assume that $\operatorname{Re} s \geq \operatorname{Re} s_{0}+\delta$. We have

$$
\left|\int_{1}^{\infty} S(x) x^{s_{0}-s-1} d x-\int_{1}^{X} S(x) x^{s_{0}-s-1} d x\right| \leq \int_{X}^{\infty}\left|S(x) x^{s_{0}-s-1}\right| d x \leq M \int_{X}^{\infty} x^{-\delta-1} d x \leq \frac{1}{\delta} \frac{1}{X^{\delta}}
$$

where $M=\sup \{|S(x)| \mid x \geq 0\}$ is finite, and the upper bound $\frac{1}{\delta X^{\delta}}$ tends to 0 as X tends to ∞.
Let us define

$$
F_{N}(s)=\left(s-s_{0}\right) \int_{1}^{N} S(x) x^{s_{0}-s-1} d x
$$

Each map F_{n} is holomorphic on the region $\operatorname{Re} s>\operatorname{Re} s_{0}$. Moreover, for every $\delta>0$, by the above equation, the sequence of maps $F_{n}(s)$ is uniformly convergent on the region $\operatorname{Re} s \geq \operatorname{Re} s_{0}+\delta$. By Lemma 3.2, this implies that F_{s} is holomorphic on the region $\operatorname{Re} s \geq \operatorname{Re} s_{0}+\delta$. As $\delta>0$ was arbitrary, we conclude that $F(s)$ is holomorphic on the region $\operatorname{Re} s>\operatorname{Re} s_{0}$.

Solution to Problem 2. a) First we verify whether f is multiplicative. This can be easily done by considering the three cases of the pairs (m, n) are (odd, odd), (odd, even), (even, odd).

We note that $\sum_{n=1}^{\infty}|f(n)| n^{-s}$ is convergent if and only if $\operatorname{Re} s>1$. This implies that AAC of this Dirichlet series σ_{0} is equal to +1 . Then, by Theorem 3.4, for every s with $\operatorname{Re} s>\sigma_{0}$, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p \text { prime }}\left\{\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}\right\} & =\left(1-p^{-s}-p^{-2 s}-p^{-3 s} \cdots\right) \prod_{2<p \text { prime }}\left\{\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}\right\} \\
& =\left(2-\frac{1}{1-2^{-s}}\right) \prod_{2<p \text { prime }}\left(\frac{1}{1-p^{-s}}\right)
\end{aligned}
$$

b) We can verify whether f is multiplicative by considering the following four cases. Let $(m, n)=1$ for some $m, n \in \mathbb{N}$.

1) If at least one of n and m is even, then $f(m n)=f(m) f(n)=0$.
2) If $m \equiv 1(\bmod 4)$, and $n \equiv 1(\bmod 4)$, then $f(m n)=(-1)^{(m n-1) / 2}=1$ and $f(m) f(n)=$ $(-1)^{(m-1) / 2} \cdot(-1)^{(n-1) / 2}=1 \cdot 1=1$.
3) If $m \equiv 3(\bmod 4)$, and $n \equiv 1(\bmod 4)$, then $f(m n)=(-1)^{(m n-1) / 2}=-1$ and $f(m) f(n)=$ $(-1)^{(m-1) / 2} \cdot(-1)^{(n-1) / 2}=(-1) \cdot 1=-1$.
4) If $m \equiv 3(\bmod 4)$, and $n \equiv 3(\bmod 4)$, then $f(m n)=(-1)^{(m n-1) / 2}=1$ and $f(m) f(n)=$ $(-1)^{(m-1) / 2} \cdot(-1)^{(n-1) / 2}=(-1) \cdot(-1)=1$.

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p \text { prime }}\left\{\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}\right\}
$$

For $p=2$,

$$
\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=f(1)=1
$$

for primes p of the form $4 k+3$, we have

$$
\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=1-p^{-s}+p^{-2 s}-p^{-3 s}+p^{-4 s}-\cdots=\frac{1}{1+p^{-s}}
$$

and for primes p of the form $4 k+1$ we have

$$
\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=1+p^{-s}+p^{-2 s}+p^{-3 s}+p^{-4 s}+\cdots=\frac{1}{1-p^{-s}}
$$

Thus,

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\left(\prod_{p \equiv 3} \frac{1}{1+p^{-s}}\right)\left(\prod_{p \equiv 1}\left(\frac{1}{1-p^{-s}}\right)\right)
$$

Solution to Problem 3.

$$
\zeta^{2}(s)=\sum_{n=1}^{\infty}(u * u)(n) n^{-s}=\sum_{n=1}^{\infty}\left(\sum_{a b=n}(u(a) u(b))\right) n^{-s}=\sum_{n=1}^{\infty} d(n) n^{-s}
$$

However the above relation may be also obtained from the Euler product formula as in

$$
\zeta^{2}(s)=\prod_{p} \frac{1}{\left(1-p^{-s}\right)^{2}}=\prod_{p} \frac{1}{1-2 p^{-s}+p^{-2 s}}
$$

and on the other hand, since $d(n)$ is a multiplicative function,

$$
\sum_{n=1}^{\infty} d(n) n^{-s}=\prod_{p}\left(\sum_{e=0}^{\infty} d\left(p^{e}\right) p^{-e s}\right)=\prod_{p}\left(\sum_{e=0}^{\infty}(e+1) p^{-e s}\right)
$$

So for the relation to hold it is enough to prove that for every prime p

$$
\frac{1}{1-2 p^{-s}+p^{-2 s}}=\sum_{e=0}^{\infty}(e+1) p^{-e s}
$$

This can be verified by

$$
\begin{aligned}
(1 & \left.-2 p^{-s}+p^{-2 s}\right) \cdot \sum_{e=0}^{\infty}(e+1) p^{-e s} \\
& =\sum_{e=0}^{\infty}(e+1) p^{-e s}-\sum_{e=0}^{\infty} 2(e+1) p^{-(e+1) s}+\sum_{e=0}^{\infty}(e+1) p^{-(e+2) s} \\
& =\left(1+2 p^{-s}+\sum_{e=2}^{\infty}(e+1) p^{-e s}\right)-\left(2 p^{-s}+\sum_{e=2}^{\infty} 2(e) p^{-e s}\right)+\sum_{e=2}^{\infty}(e-1) p^{-e s} \\
& =1+\sum_{e=2}^{\infty}(e+1-2 e+e-1) p^{-e s}=1
\end{aligned}
$$

One can use this approach for the other relations.

$$
\frac{\zeta^{3}(s)}{\zeta(2 s)}=\prod_{p}\left(\frac{1}{\left(1-p^{-s}\right)^{3}}\right) \prod_{p}\left(1-p^{-2 s}\right)=\prod_{p} \frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{3}}=\prod_{p} \frac{1+p^{-s}}{\left(1-p^{-s}\right)^{2}}=\prod_{p} \frac{1+p^{-s}}{1-2 p^{-s}+p^{-2 s}}
$$

On the other hand, since $d\left(n^{2}\right)$ is a multiplicative functions, we must have

$$
\sum_{n=1}^{\infty} d\left(n^{2}\right) n^{-s}=\prod_{p}\left(\sum_{e=0}^{\infty} d\left(p^{2 e}\right) p^{-e s}\right)=\prod_{p}\left(\sum_{e=0}^{\infty}(2 e+1) p^{-e s}\right) .
$$

Thus, it is enough to show that

$$
\frac{1+p^{-s}}{1-2 p^{-s}+p^{-2 s}}=\sum_{e=0}^{\infty}(2 e+1) p^{-e s}
$$

This can be verified as follows:

$$
\begin{aligned}
\left(1-2 p^{-s}+p^{-2 s}\right) \cdot & \sum_{e=0}^{\infty}(2 e+1) p^{-e s} \\
& =\sum_{e=0}^{\infty}(2 e+1) p^{-e s}-\sum_{e=0}^{\infty} 2(2 e+1) p^{-(e+1) s}+\sum_{e=0}^{\infty}(2 e+1) p^{-(e+2) s} \\
& =\left(1+3 p^{-s}+\sum_{e=2}^{\infty}(2 e+1) p^{-e s}\right)-\left(2 p^{-s}+\sum_{e=2}^{\infty} 2(2 e-1) p^{-e s}\right)+\sum_{e=2}^{\infty}(e-3) p^{-e s} \\
& =1+p^{-s}+\sum_{e=2}^{\infty}(2 e+1-4 e+2+2 e-3) p^{-e s}=1+p^{-s} .
\end{aligned}
$$

Similarly,

$$
\frac{\zeta^{4}(s)}{\zeta(2 s)}=\prod_{p}\left(\frac{1}{\left(1-p^{-s}\right)^{4}}\right) \prod_{p}\left(1-p^{-2 s}\right)=\prod_{p} \frac{1-p^{-2 s}}{\left(1-p^{-s}\right)^{4}}=\prod_{p} \frac{1+p^{-s}}{\left(1-p^{-s}\right)^{3}} .
$$

On the other hand, since $d^{2}(n)$ is a multiplicative functions, we must have

$$
\sum_{n=1}^{\infty} d\left(n^{2}\right) n^{-s}=\prod_{p}\left(\sum_{e=0}^{\infty} d^{2}\left(p^{e}\right) p^{-e s}\right)=\prod_{p}\left(\sum_{e=0}^{\infty}(e+1)^{2} p^{-e s}\right) .
$$

Thus, it is enough to show that

$$
\frac{1+p^{-s}}{\left(1-p^{-s}\right)^{3}}=\sum_{e=0}^{\infty}(e+1)^{2} p^{-e s}
$$

This can be verified as in the above case.

Solution to Problem 4.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sigma(n) n^{-s} & =\sum_{n=1}^{\infty}\left(\sum_{a b=n} u_{1}(a) u(b)\right) n^{-s} \\
& =\sum_{n=1}^{\infty}\left(u_{1} * u\right)(n) n^{-s} \\
& =\left(\sum_{n=1}^{\infty} u_{1}(n) n^{-s}\right)\left(\sum_{n=1}^{\infty} u(n) n^{-s}\right) \\
& =\left(\sum_{n=1}^{\infty} n \cdot n^{-s}\right) \zeta(s) \\
& =\zeta(s-1) \zeta(s)
\end{aligned}
$$

Recall that in Theorem 2.16 we proved that $\phi * u=u_{1}$. Thus,

$$
\left(\sum_{n=1}^{\infty} \phi(n) n^{-s}\right)\left(\sum_{n=1}^{\infty} u(n) n^{-s}\right)=\sum_{n=1}^{\infty} n \cdot n^{-s}
$$

This implies that,

$$
\sum_{n=1}^{\infty} \phi(n) n^{-s}=\frac{\zeta(s-1)}{\zeta(s)}
$$

For the last relation we use a different approach. On one hand,

$$
\sum_{n=1}^{\infty}|\mu(n)| n^{-s}=\prod_{p}\left(\sum_{e=0}^{\infty}\left|\mu\left(p^{e}\right)\right| p^{-e s}\right)=\prod_{p}\left(1+p^{-s}\right)
$$

We also know that

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-p^{-s}\right)
$$

Multiplying the two formulas together we see that

$$
\frac{1}{\zeta(s)} \cdot\left(\sum_{n=1}^{\infty}|\mu(n)| n^{-s}\right)=\prod_{p}\left(1-p^{-2 s}\right)=1 / \zeta(2 s)
$$

which implies that

$$
\sum_{n=1}^{\infty}|\mu(n)| n^{-s}=\frac{\zeta(s)}{\zeta(2 s)}
$$

Solution to Problem 5. We use the relation

$$
\sum_{n=1}^{\infty}|\mu(n)| n^{-s}=\frac{\zeta(s)}{\zeta(2 s)}
$$

prove in the previous part. By Theorem 4.1, we have

$$
\frac{1}{|\zeta(s)|}=\left|\sum_{n=1}^{\infty} \mu(n) n^{-s}\right| \leq \sum_{n=1}^{\infty}|\mu(n)| n^{-\operatorname{Re} s}=\frac{\zeta(\sigma)}{\zeta(2 \sigma)}
$$

Solution to Problem 6. By Theorem 2.10, $\sum_{n \leq X} \log n=X \log X+O(X)$, and by Lemma 3.6 for every $n \in \mathbb{N}$ we have $(\Lambda * u)(n)=\log n$. Thus,

$$
\sum_{m \leq X} \Lambda(m)\left[\frac{X}{m}\right]=\sum_{n \leq X} \sum_{a \mid n} \Lambda(a)=\sum_{n \leq X} \sum_{a b=n} \Lambda(a) u(b)=\sum_{n \leq X} \log n=X \log X+O(X)
$$

To obtain the first equality we have counted how many times $\Lambda(a)$ appears in the second double sum. That is how many $n \leq X$ are there with $a \mid n$. The answer is $[X / a]$.

By the above equation

$$
\sum_{m \leq X} \Lambda(m) \frac{X}{m} \geq \sum_{m \leq X} \Lambda(m)\left[\frac{X}{m}\right]=X \log X+O(X)
$$

This implies that

$$
\sum_{m \leq X} \frac{\Lambda(m)}{m} \geq \log X+O(1)
$$

Fix an arbitrary $\delta \in(0,1)$. Then, for every $\theta \geq \delta^{-1}$ we have $[\theta] \geq(\theta-1) \geq(1-\delta) \theta$. This implies that

$$
\sum_{m \leq \delta X} \Lambda(m) \frac{X}{m} \leq(1-\delta)^{-1} \sum_{m \leq \delta X} \Lambda(m)\left[\frac{X}{m}\right]=(1-\delta)^{-1}(X \log X+O(X))
$$

Dividing the last inequality by X we obtain

$$
\sum_{m \leq \delta X} \frac{\Lambda(m)}{m} \leq(1-\delta)^{-1}(\log X+O(1))
$$

for every $\delta \in(0,1)$. Combining the two inequalities we have

$$
\sum_{m \leq Y} \frac{\Lambda(m)}{m}=\log Y+O(1)
$$

In particular,

$$
\sum_{m \leq Y} \frac{\Lambda(m)}{m} \sim \log Y
$$

Solution to Problem 7. For every s with Re $s>1$, by the Euler product formula we have

$$
\log \zeta(s)=-\sum_{p} \log \left(1-p^{-s}\right)
$$

Differentiating both sides with respect to s results in

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\sum_{p} \frac{\log p \cdot p^{-s}}{1-p^{-s}}=-\sum_{p} \log p \sum_{m=0}^{\infty} \frac{1}{p^{(m+1) s}}
$$

Hence,

$$
3 \frac{\zeta^{\prime}(\sigma)}{\zeta(\sigma)}+4 \operatorname{Re} \frac{\zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\operatorname{Re} \frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)}=-\sum_{p} \frac{\log p}{p^{m \sigma}} \sum_{m=1}^{\infty}(3+4 \cos (m t \log p)+\cos (2 m t \log p))
$$

As in the proof of Lemma 3.6, for every $\theta \in \mathbb{R}, 3+4 \cos \theta+\cos (2 \theta) \geq 0$. This finishes the proof of the inequality.

Solution to Problem 8. It is enough to have $A_{1}>A_{0}$, and all $A_{i} \geq 0$. With $N=2$ we need to have

$$
A_{0}+A_{1} \cos \theta+A_{2} \cos (2 \theta) \geq 0
$$

replace $\cos \theta=x$ and find the minimum of the function on the interval $[-1,1]$.

