Analytic Number Theory

Solutions

Solution to Problem 1. Recall that for Res > Re sy we have
oo
F(s) = (s —s0) / S(z)z*o*tde
1

where S(x) = >, ., f(n)n™*. We proved in Problem 7 that the integral is finite. Now, fix § > 0 and
assume that Res > Resg + 6. We have

o] X o] o] 11
’ / S(x)z* o~ da — / S(x)xso—s1 dac‘ < / ’S(x):cso*sfw dx < M/ a0 Ve < <5
1 1 X X 0X

where M = sup{|S(z)| | z > 0} is finite, and the upper bound 5)%5 tends to 0 as X tends to oo.
Let us define N
Fy(s)=(s— so)/ S(x)z o~ da
1

Each map F), is holomorphic on the region Re s > Re sg. Moreover, for every § > 0, by the above equation,
the sequence of maps F,,(s) is uniformly convergent on the region Res > Re sg + §. By Lemma 3.2, this
implies that F is holomorphic on the region Res > Re sy + 6. As d > 0 was arbitrary, we conclude that
F(s) is holomorphic on the region Re s > Re sp.

Solution to Problem 2. a) First we verify whether f is multiplicative. This can be easily done by
considering the three cases of the pairs (m,n) are (odd, odd), (odd, even), (even, odd).
We note that Y o2 | |f(n)[n~* is convergent if and only if Res > 1. This implies that AAC of this

Dirichlet series oq is equal to +1. Then, by Theorem 3.4, for every s with Res > o, we have

S fm= I Dofew=t=0-pr-p>-p* ) [ {Df@)p =}

n=1 p prime e=0 2<p prime e=0
1 1
:(2_m> H (l_pfs)
2<p prime

b) We can verify whether f is multiplicative by considering the following four cases. Let (m,n) =1
for some m,n € N.

1) If at least one of n and m is even, then f(mn) = f(m)f(n) = 0.

2) If m = 1 (mod 4), and n = 1 (mod 4), then f(mn) = (—=1)™=D/2 = 1 and f(m)f(n) =
(_1)(m*1)/2 . (_1)(7%1)/2 -1-1=1.

3) If m = 3 (mod 4), and n = 1 (mod 4), then f(mn) = (—=1)™*=D/2 = _1 and f(m)f(n) =
(_1)(m71)/2 . (_1)(%1)/2 =(-1)-1=-1.

4) If m = 3 (mod 4), and n = 3 (mod 4), then f(mn) = (=1)"D/2 = 1 and f(m)f(n) =
(=)D ()02 = (1) (1) = 1
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p prime e=0

For p =2,
Zf P =) =1,

for primes p of the form 4k + 3, we have

oo
1
p~ € =1—p 5+ —2s _ 735_’_ —4s _ . _
> F@)p P+ F—p +p e
and for primes p of the form 4k 4+ 1 we have
- , , , 1
S =14p Tt hp Fp T pp = 1—ps
Thus,
s = (T ) (T =)
> fn= = = —)).
n=1 p=3 1 Tp p=1 1 -P °
Solution to Problem 3.
o o0 oo
Gls) =Y (uxu)(nn™ =Y (D (u(@)u®)n* = dn)n
n=1 n=1 ab=n n=1

However the above relation may be also obtained from the Euler product formula as in

9 _ 1 _ 1
C (S) - H (1 _pfs)Q - ];[ 1— 2pfs +p72s

p

and on the other hand, since d(n) is a multiplicative function,

ni_o:ld(n)n H (Zd 765) H (i(e—i— 1)p*es>

P e=0

So for the relation to hold it is enough to prove that for every prime p

o0

1
e — 1)p—es
L—=2p=s+p2 ;)(e tlp

This can be verified by

(1=2p+p2)-> (e+1)p~
e=0

i €+1 iQ (€+1)S+Z €+1 —(e+2)s
e=0 e=0

e=0

o0
(142p~ +Z —(2p~ +Z )+ (e—1)p*
e=2

:1+Z(6+1726+671)p_6821.
e=2



One can use this approach for the other relations

¢(s)

1 o T A-p® o l4p _qp L4
e Ua—mpllo-r=-llg==s -lla—= -1llim=7=

On the other hand, since d(n?) is a multiplicative functions, we must have

id(nQ)TfS = H (id(p%)p*es) = H (i(Ze + l)p*es).
n=1 P e=0

P e=0
Thus, it is enough to show that
L+p~° .- Ces
— —5 = E (2e + 1)p
1 2]9 AP e=0

This can be verified as follows:

oo
(1=2p°+p ) > (2e+1)p~*

—226+ e 222e+1 e+15+§:2e+1 ~(et2)s

=(1+3p7°+ Z(?e +1)p~ ) — (2p° + Z (2e = 1)p™*) + Z(e —3)p~
e=2 =2 e=2
=14p°+> (2e+1—-4de+2+2—3)p “=1+p°
e=2
Similarly,
<4(S) :H( 1 )H(l_p—QS) :H H 1+p75
@) a7l 7=

p
On the other hand, since d?(n) is a multiplicative functions, we must have

gld(nz)n H (Zdz ) _H(i(eﬂ)?p’“).

P e=0
Thus, it is enough to show that

1 + pis EOO: 2 es
— =53 (6 + 1> p
(1-p=) =
This can be verified as in the above case



Solution to Problem 4.

ia(n)n‘s = f: ( Z ul(a)u(b))n_s

n=1 n=1 " ab=n
= Z(ul xu)(n)n=°
n=1
= (7; uq (n)n‘s) (7; u(n)n_s)
= (in 1) ¢(s)
n=1
=(¢(s = 1)¢(s).

Recall that in Theorem 2.16 we proved that ¢ * u = u;. Thus,

(ot ) (o) = S

n=1

This implies that,

- s _Cls=1)

For the last relation we use a different approach. On one hand,

o0 o0
S um)n =IO lu@) ™) = (1 +p7).
n=1 p e=0 P
We also know that
1
— = 1—p7%).
o~ L=
Multiplying the two formulas together we see that
1 o
—— - O lpm)n*) = TT(1 = p7%) = 1/¢(25),

which implies that

o0
3 (i = S0
n=1

Solution to Problem 5. We use the relation

> lutmjn = 5
n=1

prove in the previous part. By Theorem 4.1, we have

LY e <3 e = SO
KO 2




Solution to Problem 6. By Theorem 2.10, }_, -y logn = X log X +O(X), and by Lemma 3.6 for every
n € N we have (A * u)(n) = logn. Thus,
> A(m)[%] => Y AMa)=Y_ > A@ub)=> logn=XlogX +O(X).
m<X n<X aln n<X ab=n n<X
To obtain the first equality we have counted how many times A(a) appears in the second double sum.
That is how many n < X are there with a|n. The answer is [X/a].
By the above equation
X X
RS 1= .
mZ;(A(m)m > mZ;(A(m)[m] Xlog X + O(X)
This implies that

Z % >log X + O(1).

m<X
Fix an arbitrary § € (0,1). Then, for every § > 61 we have [f] > (0 — 1) > (1 — §)#. This implies
that

> A(m Y Am =(1-06)"Y(XlogX +O(X)).

m<éX m<§X
Dividing the last inequality by X we obtain

A
> Alm) < (1—68)"log X +0O(1))
m<§X m
for every § € (0,1). Combining the two inequalities we have
A
Z Alm) =logY + O(1).
m

m<Y

In particular,

Z %wlogY.

m<Y

Solution to Problem 7. For every s with Res > 1, by the Euler product formula we have
log (s Z log(1 —

Differentiating both sides with respect to s results in

(s lo
C((s)): Zp: o p ZIngZ plm+1)s

Hence,

¢'(0) ¢'(o+it) ¢'(o + 2it) logp
3((0) TARe C(o+it) “Clo+2it) Z

As in the proof of Lemma 3.6, for every 6 € R, 3 + 4cos6 + cos(20) > 0. This finishes the proof of the

Z (3 + 4 cos(mt log p) + cos(2mtlog p))

m=1

inequality.



Solution to Problem 8. It is enough to have A; > Ag, and all A; > 0. With N = 2 we need to have
Ap + Aj cos 6 + Az cos(26) > 0.

replace cos @ = x and find the minimum of the function on the interval [—1,1].



