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Solutions

Solution to Problem 1. Recall that for Re s > Re s0 we have

F (s) = (s� s0)

Z 1

1
S(x)xs0�s�1 dx

where S(x) =
P

nx

f(n)n�s0 . We proved in Problem 7 that the integral is finite. Now, fix � > 0 and

assume that Re s � Re s0 + �. We have

���
Z 1

1
S(x)xs0�s�1 dx�

Z
X

1
S(x)xs0�s�1 dx

��� 
Z 1

X

��S(x)xs0�s�1
�� dx  M

Z 1

X

x���1 dx  1

�

1

X�

where M = sup{|S(x)| | x � 0} is finite, and the upper bound 1
�X

� tends to 0 as X tends to 1.

Let us define

F
N

(s) = (s� s0)

Z
N

1
S(x)xs0�s�1 dx

Each map F
n

is holomorphic on the region Re s > Re s0. Moreover, for every � > 0, by the above equation,

the sequence of maps F
n

(s) is uniformly convergent on the region Re s � Re s0 + �. By Lemma 3.2, this

implies that F
s

is holomorphic on the region Re s � Re s0 + �. As � > 0 was arbitrary, we conclude that

F (s) is holomorphic on the region Re s > Re s0.

Solution to Problem 2. a) First we verify whether f is multiplicative. This can be easily done by

considering the three cases of the pairs (m,n) are (odd, odd), (odd, even), (even, odd).

We note that
P1

n=1 |f(n)|n�s is convergent if and only if Re s > 1. This implies that AAC of this

Dirichlet series �0 is equal to +1. Then, by Theorem 3.4, for every s with Re s > �0, we have

1X

n=1

f(n)n�s =
Y

p prime

� 1X

e=0

f(pe)p�es

 
=
�
1� p�s � p�2s � p�3s . . .

� Y

2<p prime

� 1X

e=0

f(pe)p�es

 

=
�
2� 1

1� 2�s

� Y

2<p prime

� 1

1� p�s

�

b) We can verify whether f is multiplicative by considering the following four cases. Let (m,n) = 1

for some m,n 2 N.
1) If at least one of n and m is even, then f(mn) = f(m)f(n) = 0.

2) If m ⌘ 1 (mod 4), and n ⌘ 1 (mod 4), then f(mn) = (�1)(mn�1)/2 = 1 and f(m)f(n) =

(�1)(m�1)/2 · (�1)(n�1)/2 = 1 · 1 = 1.

3) If m ⌘ 3 (mod 4), and n ⌘ 1 (mod 4), then f(mn) = (�1)(mn�1)/2 = �1 and f(m)f(n) =

(�1)(m�1)/2 · (�1)(n�1)/2 = (�1) · 1 = �1.

4) If m ⌘ 3 (mod 4), and n ⌘ 3 (mod 4), then f(mn) = (�1)(mn�1)/2 = 1 and f(m)f(n) =

(�1)(m�1)/2 · (�1)(n�1)/2 = (�1) · (�1) = 1.

3



1X

n=1

f(n)n�s =
Y

p prime

� 1X

e=0

f(pe)p�es

 

For p = 2,
1X

e=0

f(pe)p�es = f(1) = 1,

for primes p of the form 4k + 3, we have
1X

e=0

f(pe)p�es = 1� p�s + p�2s � p�3s + p�4s � · · · = 1

1 + p�s

and for primes p of the form 4k + 1 we have
1X

e=0

f(pe)p�es = 1 + p�s + p�2s + p�3s + p�4s + · · · = 1

1� p�s

.

Thus,
1X

n=1

f(n)n�s =
⇣Y

p⌘3

1

1 + p�s

⌘⇣Y

p⌘1

(
1

1� p�s

)
⌘
.

Solution to Problem 3.

⇣2(s) =
1X

n=1

(u ⇤ u)(n)n�s =
1X

n=1

� X

ab=n

(u(a)u(b))
�
n�s =

1X

n=1

d(n)n�s.

However the above relation may be also obtained from the Euler product formula as in

⇣2(s) =
Y

p

1

(1� p�s)2
=
Y

p

1

1� 2p�s + p�2s

and on the other hand, since d(n) is a multiplicative function,
1X

n=1

d(n)n�s =
Y

p

⇣ 1X

e=0

d(pe)p�es

⌘
=
Y

p

⇣ 1X

e=0

(e+ 1)p�es

⌘

So for the relation to hold it is enough to prove that for every prime p

1

1� 2p�s + p�2s
=

1X

e=0

(e+ 1)p�es.

This can be verified by

(1� 2p�s + p�2s) ·
1X

e=0

(e+ 1)p�es

=
1X

e=0

(e+ 1)p�es �
1X

e=0

2(e+ 1)p�(e+1)s +
1X

e=0

(e+ 1)p�(e+2)s

=
�
1 + 2p�s +

1X

e=2

(e+ 1)p�es

�
� (2p�s +

1X

e=2

2(e)p�es) +
1X

e=2

(e� 1)p�es

= 1 +
1X

e=2

(e+ 1� 2e+ e� 1)p�es = 1.
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One can use this approach for the other relations.

⇣3(s)

⇣(2s)
=
Y

p

(
1

(1� p�s)3
)
Y

p

(1� p�2s) =
Y

p

1� p�2s

(1� p�s)3
=
Y

p

1 + p�s

(1� p�s)2
=
Y

p

1 + p�s

1� 2p�s + p�2s

On the other hand, since d(n2) is a multiplicative functions, we must have

1X

n=1

d(n2)n�s =
Y

p

⇣ 1X

e=0

d(p2e)p�es

⌘
=
Y

p

⇣ 1X

e=0

(2e+ 1)p�es

⌘
.

Thus, it is enough to show that

1 + p�s

1� 2p�s + p�2s
=

1X

e=0

(2e+ 1)p�es.

This can be verified as follows:

(1� 2p�s + p�2s)·
1X

e=0

(2e+ 1)p�es

=
1X

e=0

(2e+ 1)p�es �
1X

e=0

2(2e+ 1)p�(e+1)s +
1X

e=0

(2e+ 1)p�(e+2)s

=
�
1 + 3p�s +

1X

e=2

(2e+ 1)p�es

�
� (2p�s +

1X

e=2

2(2e� 1)p�es) +
1X

e=2

(e� 3)p�es

= 1 + p�s +
1X

e=2

(2e+ 1� 4e+ 2 + 2e� 3)p�es = 1 + p�s.

Similarly,

⇣4(s)

⇣(2s)
=
Y

p

(
1

(1� p�s)4
)
Y

p

(1� p�2s) =
Y

p

1� p�2s

(1� p�s)4
=
Y

p

1 + p�s

(1� p�s)3
.

On the other hand, since d2(n) is a multiplicative functions, we must have

1X

n=1

d(n2)n�s =
Y

p

⇣ 1X

e=0

d2(pe)p�es

⌘
=
Y

p

⇣ 1X

e=0

(e+ 1)2p�es

⌘
.

Thus, it is enough to show that
1 + p�s

(1� p�s)3
=

1X

e=0

(e+ 1)2p�es.

This can be verified as in the above case.
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Solution to Problem 4.

1X

n=1

�(n)n�s =
1X

n=1

⇣ X

ab=n

u1(a)u(b)
⌘
n�s

=
1X

n=1

(u1 ⇤ u)(n)n�s

=
⇣ 1X

n=1

u1(n)n
�s

⌘⇣ 1X

n=1

u(n)n�s

⌘

=
⇣ 1X

n=1

n · n�s

⌘
⇣(s)

= ⇣(s� 1)⇣(s).

Recall that in Theorem 2.16 we proved that � ⇤ u = u1. Thus,

⇣ 1X

n=1

�(n)n�s

⌘⇣ 1X

n=1

u(n)n�s

⌘
=

1X

n=1

n · n�s.

This implies that,
1X

n=1

�(n)n�s =
⇣(s� 1)

⇣(s)
.

For the last relation we use a di↵erent approach. On one hand,

1X

n=1

|µ(n)|n�s =
Y

p

(
1X

e=0

|µ(pe)|p�es) =
Y

p

(1 + p�s).

We also know that
1

⇣(s)
=
Y

p

(1� p�s).

Multiplying the two formulas together we see that

1

⇣(s)
· (

1X

n=1

|µ(n)|n�s) =
Y

p

(1� p�2s) = 1/⇣(2s),

which implies that
1X

n=1

|µ(n)|n�s =
⇣(s)

⇣(2s)
.

Solution to Problem 5. We use the relation

1X

n=1

|µ(n)|n�s =
⇣(s)

⇣(2s)

prove in the previous part. By Theorem 4.1, we have

1

|⇣(s)| =
��

1X

n=1

µ(n)n�s

�� 
1X

n=1

|µ(n)|n�Re s =
⇣(�)

⇣(2�)
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Solution to Problem 6. By Theorem 2.10,
P

nX

log n = X logX+O(X), and by Lemma 3.6 for every

n 2 N we have (⇤ ⇤ u)(n) = log n. Thus,

X

mX

⇤(m)[
X

m
] =

X

nX

X

a|n

⇤(a) =
X

nX

X

ab=n

⇤(a)u(b) =
X

nX

log n = X logX +O(X).

To obtain the first equality we have counted how many times ⇤(a) appears in the second double sum.

That is how many n  X are there with a|n. The answer is [X/a].

By the above equation

X

mX

⇤(m)
X

m
�

X

mX

⇤(m)[
X

m
] = X logX +O(X).

This implies that
X

mX

⇤(m)

m
� logX +O(1).

Fix an arbitrary � 2 (0, 1). Then, for every ✓ � ��1 we have [✓] � (✓ � 1) � (1 � �)✓. This implies

that X

m�X

⇤(m)
X

m
 (1� �)�1

X

m�X

⇤(m)[
X

m
] = (1� �)�1(X logX +O(X)).

Dividing the last inequality by X we obtain

X

m�X

⇤(m)

m
 (1� �)�1(logX +O(1))

for every � 2 (0, 1). Combining the two inequalities we have

X

mY

⇤(m)

m
= log Y +O(1).

In particular,
X

mY

⇤(m)

m
⇠ log Y.

Solution to Problem 7. For every s with Re s > 1, by the Euler product formula we have

log ⇣(s) = �
X

p

log(1� p�s).

Di↵erentiating both sides with respect to s results in

⇣ 0(s)

⇣(s)
= �

X

p

log p · p�s

1� p�s

= �
X

p

log p
1X

m=0

1

p(m+1)s
.

Hence,

3
⇣ 0(�)

⇣(�)
+ 4Re

⇣ 0(� + it)

⇣(� + it)
+ Re

⇣ 0(� + 2it)

⇣(� + 2it)
= �

X

p

log p

pm�

1X

m=1

�
3 + 4 cos(mt log p) + cos(2mt log p)

�

As in the proof of Lemma 3.6, for every ✓ 2 R, 3 + 4 cos ✓ + cos(2✓) � 0. This finishes the proof of the

inequality.
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Solution to Problem 8. It is enough to have A1 > A0, and all A
i

� 0. With N = 2 we need to have

A0 +A1 cos ✓ +A2 cos(2✓) � 0.

replace cos ✓ = x and find the minimum of the function on the interval [�1, 1].
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