
Analytic Number Theory

Solutions

Solution to Problem 1. We have
d(n)

n1/4

=
Y

i

1 + e
i

pei/4
,

where n =
Q

pei
i

.

By the proof of Theorem 2.9
1 + e

i

pei/4
 1 for p

i

� 16

and
1 + e

i

pei/4
 4

log 2
for p

i

 16

Thus, for all n 2 N,

d(n)  46

(log 2)6
· n1/4.

We need to find n
0

such that for all n � n
0

we have

46

(log 2)6
< n1/4

which is guaranteed by n > 1.9⇥ 1018 � (4/ log 2)24.

For primes p  16 we may have a better bound on (1+e
i

)/pei/4
i

. One needs to find the maximum values

of the functions g
p

(x) = 1+x

p

x/4 for p = 2, 3, 5, 7, 11, 13. By taking derivative we see that g0
p

( 4

log p

� 1) = 0,

while for x > 4

log p

�1, g
p

(x) is decreasing. By some elementary calculations we can obtain a better bound.

Solution to Problem 2. We use the partial summation formula with f(n) = d(n) and F (x) = 1/x. By

Theorem 2.10 we have S(X) =
P

1nX

d(n) = X logX +O(X). Hence,

X

1nX

d(n)

n
=

X

1nX

f(n)F (n)

=
�
X logX +O(X)

� 1

X
�
Z

X

1

�
x log x+O(x)

��1

x2
dx

= logX +O(1) +

Z
X

1

1

x
log x dx+O

� Z X

1

1

x
dx

�

= logX +O(1) +
1

2
log2X +O(logX)

=
1

2
log2X +O(logX) +O(1).

In the above equation we have used the integration by parts with f(t) = log t and g(t) = log t. This

implies the desired asymptotic relation.
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Solution to Problem 3. Using the partial summation with f(n) = 1, F (x) = 1/x we have

s(X) =
X

1nX

1 = [X],

and hence

X

1nX

1

n
=

X

1nX

f(n)F (n)

= [X]
1

X
�
Z

X

1

[x]
�1

x2
dx

=
[X]�X +X

X
+

Z
X

1

[x]� x

x2
dx+

Z
X

1

1

x
dx

= 1 +O(
1

X
) +

Z
X

1

[x]� x

x2
dx+ logX

= � +O(
1

X
) + logX.

Solution to Problem 4. We use Lemma 2.11 with the increasing function f(x) = x to obtain

Z
[x]

1

x dx 
X

nx

n  [x] +

Z
[x]

1

x dx,

which reduces to
[x]2

2


X

nx

n  [x] +
[x]2

2

Hence,

X

nx

n� 1

2
x2  [x] +

[x]2 � x2

2
+

x2

2
� 1

2
x2

= [x] +
([x]� x)([x] + x)

2

 O(x).

Similarly,

X

nx

n� 1

2
x2 � [x]2 � x2

2
+

x2

2
� 1

2
x2

=
([x]� x)([x] + x)

2

� �x.

The above two inequalities imply that
P

nx

n = x2/2 +O(x).
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Moving to the next stage, we have

X

nx

�(n) =
X

nx

X

v|n

v

=
X

ux

X

vx/u

v

=
X

ux

⇣(x/u)2

2
+O(x/u)

⌘

=
1

2
x2

X

ux

u�2 + x(
X

ux

1/u)

=
1

2
x2

X

ux

u�2 +O(x(1 + log x)).

X

u>x

1

u2


X

u>x

1

u2 � u
=

X

u>x

⇣ 1

u� 1
� 1

u

⌘
 1

[x]
 2

x
.

Also, recall that
P1

n=1

1/n2 = ⇡2/6. Combining these with the above equation we obtain

X

nx

�(n)� ⇡2

12
x2 =

1

2
x2

X

ux

u�2 +O(x(1 + log x))� ⇡2

12
x2

=
1

2
x2(

⇡2

6
�

X

u>x

1

u2
) +O(x(1 + log x))� ⇡2

12
x2

=
1

2
x2(�

X

u>x

1

u2
) +O(x(1 + log x))

= O(x) +O(x(1 + log x)) = O(x(1 + log x)).

Solution to Problem 5.

X

nX

d(n) =
X

nX

X

v|n

1

=
X

u,v�1,uvX

1

=
X

u
p
X

X

vX/u

1 +
X

v
p
X

X

uX/v

1�
X

u
p
X

X

v
p
X

1

5



On the other hand,

X

u
p
X

X

vX/u

1 =
X

u
p
X

[
X

u
]

= X
X

u
p
X

1

u
+O(

p
X)

= X
�
log

p
X + � +O(1/

p
X)

�
+O(

p
X)

=
1

2
X logX +X� +O(

p
X)

The second sum is equal to the above one. For the third sum we have

X

u
p
X

X

v
p
X

1 =
X

u
p
X

[
p
X]

=
p
X
p
X +O(

p
X) = X +O(

p
X).

Combining the above equations we obtain the desired asymptotic formula.

Solution to Problem 6. Let

S
0

= {Re(s) : s 2 C,
1X

n=1

|f(n)n�s| is convergent},

and

S
1

= {Re(s) : s 2 C,
1X

n=1

f(n)n�s is convergent}.

By the definitions inf S
0

= �
0

and inf S
1

= �
1

.

Let s be a complex number such that
P1

n=1

f(n)n�s is convergent. Then, by the convergence criteria

the terms of the series must tend to zero. In particular, there is n
0

such that for all n � n
0

we have

|f(n)n�s|  1.

Assume s0 be a complex number with Re(s0) > Re(s) + 1. Define ⌘ = s0 � s so that Re(⌘) > 1. Then,

1X

n=n0

��f(n)
ns

0

�� =
1X

n=n0

���
f(n)

ns

���
���
1

n⌘

��� 
1X

n=n0

1

nRe(⌘)

< 1.

This implies that s0 belongs to S
0

, that is, �
0

 Re(s) + 1.

By the above argument, �
0

�1�� /2 S
1

, for every � > 0. That is, S
1

is bounded from below. Moreover,

S
1

contains S
0

and is not empty. These imply that S
1

has an infimum. Finally, we have

�
0

= inf
S1

�
0

 inf
S1

Re(s) + 1  �
1

+ 1.

This finishes the proof of the statement.

The other inequality follows from S
0

✓ S
1

, that is, inf S
1

 inf S
0

.
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Solution to Problem 7. The sum F (s) =
P1

n=1

f(n)n�s is convergent at s = s
0

.

Consider the arithmetic function g(n) = f(n)n�s0 ans denote its partial sum with

S(x) =
X

nx

f(n)n�s0 .

Fix a complex constant s with Re s > Re s
0

. Let G(x) = xs0�s, for x > 0. Using the partial summation

formula we have

NX

n=1

f(n)n�s =
NX

n=1

f(n)n�s0 · ns0�s

=
⇣ NX

n=1

f(n)n�s0

⌘
·N s0�s �

Z
N

x=1

S(x)(s
0

� s)xs0�s

1

x
dx

=
⇣ NX

n=1

f(n)n�s0

⌘
·N s0�s � (s

0

� s)

Z
N

x=1

S(x)xs0�s�1 dx

Now we take limit at N tends to 1. We have

lim
N!1

NX

n=1

f(n)n�s = F (s),

and on the other hand

lim
N!1

NX

n=1

f(n)n�s0 = F (s
0

)

is finite by the assumption, which implies that

lim
N!1

⇣ NX

n=1

f(n)n�s0

⌘
·N s0�s = 0

Thus,

F (s) = (s
0

� s)

Z 1

x=1

S(x)xs0�s�1 dx

The infinite integral is finite since |S(X)| is uniformly bounded from above, and Re(s) > Re s
0

.

Let s 2 C with Re s > �
1

. By the definition of �
1

, there is s
0

with �
1

< Re s
0

< Re(s) such that
P1

n=1

f(n)n�s0 is convergent. In particular the partial sums of this series are uniformly bounded from

above in absolute value, and tend to F (s
0

) Also note that Re s
0

� s � 1 < 1. Therefore, by the above

formula Z 1

x=1

S(x)xRe(s0�s�1) dx < 1.

is well-defined.

Solution to Problem 8. Let s = � + it. We know that

1X

n=1

|(�1)n�1|
|ns| =

1X

n=1

1

n�
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is convergent if and only if � > 1. This implies that �
0

= 1.

On the other hand, for �  0, the series
P1

n=1

(�1)

n�1

n

�

is divergent. However, for every � > 0, by

the alternating series test the series
P1

n=1

(�1)

n�1

n

�

is convergent. (need to see that the sequence 1/n� is

monotone decreasing!). This implies that �
1

= 0.

We need to build an example of a Dirichlet series such that �
1

= ↵ and �
0

= 1.

If ↵ = 0 then the above example provides the answer to the problem, and if ↵ = 1 then we take the

series
P1

n=1

1/ns. Below we assume that ↵ 2 (0, 1).

Define the function h(x) = x↵, for x > 0. The function h(x) is strictly increasing and for every integer

n � 1 we have

|h(n+ 1)� h(n)|  1 · sup
t2[n,n+1]

|h0(t)| = sup
t2[n,n+1]

↵t↵�1  1 · 1 = 1.

Let a
n

, for n � 1, be a sequence of numbers and define S(N) =
P

N

n=1

a
n

. Inductively we define the

sequence of numbers a
n

2 {+1,�1}, for n � 1, such that the corresponding S(n) satisfies |S(N)�N↵| =
|S(N)� h(N)|  1. Let a

1

= +1 which satisfies the inequality for N + 1. Assume that a
i

are defined for

1  i  n, and let

a
n+1

=

8
<

:
+1 if S(n)  h(n+ 1)

�1 if S(n) > h(n+ 1).

When a
n+1

= +1 we have

h(n)� 1  S(n)  h(n+ 1)

=) h(n)  S(n+ 1)  h(n+ 1) + 1

=) h(n)� h(n+ 1)  S(n+ 1)� h(n+ 1)  +1

=) |S(n+ 1)� h(n+ 1)|  +1

When a
n+1

= �1 we have

h(n+ 1) < S(n)  h(n) + 1

=) h(n+ 1)� 1  S(n+ 1)  h(n)

=) �1  S(n+ 1)� h(n+ 1)  h(n)� h(n+ 1)

=) |S(n+ 1)� h(n+ 1)|  +1

For the sequence a
i

, for i � 1 defined above we have

lim
N!1

���
logS(N)

logN
� ↵

��� = lim
N!1

���
logS(N)

logN
� logN↵

logN

��� = lim
N!1

���
logS(N)� logN↵

logN

���  lim
N!1

1

logN
= 0.

That is,

lim
N!1

logS(N)

logN
= ↵. (1)
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The Dirichlet series we introduce is

A(s) =
1X

n=1

a
n

n�s.

Let us denote the partial sums of this series with the notation

A
N

(s) =
NX

n=1

a
n

n�s.

It is clear that for A(s) we have �
0

= 1. We want to show that �
1

= ↵. We will prove this in two

steps.

Step 1: ↵  �
1

.

Let s be a complex number with Re s > �
1

. Then, the series

A(s) =
1X

n=1

a
n

n�1

is convergent. In particular, there is M > 0 such that for all N � 1 we have |A
N

(s)|  M . We have

|S(N)| =
���

NX

n=1

a
n

· n�s · ns

���

=
���

NX

n=1

(A(n)�A(n� 1)) · ns

���

=
���

NX

n=1

A(n)ns �
NX

n=1

A(n� 1) · ns

���

=
���

NX

n=1

A(n)ns �
N�1X

n=0

A(n) · (n+ 1)s
���

=
���
N�1X

n=1

A(n)(ns � (n+ 1)s) +A(N)N s

���

 M
N�1X

n=1

((n+ 1)s � ns) +MN s

 2MN s

The above equation implies that

log |S(N)|  log 2 + logM + s logN.

Hence,

↵ = lim
N!1

log |S(n)|
logN

 s.

Taking infimum over all s with Re s � �
1

we conclude from the above inequality that ↵  �
1

.
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Step 2: �
1

 ↵. Let � be an arbitrary positive real number and let s = ↵+ �. We aim to prove that

A(s) is a convergent series.

Using the partial summation with f(n) = a
n

and F (x) = x�s we have

NX

n=1

a
n

n�s = S(N)N�s +

Z
N

1

S(x)sx�s�1 dx

By the relation

lim
n!1

log |S(n)|
log n

= ↵

there is n
0

> 1 such that for all n � n
0

we have

log |S(n)|  (↵+ �/2) log n.

In other words,

|S(n)|  n↵+�/2

Using this inequality we see that

lim
N!1

S(N)N�s  lim
N!1

N↵+�/2N�(↵+�)  lim
N!1

N��/2 = 0.

Similarly,

s

Z
N

n0

S(x)x�s�1 dx  s

Z
N

n0

x↵+�/2x�↵���1dx  s

Z
N

n0

x�1��/2 dx < 1.

The above bounds prove that A(s) is a convergent series. In particular, �
1

 ↵ + �. As � was chosen

arbitrarily, we may conclude that �
1

 ↵.
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