Analytic Number Theory

Solutions

Solution to Problem 1. We have

$$
\frac{d(n)}{n^{1 / 4}}=\prod_{i} \frac{1+e_{i}}{p^{e_{i} / 4}}
$$

where $n=\prod p_{i}^{e_{i}}$.
By the proof of Theorem 2.9

$$
\frac{1+e_{i}}{p^{e_{i} / 4}} \leq 1 \text { for } p_{i} \geq 16
$$

and

$$
\frac{1+e_{i}}{p^{e_{i} / 4}} \leq \frac{4}{\log 2} \text { for } p_{i} \leq 16
$$

Thus, for all $n \in \mathbb{N}$,

$$
d(n) \leq \frac{4^{6}}{(\log 2)^{6}} \cdot n^{1 / 4}
$$

We need to find n_{0} such that for all $n \geq n_{0}$ we have

$$
\frac{4^{6}}{(\log 2)^{6}}<n^{1 / 4}
$$

which is guaranteed by $n>1.9 \times 10^{18} \geq(4 / \log 2)^{24}$.
For primes $p \leq 16$ we may have a better bound on $\left(1+e_{i}\right) / p_{i}^{e_{i} / 4}$. One needs to find the maximum values of the functions $g_{p}(x)=\frac{1+x}{p^{x / 4}}$ for $p=2,3,5,7,11,13$. By taking derivative we see that $g_{p}^{\prime}\left(\frac{4}{\log p}-1\right)=0$, while for $x>\frac{4}{\log p}-1, g_{p}(x)$ is decreasing. By some elementary calculations we can obtain a better bound.

Solution to Problem 2. We use the partial summation formula with $f(n)=d(n)$ and $F(x)=1 / x$. By Theorem 2.10 we have $S(X)=\sum_{1 \leq n \leq X} d(n)=X \log X+O(X)$. Hence,

$$
\begin{aligned}
\sum_{1 \leq n \leq X} \frac{d(n)}{n} & =\sum_{1 \leq n \leq X} f(n) F(n) \\
& =(X \log X+O(X)) \frac{1}{X}-\int_{1}^{X}(x \log x+O(x)) \frac{-1}{x^{2}} d x \\
& =\log X+O(1)+\int_{1}^{X} \frac{1}{x} \log x d x+O\left(\int_{1}^{X} \frac{1}{x} d x\right) \\
& =\log X+O(1)+\frac{1}{2} \log ^{2} X+O(\log X) \\
& =\frac{1}{2} \log ^{2} X+O(\log X)+O(1)
\end{aligned}
$$

In the above equation we have used the integration by parts with $f(t)=\log t$ and $g(t)=\log t$. This implies the desired asymptotic relation.

Solution to Problem 3. Using the partial summation with $f(n)=1, F(x)=1 / x$ we have

$$
s(X)=\sum_{1 \leq n \leq X} 1=[X]
$$

and hence

$$
\begin{aligned}
\sum_{1 \leq n \leq X} \frac{1}{n} & =\sum_{1 \leq n \leq X} f(n) F(n) \\
& =[X] \frac{1}{X}-\int_{1}^{X}[x] \frac{-1}{x^{2}} d x \\
& =\frac{[X]-X+X}{X}+\int_{1}^{X} \frac{[x]-x}{x^{2}} d x+\int_{1}^{X} \frac{1}{x} d x \\
& =1+O\left(\frac{1}{X}\right)+\int_{1}^{X} \frac{[x]-x}{x^{2}} d x+\log X \\
& =\gamma+O\left(\frac{1}{X}\right)+\log X
\end{aligned}
$$

Solution to Problem 4. We use Lemma 2.11 with the increasing function $f(x)=x$ to obtain

$$
\int_{1}^{[x]} x d x \leq \sum_{n \leq x} n \leq[x]+\int_{1}^{[x]} x d x
$$

which reduces to

$$
\frac{[x]^{2}}{2} \leq \sum_{n \leq x} n \leq[x]+\frac{[x]^{2}}{2}
$$

Hence,

$$
\begin{aligned}
\sum_{n \leq x} n-\frac{1}{2} x^{2} & \leq[x]+\frac{[x]^{2}-x^{2}}{2}+\frac{x^{2}}{2}-\frac{1}{2} x^{2} \\
& =[x]+\frac{([x]-x)([x]+x)}{2} \\
& \leq O(x) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{n \leq x} n-\frac{1}{2} x^{2} & \geq \frac{[x]^{2}-x^{2}}{2}+\frac{x^{2}}{2}-\frac{1}{2} x^{2} \\
& =\frac{([x]-x)([x]+x)}{2} \\
& \geq-x
\end{aligned}
$$

The above two inequalities imply that $\sum_{n \leq x} n=x^{2} / 2+O(x)$.

Moving to the next stage, we have

$$
\begin{aligned}
& \sum_{n \leq x} \sigma(n)=\sum_{n \leq x} \sum_{v \mid n} v \\
&=\sum_{u \leq x} \sum_{v \leq x / u} v \\
&=\sum_{u \leq x}\left(\frac{(x / u)^{2}}{2}+O(x / u)\right) \\
&=\frac{1}{2} x^{2} \sum_{u \leq x} u^{-2}+x\left(\sum_{u \leq x} 1 / u\right) \\
&=\frac{1}{2} x^{2} \sum_{u \leq x} u^{-2}+O(x(1+\log x)) . \\
& \sum_{u>x} \frac{1}{u^{2}} \leq \sum_{u>x} \frac{1}{u^{2}-u}=\sum_{u>x}\left(\frac{1}{u-1}-\frac{1}{u}\right) \leq \frac{1}{[x]} \leq \frac{2}{x} .
\end{aligned}
$$

Also, recall that $\sum_{n=1}^{\infty} 1 / n^{2}=\pi^{2} / 6$. Combining these with the above equation we obtain

$$
\begin{aligned}
\sum_{n \leq x} \sigma(n)-\frac{\pi^{2}}{12} x^{2} & =\frac{1}{2} x^{2} \sum_{u \leq x} u^{-2}+O(x(1+\log x))-\frac{\pi^{2}}{12} x^{2} \\
& =\frac{1}{2} x^{2}\left(\frac{\pi^{2}}{6}-\sum_{u>x} \frac{1}{u^{2}}\right)+O(x(1+\log x))-\frac{\pi^{2}}{12} x^{2} \\
& =\frac{1}{2} x^{2}\left(-\sum_{u>x} \frac{1}{u^{2}}\right)+O(x(1+\log x)) \\
& =O(x)+O(x(1+\log x))=O(x(1+\log x))
\end{aligned}
$$

Solution to Problem 5.

$$
\begin{aligned}
\sum_{n \leq X} d(n) & =\sum_{n \leq X} \sum_{v \mid n} 1 \\
& =\sum_{u, v \geq 1, u v \leq X} 1 \\
& =\sum_{u \leq \sqrt{X}} \sum_{v \leq X / u} 1+\sum_{v \leq \sqrt{X}} \sum_{u \leq X / v} 1-\sum_{u \leq \sqrt{X}} \sum_{v \leq \sqrt{X}} 1
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\sum_{u \leq \sqrt{X}} \sum_{v \leq X / u} 1 & =\sum_{u \leq \sqrt{X}}\left[\frac{X}{u}\right] \\
& =X \sum_{u \leq \sqrt{X}} \frac{1}{u}+O(\sqrt{X}) \\
& =X(\log \sqrt{X}+\gamma+O(1 / \sqrt{X}))+O(\sqrt{X}) \\
& =\frac{1}{2} X \log X+X \gamma+O(\sqrt{X})
\end{aligned}
$$

The second sum is equal to the above one. For the third sum we have

$$
\begin{aligned}
\sum_{u \leq \sqrt{X}} \sum_{v \leq \sqrt{X}} 1 & =\sum_{u \leq \sqrt{X}}[\sqrt{X}] \\
& =\sqrt{X} \sqrt{X}+O(\sqrt{X})=X+O(\sqrt{X})
\end{aligned}
$$

Combining the above equations we obtain the desired asymptotic formula.
Solution to Problem 6. Let

$$
S_{0}=\left\{\operatorname{Re}(s): s \in \mathbb{C}, \sum_{n=1}^{\infty}\left|f(n) n^{-s}\right| \text { is convergent }\right\}
$$

and

$$
S_{1}=\left\{\operatorname{Re}(s): s \in \mathbb{C}, \sum_{n=1}^{\infty} f(n) n^{-s} \text { is convergent }\right\}
$$

By the definitions $\inf S_{0}=\sigma_{0}$ and $\inf S_{1}=\sigma_{1}$.
Let s be a complex number such that $\sum_{n=1}^{\infty} f(n) n^{-s}$ is convergent. Then, by the convergence criteria the terms of the series must tend to zero. In particular, there is n_{0} such that for all $n \geq n_{0}$ we have $\left|f(n) n^{-s}\right| \leq 1$.

Assume s^{\prime} be a complex number with $\operatorname{Re}\left(s^{\prime}\right)>\operatorname{Re}(s)+1$. Define $\eta=s^{\prime}-s$ so that $\operatorname{Re}(\eta)>1$. Then,

$$
\sum_{n=n_{0}}^{\infty}\left|\frac{f(n)}{n^{s^{\prime}}}\right|=\sum_{n=n_{0}}^{\infty}\left|\frac{f(n)}{n^{s}}\right|\left|\frac{1}{n^{\eta}}\right| \leq \sum_{n=n_{0}}^{\infty} \frac{1}{n^{\operatorname{Re}(\eta)}}<\infty
$$

This implies that s^{\prime} belongs to S_{0}, that is, $\sigma_{0} \leq \operatorname{Re}(s)+1$.
By the above argument, $\sigma_{0}-1-\delta \notin S_{1}$, for every $\delta>0$. That is, S_{1} is bounded from below. Moreover, S_{1} contains S_{0} and is not empty. These imply that S_{1} has an infimum. Finally, we have

$$
\sigma_{0}=\inf _{S_{1}} \sigma_{0} \leq \inf _{S_{1}} \operatorname{Re}(s)+1 \leq \sigma_{1}+1
$$

This finishes the proof of the statement.
The other inequality follows from $S_{0} \subseteq S_{1}$, that is, $\inf S_{1} \leq \inf S_{0}$.

Solution to Problem 7. The sum $F(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ is convergent at $s=s_{0}$.
Consider the arithmetic function $g(n)=f(n) n^{-s_{0}}$ ans denote its partial sum with

$$
S(x)=\sum_{n \leq x} f(n) n^{-s_{0}}
$$

Fix a complex constant s with $\operatorname{Re} s>\operatorname{Re} s_{0}$. Let $G(x)=x^{s_{0}-s}$, for $x>0$. Using the partial summation formula we have

$$
\begin{aligned}
\sum_{n=1}^{N} f(n) n^{-s} & =\sum_{n=1}^{N} f(n) n^{-s_{0}} \cdot n^{s_{0}-s} \\
& =\left(\sum_{n=1}^{N} f(n) n^{-s_{0}}\right) \cdot N^{s_{0}-s}-\int_{x=1}^{N} S(x)\left(s_{0}-s\right) x^{s_{0}-s} \frac{1}{x} d x \\
& =\left(\sum_{n=1}^{N} f(n) n^{-s_{0}}\right) \cdot N^{s_{0}-s}-\left(s_{0}-s\right) \int_{x=1}^{N} S(x) x^{s_{0}-s-1} d x
\end{aligned}
$$

Now we take limit at N tends to ∞. We have

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f(n) n^{-s}=F(s)
$$

and on the other hand

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} f(n) n^{-s_{0}}=F\left(s_{0}\right)
$$

is finite by the assumption, which implies that

$$
\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} f(n) n^{-s_{0}}\right) \cdot N^{s_{0}-s}=0
$$

Thus,

$$
F(s)=\left(s_{0}-s\right) \int_{x=1}^{\infty} S(x) x^{s_{0}-s-1} d x
$$

The infinite integral is finite since $|S(X)|$ is uniformly bounded from above, and $\operatorname{Re}(s)>\operatorname{Re} s_{0}$.
Let $s \in \mathbb{C}$ with $\operatorname{Re} s>\sigma_{1}$. By the definition of σ_{1}, there is s_{0} with $\sigma_{1}<\operatorname{Re} s_{0}<\operatorname{Re}(s)$ such that $\sum_{n=1}^{\infty} f(n) n^{-s_{0}}$ is convergent. In particular the partial sums of this series are uniformly bounded from above in absolute value, and tend to $F\left(s_{0}\right)$ Also note that $\operatorname{Re} s_{0}-s-1<1$. Therefore, by the above formula

$$
\int_{x=1}^{\infty} S(x) x^{\operatorname{Re}\left(s_{0}-s-1\right)} d x<\infty
$$

is well-defined.
Solution to Problem 8. Let $s=\sigma+i t$. We know that

$$
\sum_{n=1}^{\infty} \frac{\left|(-1)^{n-1}\right|}{\left|n^{s}\right|}=\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}}
$$

is convergent if and only if $\sigma>1$. This implies that $\sigma_{0}=1$.
On the other hand, for $\sigma \leq 0$, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\sigma}}$ is divergent. However, for every $\sigma>0$, by the alternating series test the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{\sigma}}$ is convergent. (need to see that the sequence $1 / n^{\sigma}$ is monotone decreasing!). This implies that $\sigma_{1}=0$.

We need to build an example of a Dirichlet series such that $\sigma_{1}=\alpha$ and $\sigma_{0}=1$.
If $\alpha=0$ then the above example provides the answer to the problem, and if $\alpha=1$ then we take the series $\sum_{n=1}^{\infty} 1 / n^{s}$. Below we assume that $\alpha \in(0,1)$.

Define the function $h(x)=x^{\alpha}$, for $x>0$. The function $h(x)$ is strictly increasing and for every integer $n \geq 1$ we have

$$
|h(n+1)-h(n)| \leq 1 \cdot \sup _{t \in[n, n+1]}\left|h^{\prime}(t)\right|=\sup _{t \in[n, n+1]} \alpha t^{\alpha-1} \leq 1 \cdot 1=1 .
$$

Let a_{n}, for $n \geq 1$, be a sequence of numbers and define $S(N)=\sum_{n=1}^{N} a_{n}$. Inductively we define the sequence of numbers $a_{n} \in\{+1,-1\}$, for $n \geq 1$, such that the corresponding $S(n)$ satisfies $\left|S(N)-N^{\alpha}\right|=$ $|S(N)-h(N)| \leq 1$. Let $a_{1}=+1$ which satisfies the inequality for $N+1$. Assume that a_{i} are defined for $1 \leq i \leq n$, and let

$$
a_{n+1}= \begin{cases}+1 & \text { if } S(n) \leq h(n+1) \\ -1 & \text { if } S(n)>h(n+1)\end{cases}
$$

When $a_{n+1}=+1$ we have

$$
\begin{aligned}
& h(n)-1 \leq S(n) \leq h(n+1) \\
& \Longrightarrow \quad h(n) \leq S(n+1) \leq h(n+1)+1 \\
& \Longrightarrow \quad h(n)-h(n+1) \leq S(n+1)-h(n+1) \leq+1 \\
& \Longrightarrow \quad|S(n+1)-h(n+1)| \leq+1
\end{aligned}
$$

When $a_{n+1}=-1$ we have

$$
\begin{aligned}
& h(n+1)<S(n) \leq h(n)+1 \\
& \Longrightarrow \quad h(n+1)-1 \leq S(n+1) \leq h(n) \\
& \Longrightarrow \quad-1 \leq S(n+1)-h(n+1) \leq h(n)-h(n+1) \\
& \Longrightarrow \quad|S(n+1)-h(n+1)| \leq+1
\end{aligned}
$$

For the sequence a_{i}, for $i \geq 1$ defined above we have

$$
\lim _{N \rightarrow \infty}\left|\frac{\log S(N)}{\log N}-\alpha\right|=\lim _{N \rightarrow \infty}\left|\frac{\log S(N)}{\log N}-\frac{\log N^{\alpha}}{\log N}\right|=\lim _{N \rightarrow \infty}\left|\frac{\log S(N)-\log N^{\alpha}}{\log N}\right| \leq \lim _{N \rightarrow \infty} \frac{1}{\log N}=0
$$

That is,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\log S(N)}{\log N}=\alpha \tag{1}
\end{equation*}
$$

The Dirichlet series we introduce is

$$
A(s)=\sum_{n=1}^{\infty} a_{n} n^{-s} .
$$

Let us denote the partial sums of this series with the notation

$$
A_{N}(s)=\sum_{n=1}^{N} a_{n} n^{-s}
$$

It is clear that for $A(s)$ we have $\sigma_{0}=1$. We want to show that $\sigma_{1}=\alpha$. We will prove this in two steps.

Step 1: $\alpha \leq \sigma_{1}$.
Let s be a complex number with $\operatorname{Re} s>\sigma_{1}$. Then, the series

$$
A(s)=\sum_{n=1}^{\infty} a_{n} n^{-1}
$$

is convergent. In particular, there is $M>0$ such that for all $N \geq 1$ we have $\left|A_{N}(s)\right| \leq M$. We have

$$
\begin{aligned}
|S(N)| & =\left|\sum_{n=1}^{N} a_{n} \cdot n^{-s} \cdot n^{s}\right| \\
& =\left|\sum_{n=1}^{N}(A(n)-A(n-1)) \cdot n^{s}\right| \\
& =\left|\sum_{n=1}^{N} A(n) n^{s}-\sum_{n=1}^{N} A(n-1) \cdot n^{s}\right| \\
& =\left|\sum_{n=1}^{N} A(n) n^{s}-\sum_{n=0}^{N-1} A(n) \cdot(n+1)^{s}\right| \\
& =\left|\sum_{n=1}^{N-1} A(n)\left(n^{s}-(n+1)^{s}\right)+A(N) N^{s}\right| \\
& \leq M \sum_{n=1}^{N-1}\left((n+1)^{s}-n^{s}\right)+M N^{s} \\
& \leq 2 M N^{s}
\end{aligned}
$$

The above equation implies that

$$
\log |S(N)| \leq \log 2+\log M+s \log N
$$

Hence,

$$
\alpha=\lim _{N \rightarrow \infty} \frac{\log |S(n)|}{\log N} \leq s
$$

Taking infimum over all s with $\operatorname{Re} s \geq \sigma_{1}$ we conclude from the above inequality that $\alpha \leq \sigma_{1}$.

Step 2: $\sigma_{1} \leq \alpha$. Let δ be an arbitrary positive real number and let $s=\alpha+\sigma$. We aim to prove that $A(s)$ is a convergent series.

Using the partial summation with $f(n)=a_{n}$ and $F(x)=x^{-s}$ we have

$$
\sum_{n=1}^{N} a_{n} n^{-s}=S(N) N^{-s}+\int_{1}^{N} S(x) s x^{-s-1} d x
$$

By the relation

$$
\lim _{n \rightarrow \infty} \frac{\log |S(n)|}{\log n}=\alpha
$$

there is $n_{0}>1$ such that for all $n \geq n_{0}$ we have

$$
\log |S(n)| \leq(\alpha+\delta / 2) \log n
$$

In other words,

$$
|S(n)| \leq n^{\alpha+\delta / 2}
$$

Using this inequality we see that

$$
\lim _{N \rightarrow \infty} S(N) N^{-s} \leq \lim _{N \rightarrow \infty} N^{\alpha+\delta / 2} N^{-(\alpha+\delta)} \leq \lim _{N \rightarrow \infty} N^{-\delta / 2}=0
$$

Similarly,

$$
s \int_{n_{0}}^{N} S(x) x^{-s-1} d x \leq s \int_{n_{0}}^{N} x^{\alpha+\delta / 2} x^{-\alpha-\delta-1} d x \leq s \int_{n_{0}}^{N} x^{-1-\delta / 2} d x<\infty .
$$

The above bounds prove that $A(s)$ is a convergent series. In particular, $\sigma_{1} \leq \alpha+\delta$. As δ was chosen arbitrarily, we may conclude that $\sigma_{1} \leq \alpha$.

