Problem 1. Let $|t| \geq 2$ and let

$$
\alpha \in\left[\frac{1}{100}, \frac{99}{100}\right], \quad \beta=\max \left\{\frac{1}{2}, 1-\frac{1}{\log |t|}\right\} .
$$

Show that $x^{-\beta}=O\left(x^{-1}\right)$ for $1 \leq x \leq|t|$.
With $M=[|t|]$, prove that

$$
\sum_{n=1}^{M} n^{-\sigma}=O\left(|t|^{1-\alpha}\right), \text { for } \sigma \geq \alpha
$$

and that

$$
\sum_{n=1}^{M} n^{-\sigma}=O(\log |t|), \text { for } \sigma \geq \beta
$$

Prove also that

$$
\sum_{n=M}^{\infty} n^{-\sigma-1}=O\left(|t|^{-\alpha}\right) \text { for } \sigma \geq \alpha
$$

and that

$$
\sum_{n=M}^{\infty} n^{-\sigma-1}=O\left(|t|^{-1}\right) \text { for } \sigma \geq \beta
$$

By adapting the proof of Theorem 4.3, deduce that

$$
|\zeta(\sigma+i t)|=O\left(|t|^{1-\alpha}\right) \text { for } \sigma \geq \alpha
$$

and that

$$
|\zeta(\sigma+i t)|=O(\log |t|) \text { for } \sigma \geq \beta
$$

Problem 2. Let $|t| \geq 3$ and let

$$
\sigma \geq \max \left\{\frac{3}{4}, 1-\frac{1}{2 \log |t|}\right\}
$$

Write down Cauchy's integral formula for $\zeta^{\prime}(s)$ in terms of $\zeta(w)$, using a circular path Γ of radius $(4 \log |t|)^{-1}$ about s. Show that $\zeta(w)=O(\log |t|)$ uniformly for w on Γ, and deduce that

$$
\left|\zeta^{\prime}(\sigma+i t)\right|=O\left(\log ^{2}|t|\right)
$$

[You may assume that if $w=x+i y$ lies on Γ, then $|y| \geq 2$, and $x \geq 1 / 2$, and that $1-$ $(\log |y|)^{-1} \leq x \leq 2$.]

Problem 3. Let

$$
\theta(x)=\sum_{p \leq x} \log p
$$

where the sum is over all primes $p \leq x$. Show that

$$
\psi(x)=\theta(x)+O\left(x^{1 / 2} \log ^{2} x\right)
$$

Using partial summation with the arithmetic function

$$
f(n)= \begin{cases}\log n & \text { if } n \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

and the function $F(x)=(\log x)^{-1}$, show that

$$
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \frac{\theta(t)}{t \log ^{2} t} d t
$$

Now suppose that $E(x)$ is an increasing function of x with $E(x) \geq x^{1 / 2} \log ^{2} x$, and that $\psi(x)=x+O(E(x))$. Deduce that $\theta(x)=x+O(E(x))$ and hence that $\pi(x)=\operatorname{Li}(x)+O(E(x))$.

Problem 4. Suppose that $\psi_{1}(x)=\frac{1}{2} x^{2}+O(F(x))$, for some non-negative and increasing function $F(x) \leq x^{2}$. By taking $\alpha=1-\delta$ and $\beta=1+\delta$ in the proof of Theorem 5.3, and choosing δ appropriately, show that

$$
\psi(x)=x+O\left(F(2 x)^{1 / 2}\right)
$$

Problem 5. Recall from Problem Sheet 3 that

$$
\frac{\zeta^{4}(s)}{\zeta(2 s)}=\sum_{n=1}^{\infty} d^{2}(n) n^{-s}
$$

Show that if $x>0$ and $c>1$ then

$$
\sum_{n \leq x} d^{2}(n)(x-n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{\zeta^{4}(s)}{\zeta(2 s)} \frac{x^{s+1}}{s(s+1)} d s
$$

Move the line of integration to $\sigma=7 / 8$ and use the estimate in Question 1 to prove that there is a cubic polynomial $P(X)$ such that

$$
\sum_{n \leq x} d^{2}(n)(x-n)=x^{2} P(\log x)+O\left(x^{15 / 8}\right)
$$

Find the leading coefficient of P.

Problem 6. Apply the technique of the proof of Theorem 5.3 to deduce that

$$
\sum_{n \leq x} d^{2}(n) \sim \pi^{-2} x \log ^{3} x, \text { as } x \rightarrow \infty
$$

