Problem 1. Show that if $\delta>0$ then the integral in Problem Sheet 2, Question 7, is uniformly convergent for $\operatorname{Re} s \geq \delta+\operatorname{Re} s_{0}$, and deduce that $F(s)$ is holomorphic in the region $\operatorname{Re} s>\sigma_{1}$.

Problem 2. Find Euler product representations for $\sum_{n=1}^{\infty} f(n) n^{-s}$ when
(a) $f(n)=(-1)^{n-1}$;
(b) $f(n)=(-1)^{(n-1) / 2}$ for n odd and $f(n)=0$ for n even.

In each case you will have to verify that f is a multiplicative function.
Problem 3. By using Euler products, or otherwise, show that

$$
\begin{aligned}
\zeta^{2}(s) & =\sum_{n=1}^{\infty} d(n) n^{-s} \\
\frac{\zeta^{3}(s)}{\zeta(2 s)} & =\sum_{n=1}^{\infty} d\left(n^{2}\right) n^{-s} \\
\frac{\zeta^{4}(s)}{\zeta(2 s)} & =\sum_{n=1}^{\infty} d^{2}(n) n^{-s}
\end{aligned}
$$

Problem 4. Express in terms of the Riemann Zeta-function the Dirichlet series
(a) $\sum_{n=1}^{\infty} \sigma(n) n^{-s}$;
(b) $\sum_{n=1}^{\infty} \phi(n) n^{-s}$;
(c) $\sum_{n=1}^{\infty}|\mu(n)| n^{-s}$.

Problem 5. Show that for every $s \in \mathbb{C}$ with $\operatorname{Re}(s)=\sigma>1$ we have

$$
\frac{1}{|\zeta(s)|} \leq \frac{\zeta(\sigma)}{\zeta(2 \sigma)}
$$

Problem 6. Approximate $\sum_{n \leq X} \log n$, for $X \geq 1$, and use the relation $\Lambda * u(n)=\log n$ (see Lemma 3.6) to deduce that

$$
\sum_{m \leq X} \Lambda(m)\left[\frac{X}{m}\right]=X \log X+O(X)
$$

and hence that

$$
\sum_{m \leq X} \frac{\Lambda(m)}{m} \geq \log X+O(1)
$$

If $\delta \in(0,1)$ show that $[\theta] \geq(1-\delta) \theta$ for $\theta \geq \delta^{-1}$, and conclude that

$$
\sum_{m \leq \delta X} \frac{\Lambda(m)}{m} \leq(1-\delta)^{-1} \log X+O(1)
$$

Deduce that

$$
\sum_{m \leq Y} \frac{\Lambda(m)}{m} \sim \log Y
$$

as $Y \rightarrow \infty$.
Problem 7. Show that if $\sigma>1$ then

$$
3 \frac{\zeta^{\prime}(\sigma)}{\zeta(\sigma)}+4 \operatorname{Re} \frac{\zeta^{\prime}(\sigma+i t)}{\zeta(\sigma+i t)}+\operatorname{Re} \frac{\zeta^{\prime}(\sigma+2 i t)}{\zeta(\sigma+2 i t)} \leq 0
$$

Problem 8. The inequality $3+4 \cos \theta+\cos (2 \theta) \geq 0$ plays a key role in the proof of Theorem 4.5. Suppose one has instead an inequality

$$
A_{0}+A_{1} \cos \theta+\cdots+A_{N} \cos (N \theta) \geq 0
$$

(with real coefficients A_{k}) valid for all $\theta \in \mathbb{R}$. If one aims to show that $\zeta(1+i t) \neq 0$ for all $t \in \mathbb{R}$ (without necessarily obtaining an estimate for $1 / \zeta(1+i t)$), what properties will the coefficients A_{k} need to have in order for the proof to work?

Find a new inequality with $N=2$ which could be used to prove such a result.

