Analytic Number Theory

Problem sheet 2
Problem 1. By following the proof of Theorem 2.9 with $\epsilon=1 / 4$, show that for every $n \geq 1.9 \times 10^{18}, d(n)<\sqrt{n}$. Can you reduce this bound? (For each "small" prime p investigate the maximal value of $(1+e) / p^{\epsilon e}$.)

Problem 2. Use partial summation (Sheet 1, Q8), along with Theorem 2.10, to show that as $x \rightarrow \infty$,

$$
\sum_{n \leq x} \frac{d(n)}{n} \sim \frac{1}{2}(\log x)^{2}
$$

Problem 3. Taking $f(n)=1$ for all n in the partial summation formula, show that for any real number $x \geq 1$ we have

$$
\sum_{n \leq x} \frac{1}{n}=\log x+\gamma+O(1 / x)
$$

where,

$$
\gamma=1-\int_{1}^{\infty} \frac{t-[t]}{t^{2}} d t
$$

Problem 4. For any real number $x \geq 1$ show that

$$
\sum_{n \leq x} n=\frac{1}{2} x^{2}+O(x)
$$

and that

$$
\sum_{n \leq x} \sigma(n)=\sum_{u \leq x} \sum_{v \leq x / u} v=\frac{1}{2} x^{2} \sum_{u \leq x} u^{-2}+O(x(1+\log x))
$$

Show that

$$
\sum_{u>x} \frac{1}{u^{2}} \leq \frac{2}{x}
$$

and conclude that

$$
\sum_{n \leq x} \sigma(n)=\frac{\pi^{2}}{12} x^{2}+O(x(1+\log x)
$$

Problem 5. Using question 3 above, show that for any real $X \geq 1$,

$$
\begin{aligned}
\sum_{n \leq X} d(n) & =\sum_{u, v \geq 1, u v \leq X} 1 \\
& =\sum_{u \leq \sqrt{X}} \sum_{v \leq X / u} 1+\sum_{v \leq \sqrt{X}} \sum_{u \leq X / v} 1-\sum_{u \leq \sqrt{X}} \sum_{v \leq \sqrt{X}} 1 \\
& =X(\log X+2 \gamma-1)+O(\sqrt{X}) .
\end{aligned}
$$

Problem 6. Suppose that $F(s)=\sum_{1}^{\infty} f(n) n^{-s}$ is a Dirichlet series for which the abscissa of absolute convergence σ_{0} is defined. Write

$$
\sigma_{1}=\inf \left\{\operatorname{Re}(s): s \in \mathbb{C}, \sum_{n=1}^{\infty} f(n) n^{-s} \text { converges }\right\}
$$

Show that σ_{1} exists, and we have $\sigma_{0}-1 \leq \sigma_{1} \leq \sigma_{0}$.
Problem 7. Under the assumption of Question 6, suppose that $F(s)=\sum_{n=1}^{\infty} f(n) n^{-s}$ converges at $s=s_{0}$. Apply the partial summation formula to show that $F(s)$ converges whenever $\operatorname{Re}(s)>\operatorname{Re}\left(s_{0}\right)$, and that

$$
F(s)=\left(s-s_{0}\right) \int_{1}^{\infty} S(x) x^{s_{0}-s-1} d x
$$

where

$$
S(x)=\sum_{n \leq x} f(n) n^{-s_{0}}
$$

Deduce that $F(s)$ converges for any s with $\operatorname{Re}(s)>\sigma_{1}$.
Problem 8. Show that $\sigma_{1}=0$ and $\sigma_{0}=1$ for the series $\sum_{n=1}^{\infty}(-1)^{n-1} n^{-s}$. For each $\alpha \in[0,1]$ construct an example in which $\sigma_{1}=\alpha$ and $\sigma_{0}=1$.

