Problem 1. Define the integral

$$
I_{k}(x)=\int_{2}^{x} \frac{d t}{(\log t)^{k+1}}
$$

Show that, for every integer $k \geq 1$ there is a constant C_{k} such that

$$
L i(x)=C_{k}+\sum_{n=0}^{k-1} n!\frac{x}{(\log x)^{n+1}}+k!I_{k}(x)
$$

By splitting the range of integration at $t=\sqrt{x}$, show that

$$
I_{1}(x) \leq \frac{4 x}{(\log x)^{2}}+\frac{\sqrt{x}}{(\log 2)^{2}}
$$

Then deduce that

$$
L i(x) \sim \frac{x}{\log x}
$$

Problem 2. Suppose that $f_{1}(n), f_{2}(n), f_{3}(n)$, and $f_{4}(n)$ are positive functions for which $f_{1}(n) \sim f_{2}(n)$ and $f_{3}(n) \sim f_{4}(n)$ as $n \rightarrow \infty$. Show that

$$
f_{1}(n) / f_{3}(n) \sim f_{2}(n) / f_{4}(n), \text { and } f_{1}(n)+f_{3}(n) \sim f_{2}(n)+f_{4}(n) .
$$

By taking $f_{1}(n)=n^{2}+n, f_{2}(n)=n^{2}+2 n, f_{3}(n)=n^{2}, f_{4}(n)=n^{2}$, show that one need not have $f_{1}(n)-f_{3}(n) \sim f_{2}(n)-f_{4}(n)$.

Problem 3. Let $f_{1}(n)$ and $f_{2}(n)$ be positive functions such that $f_{1}(n) \sim f_{2}(n)$ as $n \rightarrow \infty$. Define

$$
F_{i}(N)=\sum_{n \leq N} f_{i}(n) \quad(i=1,2)
$$

and suppose that $F_{2}(N) \rightarrow \infty$ as $N \rightarrow \infty$. Show that $F_{1}(N) \sim F_{2}(N)$.
Problem 4. Suppose that f and g are differentiable, with $g(x)>0$ for $x>0$.
a) Suppose that $g^{\prime}(x)>0$ for $x>0$. Is it true that $f(x)=O(g(x))$ for $x>0$ implies $f^{\prime}(x)=O\left(g^{\prime}(x)\right)$ for $x>0$?
b) Is it true that $f(x)=O(g(x))$ for $x>0$ implies

$$
\int_{2}^{X} f(t) d t=O\left(\int_{2}^{X} g(t) d t\right)
$$

for $X>2$.
Problem 5. Let p_{n} denote the n-th prime number. Assuming the prime number theorem show that there is no n_{0} such that the sequence of differences $p_{n+1}-p_{n}$ is strictly monotonic for $n \geq n_{0}$.

Problem 6. Let p_{n} denote the n-th prime number. Using the prime number theorem show that $p_{n} / \log p_{n} \sim n$. Then, by taking logarithms, deduce that $\log p_{n} \sim \log n$, and hence $p_{n} \sim n \log n$.

Problem 7. Show that for every $n \in \mathbb{N}$ we have $d(n) \leq d\left(2^{n}-1\right)$, where d denotes the divisor arithmetic function.

Problem 8. Let $f(n)$ be an arithmetic function, and let $F:[1, X] \rightarrow \mathbb{C}$ be a function with a continuous derivative. For every $t \in[1, X]$ define $S(t)=\sum_{1 \leq n \leq t} f(n)$. Show that

$$
\sum_{1 \leq n \leq X} f(n) F(n)=S(X) F(X)-\int_{1}^{X} S(t) F^{\prime}(t) d t
$$

[The process in the above problem is known as "summing by parts" or "partial summation". It is useful for estimating $\sum f(n) F(n)$ given information about $\sum f(n)$.]

