Solution to Question 1.

Part a) The functions μ and u are multiplicative, and by a Theorem in the lectures, the convolution of any two multiplicative functions is multiplicative.

Let $f(n)=\mu * u(n)$. For an integer $e \geq 1$ and a prime p, we have

$$
\begin{gathered}
f\left(p^{e}\right)=\sum_{a b=p^{e}} \mu(a) u(b)=\sum_{a \mid p^{e}} \mu(a) \\
=\mu(1)+\mu(p)+\ldots+\mu\left(p^{e}\right)=1+(-1)+0+\ldots+0=0 .
\end{gathered}
$$

seen, 3
Since f is multiplicativ, $f\left(p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}\right)=f\left(p_{1}^{e_{1}}\right) \cdots f\left(p_{k}^{e_{k}}\right)=0$ if at least one of the exponents is greater than or equal to 1 .
seen, 1
For $n=1$ we have $\mu * u(1)=\mu(1) \cdot u(1)=1 \cdot 1=1$.
seen, 1
Part b) The equation in part a is equivalent to $\phi * u=u_{1}$, where $u_{1}(n)=n$, for $n \in \mathbb{N}$. Since, $\mu * u=u * \mu$ is the identity element of the convolution, we have $\phi=\phi *(u * \mu)=(\phi * u) * \mu=u_{1} * \mu$.
seen, 4
Since the functions u_{1} and μ are multiplicative, by the theorem mentioned in part a, ϕ must be multiplicative.

Part c) For every prime p and integer $e \geq 1$ we have

$$
\begin{gathered}
\phi\left(p^{e}\right)=\#\left\{n: n \leq p^{e},\left(n, p^{e}\right)=1\right\}=\#\left\{n: n \leq p^{e}, p \nmid n\right\} \\
=\#\left\{n: n \leq p^{e}\right\}-\#\left\{n: n \leq p^{e}, p \mid n\right\}=p^{e}-p^{e-1}=p^{e}(1-1 / p) .
\end{gathered}
$$

seen, 5
Since ϕ is multiplicative, for distinct primes $p_{1}, p_{2}, \ldots, p_{k}$,

$$
\phi\left(p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}\right)=\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}}\right) \ldots \phi\left(p_{k}^{e_{k}}\right)=\prod_{i=1}^{k} p_{i}^{e_{i}} \prod_{i=1}^{k}\left(1-\frac{1}{p}\right)
$$

By the prime factorization theorem, $\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

Solution to Question 2.

Part a) By the Euler's product formula, for every $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$,

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}=\prod_{p}\left(\frac{1}{1-p^{-s}}\right)
$$

where the product is over all primes p.
Part b) Let $f(n)=2^{\nu(n)}, n \in \mathbb{N}$. If we show that f is multiplicative, then by a theorem in the lectures, for every s with $\operatorname{Re}(s)$ greater that the AAC of the Dirichlet series $\sum_{n=1}^{\infty} f(n) n^{-s}$ we have

$$
\sum_{n=1}^{\infty} f(n) n^{-s}=\prod_{p}\left(\sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}\right)
$$

where the product is over all primes p.
The function f is multiplicative, if $f(m n)=f(m) f(n)$, for all positive integers m and n with $(m, n)=1$. First assume that one of m and n, say m, is equal to 1 and $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$, where p_{i} 's are distinct primes and all $e_{i} \geq 1$. Then, $f(m n)=f(n)=2^{k}$, while $f(m) f(n)=2^{0} \cdot 2^{k}=2^{k}$.
unseen, 2
Now let $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$ and $n=q_{1}^{t_{1}} q_{2}^{t_{2}} \ldots q_{k^{\prime}}^{t_{k}^{\prime}}$ with all $p_{1}, p_{2}, \ldots, p_{k}, q_{1}, q_{2}, \ldots, q_{k^{\prime}}$ distinct primes, and $e_{1}, e_{2}, \ldots, e_{k}, t_{1}, t_{2}, \ldots, t_{k^{\prime}}$ positive integers. Then, $f(m n)=$ $2^{k+k^{\prime}}=2^{k} \cdot 2^{k^{\prime}}=f(m) f(n)$.

We have $f(1)=1 \leq 1$ and for $n \geq 1$ with prime factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}$ we have $f(n)=2^{k} \leq p_{1} p_{2} \ldots p_{k} \leq p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}=n$. Then,

$$
\sum_{n=1}^{\infty}\left|f(n) \cdot n^{-s}\right| \leq \sum_{n=1}^{\infty} n^{-\operatorname{Re}(s)+1}
$$

which is convergent for $\operatorname{Re}(s)>2$. In particular, AAC of the Dirichlet series for f is ≤ 2.

For each prime p and positive integer e we have

$$
\begin{aligned}
& \sum_{e=0}^{\infty} f\left(p^{e}\right) p^{-e s}=f(1) \cdot 1+f(p) \cdot p^{-s}+f\left(p^{2}\right) \cdot p^{-2 s}+\cdots= \\
& \quad 2^{0} \cdot 1+2^{1} \cdot p^{-s}+2^{1} \cdot p^{-2 s}+2^{1} \cdot p^{-3 s}+\cdots=-1+2\left(\frac{1}{1-p^{-s}}\right)=\frac{1+p^{-s}}{1-p^{-s}}
\end{aligned}
$$

On the other hand, by the Euler's product formula,

$$
\frac{\zeta^{2}(s)}{\zeta(2 s)}=\prod_{p}\left(\left(\frac{1}{1-p^{-s}}\right)^{2}\left(1-p^{-2 s}\right)\right)=\prod_{p}\left(\frac{1+p^{-s}}{1-p^{-s}}\right) .
$$

unseen, 3

Solution to Question 3

For $n \in \mathbb{N}$ let us define

$$
f(n)= \begin{cases}\frac{\log n}{n} & \text { if } n \text { is prime } \\ 0 & \text { otherwise }\end{cases}
$$

Define, $F(x)=1 / \log x$, for $x \in(0, \infty)$. The function $F(x)$ is C^{1} on $(1, \infty)$. By the partial summation formula, for every $X>1$ we have

$$
\sum_{n \leq X} f(n) F(n)=S(X) F(X)-\int_{1}^{X} S(t) F^{\prime}(t) d t
$$

where $S(X)=\sum_{n \leq X} f(n)$.
unseen, 5
We have

$$
\sum_{n \leq X} f(n) F(n)=\sum_{p \leq X} \frac{1}{p}
$$

and

$$
S(X)=\sum_{p \leq X} \frac{\log p}{p}=\log X+O(1)
$$

where both sums are over primes p. Moreover, $S(X)=0$ for $X<2$.
unseen, 2
By the formula,

$$
\sum_{p \leq X} \frac{1}{p}=(\log X+O(1)) \frac{1}{\log X}+\int_{2}^{X} \frac{S(t)}{t \log ^{2} t} d t=1+O\left(\frac{1}{\log X}\right)+\int_{2}^{X} \frac{S(t)}{t \log ^{2} t} d t
$$

Let $S(t)=\log t+R(t)$, where $R(t)=O(1)$. Then

$$
\int_{2}^{X} \frac{S(t)}{t \log ^{2} t} d t=\int_{2}^{X} \frac{1}{t \log t} d t+\int_{2}^{X} \frac{R(t)}{t \log ^{2} t} d t
$$

We have,

$$
\int_{2}^{X} \frac{1}{t \log t} d t=\log \log X-\log \log 2
$$

using the substitution $u=\log t$, and,
unseen, 3

$$
\int_{2}^{X} \frac{R(t)}{t \log ^{2} t} d t=\int_{2}^{\infty} \frac{R(t)}{t \log ^{2} t} d t-\int_{X}^{\infty} \frac{R(t)}{t \log ^{2} t} d t=C-O\left(\frac{1}{\log X}\right)
$$

for some constant C, using the same substitution.
unseen, 3
Combining the above formulas, we obtain

$$
\begin{aligned}
\sum_{p \leq X} \frac{1}{p}=1+O\left(\frac{1}{\log X}\right)+\log \log X & -\log \log 2+C-O\left(\frac{1}{\log X}\right) \\
& =\log \log X+(1-\log \log 2+C)+O\left(\frac{1}{\log X}\right)
\end{aligned}
$$

unseen, 2

Solution to Question 4

Part a) If $\operatorname{Re} s>1$, then by a theorem in the lecture, $1 / \zeta(s)=\sum_{n=1}^{\infty} \mu(n) n^{-s}$, where μ is the Möbius function, and $\left|\sum_{n=1}^{\infty} \mu(n) n^{-s}\right| \leq \sum_{n=1}^{\infty}\left|n^{-s}\right| \leq \sum_{n=1}^{\infty} n^{-\operatorname{Re}(s)}<\infty$, for $\operatorname{Re}(s)>1$. In particular, $\zeta(s) \neq 0$.
unseen, 3
If $\operatorname{Re}(s)<0$, then $\operatorname{Re}(1-s)>1$ and by the above argument, $\zeta(1-s) \neq 0$. Therefore, by the hypothesis, $\zeta(s)=0$ if and only if $\cos \left(\frac{\pi s}{2}\right) \Gamma(s)$ has a pole at s.
seen, 2
The function $\cos (\pi s / 2)$ is entire and has no poles, while $\Gamma(s)$ is meromorphic with simple poles at points $k=0,-1,-2,-3, \ldots$.

seen, 2

When $-k$ is odd, the pole of $\Gamma(s)$ at k is canceled by the zero of $\cos (\pi s / 2)$ at k. So, their product has no pole at k.
seen, 2
When, $-k$ is even, $\cos (\pi k / 2)= \pm 1$ and $\Gamma(s)$ has a pole at k. Thus, their product has a pole at k.
seen, 2
Part b) The function $f(s)=\overline{\zeta(\bar{s})}$ is meromorohic on \mathbb{C}. Since for every real $s \geq 1$, $\zeta(s)$ is real, we have $f(s)=\zeta(s)$ on $(1, \infty)$. By the identity theorem, we must have $f(s)=\zeta(s)$ on \mathbb{C}.

The relation $\zeta(\bar{s})=\overline{\zeta(s)}$ shows that ρ is a zero of $\zeta(s)$ if and only if $\bar{\rho}$ is a zero of $\zeta(s)$.

Also, for $\rho \in \mathbb{C}$ with $0<\operatorname{Re} \rho<1, \cos (\pi \rho / 2) \neq 0$ and $\Gamma(\rho) \neq 0$. Hence, by the functional equation in part a), for ρ with $0<\operatorname{Re} \rho<1, \zeta(\rho)=0$ if and only if $\zeta(1-\rho)=0$.

Solution to Question 5

Part a) We have

$$
\begin{aligned}
s \int_{1}^{\infty} \frac{\Psi(x)}{x^{s+1}} d x & =s \sum_{i=1}^{\infty} \int_{i}^{i+1} \frac{\Psi(x)}{x^{s+1}} d x=s \sum_{i=1}^{\infty} \int_{i}^{i+1} \frac{\Psi(i)}{x^{s+1}} d x \\
& =-\sum_{i=1}^{\infty} \Psi(i)\left((i+1)^{-s}-i^{-s}\right) \\
& =-1\left(\Psi(1)\left(2^{-s}-1^{-s}\right)+\Psi(2)\left(3^{-s}-2^{-s}\right)+\Psi(3)\left(4^{-s}-3^{-s}\right)+\ldots\right) \\
& =\Psi(1) \cdot 1^{-s}+(\Psi(2)-\Psi(1)) \cdot 2^{-s}+(\Psi(3)-\Psi(2)) \cdot 3^{-s}+\ldots \\
& =\sum_{n=1}^{\infty} \Lambda(n) \cdot n^{-s} .
\end{aligned}
$$

Part b) By a theorem in the lectures, $\zeta(s)$ has a simple pole of order 1 at 1 with residue equal to 1 . Hence, we have a convergent Laurent series,

$$
\zeta(s)=\frac{1}{s-1}+a_{0}+a_{1}(s-1)+a_{2}(s-1)^{3}+\ldots
$$

seen, 1
This implies that

$$
\zeta^{\prime}(s)=\frac{-1}{(s-1)^{2}}+a_{1}+2 a_{2}(s-1)+3 a_{3}(s-1)^{2}+\ldots
$$

This implies that

$$
\lim _{s \rightarrow 1} \frac{\zeta^{\prime}(s)}{\zeta(s)}=-1
$$

Part c)

By the definition of the limsup, given $\epsilon>0$, there is $N(\epsilon)>0$ such that for $x \geq N(\epsilon), \Psi(x) \leq x(\delta+\epsilon)$. Then, for real s we have

$$
\begin{aligned}
\frac{-\zeta^{\prime}(s)}{\zeta(s)}=s \int_{1}^{N(\epsilon)} \frac{\Psi(x)}{x^{s+1}} d x+s \int_{N(\epsilon)}^{\infty} \frac{\Psi(x)}{x^{s+1}} d x \leq & s C(\epsilon)-s(\delta+\epsilon)\left[\frac{x^{s-1}}{-s+1}\right] \\
& =s C(\epsilon)+(\delta+\epsilon) \frac{s}{s-1} N(\epsilon)^{-s+1}
\end{aligned}
$$

unseen, 3
Multiplying both sides by $s-1$ and then taking limit we obtain $1 \leq \delta+\epsilon$. As ϵ was arbitrary, we conclude that $1 \leq \delta$.

Part d)

By the definition of the liminf, given $\epsilon>0$, there is $N^{\prime}(\epsilon)>0$ such that for $x \geq N^{\prime}(\epsilon), \Psi(x) \geq x(\gamma-\epsilon)$. Then, for real s we have

$$
\begin{aligned}
\frac{-\zeta^{\prime}(s)}{\zeta(s)}=s \int_{1}^{N(\epsilon)} & \frac{\Psi(x)}{x^{s+1}} d x+s \int_{N(\epsilon)}^{\infty} \frac{\Psi(x)}{x^{s+1}} d x \\
& \geq s C^{\prime}(\epsilon)+s(\gamma-\epsilon)\left[\frac{x^{s-1}}{-s+1}\right]=C^{\prime}(\epsilon)+(\gamma-\epsilon) \frac{s}{s-1} N(\epsilon)^{-s+1}
\end{aligned}
$$

unseen, 3
Multiplying both sides by $s-1$ and then taking limit we obtain $1 \leq \gamma-\epsilon$. As ϵ was arbitrary, we conclude that $1 \geq \gamma$.

Finally, if $\lim _{x \rightarrow \infty} \Psi(x) / x$ exists, we must have

$$
1 \leq \delta=\limsup _{x \rightarrow \infty} \frac{\Psi(x)}{x}=\lim _{x \rightarrow \infty} \frac{\Psi(x)}{x}=\liminf _{x \rightarrow \infty} \frac{\Psi(x)}{x}=\gamma \leq 1
$$

Hence, $\lim _{x \rightarrow \infty} \Psi(x) / x=1$.
unseen, 2

