Chapter 8

Appendix

8.1 Hints to exercises

In this appendix we provide hints to the exercises. Please note that these will be brief and do not suggest a suitable style of writing proofs in mathematics. The complete solutions to the difficult exercises are given. These have been indicated by [complete solution] at the beginning of the solution, and suggest a proper way of writing solutions.

Chapter 2

2.1: Let $\varphi_{1}(z)=r z+a$ and $\varphi_{2}(z)=s z+b$. Then, $\varphi_{1}: \mathbb{D} \rightarrow B(a, r)$ and $\varphi_{2}: \mathbb{D} \rightarrow B(b, s)$ are biholomorphisms. It follows that $\varphi_{2}^{-1} \circ f \circ \varphi_{1}: \mathbb{D} \rightarrow \mathbb{D}$ is defined and holomorphic, and maps 0 to 0 . By Lemma 2.1, we have $\left|\left(\varphi_{2}^{-1} \circ f \circ \varphi_{1}\right)^{\prime}(0)\right| \leq 1$. This implies $\left|f^{\prime}(a)\right| \leq s / r$.
2.2: We have seen that $\varphi_{a}(z)=(a-z) /(1-\bar{a} z)$ belongs to $\operatorname{Aut}(\mathbb{D})$. Recall that φ_{a} is the inverse of φ_{a}.
(i) Apply Lemma 2.1-(ii) to the map $\varphi_{f(a)}^{-1} \circ f \circ \varphi_{a}$, and explicitly calculate the derivatives of φ_{a} and $\varphi_{f(a)}$.
(ii) Apply Lemma 2.1-(i) to the map $\varphi_{f(a)}^{-1} \circ f \circ \varphi_{a}$ at $\varphi_{a}^{-1}(b)$.
2.3: The $\operatorname{map} \varphi(z)=\frac{\operatorname{Im} a}{\operatorname{Im} h(a)} z+\left(\operatorname{Re} a-\frac{\operatorname{Im} a}{\operatorname{Im} h(a)} \operatorname{Re} a\right)$ is an automorphism of \mathbb{H} that maps $h(a)$ to a. Let $\psi: \mathbb{D} \rightarrow \mathbb{H}$ be a biholomorphic map with $\psi(0)=a$. Then, apply Lemma 2.1(ii) to the map $\psi^{-1} \circ \varphi \circ h \circ \psi$. Note that $\left(\psi^{-1}\right)^{\prime}(a)=1 / \psi^{\prime}(0)$, so $\left|(\varphi \circ h)^{\prime}(a)\right| \leq 1$. You need to calculate $\varphi^{\prime}(h(a))$.
2.4: First note that it is enough to show that every point in \mathbb{D} can be mapped to 0 . Then compose such maps to obtain an automorphism that maps z to w.

Chapter 3

3.1: (i) Solve for A and B in $f(z)=A z+B$.
(ii) First note that it is enough to show that any three distinct points can be mapped to 0,1 , and ∞. Then, compose such maps and their inverses to get the desired map.
3.2: Apply the removable singularity theorem to the map $z \mapsto 1 / f(1 / z)$.
3.3: [Complete solution]
(i) Since Ω is an opens set, there is $r>0$ such that $B\left(z_{0}, r\right) \subset \Omega$. Then, f has a convergent power series expansion on $B\left(z_{0}, r\right)$, say

$$
f(z)=f\left(z_{0}\right)+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots
$$

As z_{0} is a zero of order k, we must have $a_{i}=0$ for all $1 \leq i \leq k-1$, and $a_{k} \neq 0$. Then,

$$
f(z)=a_{k}\left(z-z_{0}\right)^{k}+a_{k+1}\left(z-z_{0}\right)^{k+1}+\cdots=\left(z-z_{0}\right)^{k}\left(a_{k}+a_{k+1}\left(z-z_{0}\right)+\ldots\right) .
$$

The function $h(z)=a_{k}+a_{k+1}\left(z-z_{0}\right)+\ldots$ is holomorphic on $B\left(z_{0}, r\right)$, and in particular it is continuous. Then, for $\varepsilon=\left|a_{k}\right| / 2>0$ there is $\delta>0$ such that if $\left|z-z_{0}\right|<\delta$ then $\left|h(z)-h\left(z_{0}\right)\right|<\varepsilon$. Here we may assume that $\delta<r$, as otherwise we may take $\min \{\delta, r\}$. The inequality means that h maps $B\left(z_{0}, \delta\right)$ into $\left.B\left(a_{k},\left|a_{k}\right| / 2\right)\right)$. On the other hand, since $B\left(a_{k},\left|a_{k}\right| / 2\right)$ does not meet the line segment $-a_{k} r$, for $r \in[0, \infty)$, there is a holomorphic branch of the k-th-root function defined on this ball. That is, $\sqrt[k]{h(z)}$ is defined and holomorphic on $B\left(z_{0}, \delta\right)$.

We have

$$
f(z)=\left(z-z_{0}\right)^{k}\left(a_{k}+a_{k+1}\left(z-z_{0}\right)+\ldots\right)=\left(\left(z-z_{0}\right) \sqrt[k]{h(z)}\right)^{k}
$$

that is, $\psi(z)=\left(z-z_{0}\right) \sqrt[k]{h(z)}$.
(ii) For the map ψ obtained in part (i), we have $\psi\left(z_{0}\right)=0$, and by the product rule, $\psi^{\prime}\left(z_{0}\right) \neq 0$. By the inverse function theorem, ψ has an inverse defined on a neighborhood of $\phi\left(z_{0}\right)=0$. Let g be this inverse map that is defined on $B(0, r)$, for some $r>0$.

For every $w \in B\left(0, r^{k}\right)$, there are exactly k points $w_{1}, w_{2}, \ldots, w_{k}$ in $B(0, r)$ such that $w_{i}^{k}=w$. Then the points $z_{i}=g\left(w_{i}\right)$ provide k solutions for the equation $f(z)=w$. To see that there are at most k solutions, assume that $f(z)=w$ for some $w \in B\left(0, r^{k}\right)$. Then $\psi(z)^{k}=w$, which implies that $\psi(z)$ is a k-th root of w. Thus, z_{i} are the only solutions.
3.4: (i) Assume that f is not constant. Let U be an open set in Ω. We need to show that $f(U)$ is open. Fix an arbitrary $w_{0} \in f(U)$. There is $z_{0} \in U$ with $f\left(z_{0}\right)=w_{0}$. Since, f is not constant, the function $z \mapsto f(z)-w_{0}$ has a zero of some finite order $k \geq 1$ at z_{0}. By the previous exercise, $f(z)-w_{0}$ is locally k to 1 near z_{0}. That is, for every w near w_{0}, there is z near z_{0} such that $f(z)=w$. Since U is open, the points sufficiently close to z_{0}
are in U. This means that a neighborhood of w_{0} is contained in $f(U)$. As $w_{0} \in f(U)$ was arbitrary, we conclude that $f(U)$ is open.
(ii) Assume that f is not a constant map. As $f: \Omega \rightarrow \mathbb{C}$ is an open mapping, $f(\Omega)$ is an open set in \mathbb{C}. Fix an arbitrary $z \in \Omega$. As $f(\Omega)$ is open, there is $r>0$ such that $B(f(z), r) \subset f(\Omega)$. Now, choose $w^{\prime} \in B(f(z), r)$ with $\left|w^{\prime}\right|>|f(z)|$. Since $B(f(z), r) \subset f(\Omega)$, there is $z^{\prime} \in \Omega$ with $f\left(z^{\prime}\right)=w^{\prime}$. Hence, $\left|f\left(z^{\prime}\right)\right|>|f(z)|$.

By the above argument, for every $z \in \Omega$, there is $z^{\prime} \in \Omega$ such that $\left|f\left(z^{\prime}\right)\right|>|f(z)|$. This implies the maximum principle.
3.5: First show that the linear map $h(z)=a z+b$ and the inversion $h(z)=1 / z$ map lines and circles to lines and circles. Then show that any Mobius transformation may be written as composition of these maps.
3.6: First show that there are at most finite number of points $a_{1}, a_{2}, \ldots a_{d}$ in \mathbb{D} with $g\left(a_{i}\right)=0$.

Consider the function

$$
h(z)=\prod_{j=1}^{d} \frac{z-a_{j}}{1-\overline{a_{j}} z}
$$

and show that it maps \mathbb{D} into \mathbb{D} and maps $\partial \mathbb{D}$ to $\partial \mathbb{D}$.
Consider the rational function $\varphi(z)=g(z) / h(z)$. Show that there are no points in $\mathbb{D} \cup \partial \mathbb{D}$ that are mapped to 0 .

Show that φ maps $\partial \mathbb{D}$ to $\partial \mathbb{D}$. Conclude that for all $z \in \hat{\mathbb{C}}$ we have $\varphi(z)=1 / \overline{\varphi(1 / \bar{z})}$, where \bar{z} denotes the complex conjugate of z.

By the above two paragraphs, there are no points in $\hat{\mathbb{C}}$ which are mapped to 0 by φ. This implies that φ is a constant function, which must belong to $\partial \mathbb{D}$.

Chapter 4

4.1: You need to verify the three conditions for being a metric.

Property (i): This is obvious from the definition of the length of a curve. That is, the length of a curve is independent of the parametrization and the direction of the curve.

Property (ii): Since the length of any curve is non-negative, the infimum of a set of non-negative numbers is a non-negative number.

If $z=w$, then the constant curve from z to w has zero length with respect to ρ. Thus, $d_{\rho}(z, z)=0$.

Now assume that $z \neq w$ and let $r=|z-w|>0$. Since Ω is open there is $r_{1}>0$ such that $B\left(z, r_{1}\right) \subset \Omega$. Also, as the set of zero's of ρ is discrete, there is a positive
$\varepsilon<\min \left\{r, r_{1}\right\}$ such that ρ has at most one zero on $B(z, \varepsilon)$ (the only possible zero is z). Consider the compact set $A=\{\zeta \in \Omega|\varepsilon / 4 \leq|z-\zeta| \leq \varepsilon / 2\}$, which is contained in Ω. The function ρ is continuous and positive on A, and hence its minimum on A is strictly positive, say $m>0$.

Let $\gamma:[a, b] \rightarrow \Omega$ be a piece-wise C^{1} curve with $\gamma(a)=z$ and $\gamma(b)=w$. Then,

$$
\begin{aligned}
& \ell_{\rho}(\gamma)=\int_{[a, b]} \rho(\gamma(s))\left|\gamma^{\prime}(s)\right| d s \geq \int_{\{t \in[a, b] ; \gamma(t) \in A} \rho(\gamma(s))\left|\gamma^{\prime}(s)\right| d s \\
& \geq m \cdot \int_{\{t \in[a, b] ; \gamma(t) \in A}\left|\gamma^{\prime}(s)\right| d s \geq m \cdot \frac{\varepsilon}{4}
\end{aligned}
$$

As $m \varepsilon / 4$ does not depend on γ, by the definition of infimum, $d_{\rho}(z, w) \geq m \varepsilon / 4$. Hence, $d_{\rho}(z, w)>0$.

By the above paragraphs, $d_{\rho}(z, w)=0$ iff $z=w$.
Property (iii): Let η a piece-wise C^{1} curve connecting x to z, and ξ a piece-wise C^{1} curve connecting z to y. Then η followed by ξ is a piece-wise C^{1} curve connecting x to y. By definition,

$$
d_{\rho}(x, y) \leq \ell_{\rho}(\eta \cup \xi)=\ell_{\rho}(\eta)+\ell_{\rho}(\xi)
$$

Now, take infimum over $\Gamma_{x, z}$, and then over $\Gamma_{z, y}$ to conclude the triangle inequality.
4.2: First note that $\rho \geq 1$, which implies that $d_{\rho}(z, w) \geq|z-w|$. In particular, if z_{i} converges to z w.r.t d_{ρ}, then, $\left|z_{i}-z\right| \rightarrow 0$.

On the other hand, if z_{i} converges to z w.r.t Euclidean distance, then, there is $r<1$ such that $z_{i} \in B(0, r)$, for all i. Now, let M be the supremum of ρ on $B(0, r)$. M is a finite number. We have $d_{\rho}\left(z_{i}, z\right) \leq M\left|z_{i}-z\right|$. Hence, $d_{\rho}\left(z_{i}, z\right) \rightarrow 0$.
4.3: Let z_{i} be a Cauchy sequence in (\mathbb{D}, ρ). First show that there is $r<1$ such that for all $i \geq 1, z_{i} \in B(0, r)$. Then conclude that z_{i} is a Cauchy sequence w.r.t the Euclidean distance.
4.4: Use an isometry of the dist to map z to 0 . Then use that the Mobius transformations map circles to circles in Exercise 3.5.
4.5: Show that there is a one-to-one correspondence between $\Gamma_{z, w}$ and $\Gamma_{f(z), f(w)}$.
4.6: By definition,

$$
\left(F^{*} \rho\right)(w)=\rho(F(w)) \cdot\left|F^{\prime}(w)\right|=\frac{1}{1-\left|\frac{i-w}{i+w}\right|^{2}} \cdot \frac{2}{|i+w|^{2}}=\frac{2}{|i+w|^{2}-|i-w|^{2}}=\frac{1}{2|\operatorname{Im} w|}
$$

Chapter 5

5.1: Write the circle of radius r as $r e^{i \theta}$, and note that

$$
f\left(r e^{i \theta}\right)=(r+1 / r) \cos \theta+i(r-1 / r) \sin \theta
$$

and use the identity $\cos ^{2} \theta+\sin ^{2} \theta \equiv 1$.
5.2: From Example 5.6, replace \sin and \cos in terms of $e^{i z}$ in $\tan z=\sin z / \cos z$.
5.3: On can do this by composition of a number of elementary transformations. First apply the biholomorphism $g_{1}(z)=i \frac{1-w}{1+w}$ (see Equation 2.1) to Ω to obtain $\mathbb{H} \backslash[0,1 / 3] i$. Then apply $g_{2}(z)=-i \cdot z$ to get $B=\{w \in \mathbb{C} \mid \operatorname{Re} w>0\} \backslash(0,1 / 3)$. Next, apply $g_{3}(z)=z^{2}$, to obtain $\mathbb{C} \backslash(-\infty, 1 / 3)$, then apply $g_{4}(z)=z-1 / 3$ to obtain $\mathbb{C} \backslash(-\infty, 0)$, and then apply $g_{5}(z)=\sqrt{z}$ to obtain the right half plane.
5.4: If a family of maps \mathcal{F} is not uniformly bounded on compact sets, then there is a compact set $E \subset \Omega$ such that the family is not uniformly bounded on E. This means that for any $n \in \mathbb{N}$ there is $z_{n} \in E$ and $f_{n} \in \mathcal{F}$ such that $\left|f_{n}(z)\right| \geq n$. Since E is compact, $\left\{z_{n}\right\}$ has a sub-sequence, say n_{k}, converging to some $z \in E$. It follows that the sequence $\left\{f_{n_{k}}\right\}$ has no sub-sequence converging uniformly on compact subsets of Ω. That is because, if there is a sub-sequence of $\left\{f_{m_{k}}\right\}$ converging to some $g: \Omega \rightarrow \mathbb{C}$, then $g(z)=\lim f_{m_{k}}\left(z_{m_{k}}\right)=\infty$. This is a contradiction as g maps Ω to \mathbb{C}.
5.5: Properties (i) and (ii) are easy to see. For property (iii) introduce the function $h(r)=r /(1+r)$, for $r \geq 0$. Prove $h(a+b) \leq h(a)+h(b)$ for all a and b in $(0, \infty)$.
5.6: First show that the functions

$$
d_{i}^{\prime \prime}(f, g)=\frac{\sup _{E_{i}}|f(z)-g(z)|}{1+\sup _{E_{i}}|f(z)-g(z)|}
$$

satisfy the conditions for a metric on $C^{0}\left(E_{i}\right)$. Then prove that the sum of such metrics (multiplied by $1 / 2^{i}$ to make the sum convergent) is a metric on Ω, provided E_{i} form an exhaustion of Ω.
5.8: Use Proposition 5.10. That is, if $f_{n} \rightarrow f$ uniformly on compact subsets of Ω then $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets of Ω.
5.9: By Theorem 5.15 , it is enough to show that the family is uniformly bounded on compact sets. Let E be a compact subsets of \mathbb{D}. There is $r<1$ such that $E \subset B(0, r)$. Then, for all $z \in E$ we have

$$
|f(z)| \leq r+\sum_{n=2}^{\infty}\left|a_{n} z^{n}\right| \leq r+\sum_{i=2}^{\infty} n r^{n} \leq \sum_{i=1}^{\infty} n r^{n}=M_{r}<\infty
$$

This means that the family is uniformly bounded from above on E.
5.10: See proof of Theorem 5.15

Chapter 6

6.1: [complete solution] By Montel's theorem from the lecture notes (Theorem 5.15) it is enough to show that the family \mathcal{S} is uniformly bounded on compact subsets of \mathbb{D}. Let E be an arbitrary compact set in \mathbb{D}. There is $\delta<1$ such that $E \subset B(0, \delta)$. By the growth theorem, 6.9 , for every $z \in E$ we have

$$
|f(z)| \leq \frac{|z|}{(1-|z|)^{2}} \leq \frac{\delta}{(1-\delta)^{2}}<\infty
$$

As the upper bound only depends on E, we conclude that the family is uniformly bounded on E.
6.2: First show that $\left|f^{\prime}(0)\right| \leq 4 c$. Then apply Theorem 6.9 to an appropriately normalized map.
6.3: [complete solution] (i) For every $k \geq 2$, the set Λ_{k} is uniformly bounded in \mathbb{C}. If this is not true, there is a sequence of maps f_{n} in \mathcal{S} such that $f_{n}^{(k)}(0) \rightarrow \infty$. By Exercise 6.1, \mathcal{S} is a normal family and there must be a sub-sequence of f_{n} that converges uniformly on compact sets to some holomorphic maps $g: \mathbb{D} \rightarrow \mathbb{C}$. In particular, $g^{(k)}(0)$ is defined and finite. This contradicts the convergence of $f_{n}^{(k)}(0) \rightarrow g^{(k)}(0)$ guaranteed in Theorem 5.10.

By the above paragraph, for every $k \geq 2$, the set

$$
A_{k}=\left\{|w| \mid w \in \Lambda_{k}\right\}
$$

is bounded from above. This set is also non-empty as it contains 0 ; the k-th derivative of the identity map in \mathcal{S}. It follows that the above set has a supremum which is finite. Let r_{k} denote the supremum of the above set. Therefore,

$$
\Lambda_{k} \subseteq\left\{w \in \mathbb{C}| | w \mid \leq r_{k}\right\}
$$

Fix an arbitrary $k \geq 2$.
By the definition of supremum, either r_{k} belongs to A or there is a sequence of real numbers $a_{i} \in A_{k}$, for $i \geq 1$, such that $a_{i} \rightarrow r_{k}$. In the former case we conclude that there is $f \in S$ such that $\left|f^{(k)}(0)\right|=r_{k}$. In the latter case, let $f_{i} \in \mathcal{S}$ be such that $\left|f_{i}^{(k)}(0)\right|=a_{i}$. There is a sub-sequence of f_{i} that converges to some map g in \mathcal{S}. We must have $\left|g^{(k)}(0)\right|=r_{k}$. So, there is always an $f \in \mathcal{S}$ such that $\left|f^{(k)}(0)\right|=r_{k}$.

By the above paragraph there is a point on the circle $|w|=r_{k}$ that belongs to Λ_{k}. The operations of rotation and dilatation discussed in the lecture notes show that Λ_{k} is invariant under rotations about 0 and is invariant under multiplication by $r \in(0,1)$. We also showed earlier that 0 belongs to Λ_{k}. This proves that the above inclusion is equality.
(ii) By the Cauchy integral formula for the derivatives, for every $r \in(0,1)$ we have

$$
f^{(k)}(0)=\frac{k!}{2 \pi i} \int_{|z|=r} \frac{f(z)}{z^{k+1}} d z
$$

Then by the growth theorem, Theorem 6.9, we obtain

$$
\begin{aligned}
& \left|f^{(k)}(0)\right|=\frac{k!}{2 \pi}\left|\int_{|z|=r} \frac{f(z)}{z^{k+1}} d z\right| \leq \frac{k!}{2 \pi} \int_{|z|=r} \frac{|f(z)|}{r^{k+1}}|d z| \\
& \\
& \quad \leq \frac{k!}{2 \pi} \int_{0}^{2 \pi} \frac{r}{(1-r)^{2} r^{k+1}} r d \theta \leq \frac{k!r}{(1-r)^{2} r^{k}}
\end{aligned}
$$

The above bound holds for all $r \in(0,1)$. We may find the minimum of the function $\frac{k!r}{(1-r)^{2} r^{k}}$ on $(0,1)$, by differentiating the function. The minimum occurs at $r=1-1 / k$, and the minimum value is

$$
\frac{k!k^{2}}{(1-1 / k)^{k-1}} .
$$

The denominator of the above expression tends to the constant e as $k \rightarrow \infty$. Hence, the denominator is uniformly bounded away from 0 , independent of k.
6.5: (i) Let φ_{1} and φ_{2} be two such maps. Apply the Schwarz lemma, 2.1, to the maps $\varphi_{2}^{-1} \circ \varphi_{1}$ and $\varphi_{1}^{-1} \circ \varphi_{2}$.
(ii) The upper bound follows from the $1 / 4$-theorem, the lower bound follows from the Schwarz lemma.
6.6:[complete solution] Let $\gamma:[0,1] \rightarrow \mathbb{C}$ be a smooth simple closed curve. Then, γ bounds a convex region if the slope of the tangent to γ is increasing. This is equivalent to saying that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\arg \gamma^{\prime}(t)\right)>0, \forall t \in[0,1] \tag{8.1}
\end{equation*}
$$

For instance, for the curve $\gamma_{0}(t)=e^{2 \pi i t}$, for $t \in[0,1]$, we have $\gamma_{0}^{\prime}(t)=2 \pi i e^{2 \pi i t}$. Thus,

$$
\frac{\partial}{\partial t}\left(\arg \gamma_{0}^{\prime}(t)\right)=\frac{\partial}{\partial t}(\pi / 2+2 \pi t)=2 \pi>0
$$

So, for the inequality in Equation (8.1) to hold, it is enough to have

$$
\begin{equation*}
\left|\frac{\partial}{\partial t}\left(\arg \gamma^{\prime}(t)\right)-\frac{\partial}{\partial t}\left(\arg \gamma_{0}^{\prime}(t)\right)\right| \leq \pi \tag{8.2}
\end{equation*}
$$

Next we note that $\frac{\partial}{\partial t}\left(\arg \gamma^{\prime}(t)\right.$ is given in terms of γ^{\prime} and $\gamma^{\prime \prime}$. This implies that, there is $\delta>0$ such that if for all $t \in[0,1$, if we have

$$
\begin{equation*}
\left|\gamma_{0}^{\prime}(t)-\gamma^{\prime}(t)\right| \leq \delta, \quad\left|\gamma_{0}^{\prime \prime}(t)-\gamma^{\prime \prime}(t)\right| \leq \delta \tag{8.3}
\end{equation*}
$$

then Equation (8.2) holds. (In other words, if a closed curve γ, is close enough to γ_{0} in C^{0}, C^{1}, and C^{2} metrics, then it bounds a convex region containing 0.)

For an arbitrary $f \in \mathcal{S}$ and $r \in(0,1)$ let

$$
f_{r}(z)=\frac{1}{r} \cdot f(r \cdot z), \forall z \in \mathbb{D}
$$

We have, $f(B(0, r))=r \cdot f_{r}(\mathbb{D})$. In particular, $f(B(0, r))$ is a convex region, iff $f_{r}(\mathbb{D})$ is a convex region. We aim to show that for small enough r, independent of $f \in \mathcal{S}, f_{r}(\mathbb{D})$ is convex. As γ_{0} is the image of the circle $|z|=1$ under the identity map, by virtue of Equation 8.3, it is enough to show that for all $z \in \mathbb{D}$, we have

$$
\begin{equation*}
\left|f_{r}^{\prime}(z)-1\right| \leq \delta, \quad\left|f_{r}^{\prime \prime}(z)-0\right| \leq \delta \tag{8.4}
\end{equation*}
$$

However, $f_{r}^{\prime}(z)=f^{\prime}(r z)$, and $f_{r}^{\prime \prime}(z)=f^{\prime \prime}(r z) \cdot r$. It follows from the distortion theorems 6.7 and 6.6 , that for small enough r, independent of f, one may guarantee the above inequalities. This completes the proof.

Chapter 7

7.2: These may be reduced to the usual derivatives with respect to x and y using the formulas in Equation (7.5).
7.3: Define the map $h(z)=g^{-1} \circ f$ from \mathbb{C} to \mathbb{C}. Show that $\partial h / \partial \bar{z} \equiv 0$, that is, h is 1 -quasi-conformal. Then apply Corollary 7.9 to h to conclude that $h: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and one-to-one. As $h(0)=0$ and $h(1)=1$, by $3.15, h$ must be the identity map.
7.4: Use the definition of absolute continuity with $\varepsilon=1$ to obtain some δ. Then, $[a, b]$ is covered by at most $N=\lfloor|b-a| / \delta\rfloor+1$ number of intervals of length bounded by δ.
7.5: Assume that a sequence $f^{\circ n_{k}}$ converges uniformly on compact subsets of U. By the open mapping property of $f, V=f(U)$ is open, and one can show that the sequence of functions $f^{\circ n_{k}-1}$ converges uniformly on compact subsets of V. This shows that $R(\mathcal{F}(R)) \subseteq \mathcal{F}(R)$. The argument in the other direction is similar, and uses the $f^{-1}(U)$ is open.
7.6: [complete solution]
(i): Let us define the function $g(z)=R^{\circ n}(z)$. Let $\delta=\left|g^{\prime}\left(z_{0}\right)\right|<1$ and choose $\delta^{\prime} \in(\delta, 1)$. By the continuity of $z \mapsto g^{\prime}(z)$ there is $r>0$ such that for all $z \in \hat{\mathbb{C}}$ with $d\left(z, z_{0}\right)<r$ we have $\left|g^{\prime}(z)\right| \leq \delta^{\prime}$. Let $U=\left\{z \in \hat{\mathbb{C}}: d\left(z, z_{0}\right)<r\right\}$. Now, for $z \in U$ we have

$$
d\left(g(z), z_{0}\right)=d\left(g(z), g\left(z_{0}\right)\right) \leq \sup _{c \in U}\left|g^{\prime}(c)\right| \cdot d\left(z, z_{0}\right) \leq \delta^{\prime} r<r .
$$

This implies that g maps U into U. In particular, for $z \in U$ the iterates $g^{\circ n}(z)$, for $n \geq 1$, are all defined and belong to U.

For $z \in U$ we have

$$
d\left(g^{\circ k}(z), z_{0}\right)=d\left(g^{\circ k}(z), g^{\circ k}\left(z_{0}\right)\right) \leq \sup _{c \in U}\left|\left(g^{\circ k}\right)^{\prime}(c)\right| \cdot d\left(z, z_{0}\right) \leq\left(\delta^{\prime}\right)^{k} \cdot r
$$

Since $\delta^{\prime}<1,\left(\delta^{\prime}\right)^{k} \cdot r$ tends to zero as n tends to infinity. Hence, the iterates $g^{\circ k}$ converge uniformly on U to the constant map z_{0}. In particular, the iterates $g^{\circ k}=R^{\circ n k}$, for $k \geq 1$, converges uniformly on compact sets in U to the constant function z_{0}.
(ii): Let us in the contrary assume that there is an open neighborhood U of z_{0} and a sequence of iterates $R^{\circ k_{m}}$, for $m \geq 1$, which converges on compact subsets of U to some holomorphic map $g: U \rightarrow \hat{\mathbb{C}}$. Consider the integers k_{m} modulo n, and observe that there must be a sub-sequence of k_{m}, denoted by j_{m}, that are the same modulo n. That is, there are integers $t_{m} \in \mathbb{N}$, and an integer $r \geq 0$ such that $j_{m}=t_{m} n+r$. Then,

$$
\left(R^{\circ j_{m}}\right)^{\prime}\left(z_{0}\right)=\left(R^{\circ r} \circ\left(R^{\circ n}\right)^{\circ t_{m}}\right)^{\prime}\left(z_{0}\right)=\left(R^{\circ r}\right)^{\prime}\left(z_{0}\right) \cdot \delta^{t_{m}}
$$

As $\delta>1$, we conclude that $\left(R^{\circ j_{m}}\right)^{\prime}\left(z_{0}\right)$ tends to infinity. But, by Theorem 5.10 , we must have $g^{\prime}\left(z_{0}\right)=\lim _{m \rightarrow \infty}\left(R^{\circ j_{m}}\right)^{\prime}\left(z_{0}\right)=\infty$. This contradiction shows that there is no convergent sub-sequence on any neighborhood of z_{0}.
(iii): Let $g=R^{\circ q n}(z)$. We have $g\left(z_{0}\right)=z_{0}$ and $g^{\prime}\left(z_{0}\right)=1$. There is a neighborhood of z_{0} on which g has a convergent power series $g(z)=z_{0}+\left(z-z_{0}\right)+a_{d}\left(z-z_{0}\right)^{d}+\ldots$ with $a_{d} \neq 0$. A basic calculation shows that $g^{\circ k}(z)=z_{0}+\left(z-z_{0}\right)+k a_{d}\left(z-z_{0}\right)^{d}+\ldots$. This implies that the d-th derivatives $\left(g^{\circ k}\right)^{(d)}\left(z_{0}\right)$ tend to ∞. As in part (ii), this implies that $g^{\circ k}$ has no sub-sequence that converges uniformly on compact sets on a neighborhood of z_{0}.

Assume that there is a sub-sequence $R^{\circ k_{m}}$ that converges on some open set U contain$\operatorname{ing} z_{0}$. Let $k_{m}=(q n) t_{m}+r_{m}$ with integers t_{m} and $0 \leq r_{m} \leq q n-1$. There is a further sub-sequence of k_{m} such that r_{m} are equal for different values of m. Let $r=r_{m}$ be this constant. It follows that $R^{\circ(q n) t_{m+1}}=R^{\circ(q n-r)} \circ R^{\circ k_{m}}$ converges uniformly on compact subsets of U. This contradicts the above paragraph.

