
Chapter 3

Riemann sphere and rational maps

3.1 Riemann sphere

It is sometimes convenient, and fruitful, to work with holomorphic (or in general continu-

ous) functions on a compact space. However, we wish to still “keep” all of C in the space

we work on, but see it as a subset of a compact space. There are sequences in C that

have no sub-sequence converging to a point in C. The least one needs to do is to add the

limiting values of convergent sub-sequences to C. It turns out that one may achieve this

by adding a single point to C in a suitable fashion. We denote this point with the notation

∞. Below we discuss the construction in more details.

Let us introduce the notation Ĉ for the set C∪ {∞}, where ∞ is an element not in C.
The arithmetic on C may be extended, to some extent, by assuming that

• for all finite a ∈ C, ∞+ a = a+∞ = ∞.

• for all non-zero b ∈ C ∪ {∞}, b ·∞ = ∞ · b = ∞.

Remark 3.1. It is not possible to define ∞ + ∞ and 0 · ∞ without violating the laws of

arithmetic. But, by convention, for a ∈ C \ {0} we write a/0 = ∞, and for b ∈ C we write

b/∞ = 0.

We “attach” the point ∞ to C by requiring that every sequence zi ∈ C, for i ≥ 1, with

|zi| diverging to infinity converges to ∞. This is rather like adding the point +1 to the

set (0, 1). With this definition, it is easy to see that every sequence in Ĉ has a convergent

sub-sequence. We have also kept a copy of C in Ĉ.
There is a familiar model for the set C ∪ {∞} obtain from a process known as “stere-

ographic projection”. To see that, let

S = {(x1, x2, x3) ∈ R3 : x21 + x22 + x23 = 1}.

Let N = (0, 0, 1) ∈ S. We define a homeomorphism π : S → Ĉ as follows. Let π(N) = ∞,

and for every point (x1, x2, x3) ̸= N in S define

π(x1, x2, x3) =
x1 + ix2
1− x3

. (3.1)
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By the above formula,

|π(X)|2 = x21 + x22
(1− x3)2

=
1 + x3
1− x3

,

which implies that

x3 =
|π(X)|2 − 1

|π(X)|2 + 1
, x1 =

π(X) + π(X)

1 + |π(X)|2 , x2 =
π(X)− π(X)

i(1 + |π(X)|2) .

The above relations imply that π is one-to-one and onto.

The continuity of π at every point on S \{N} is evident from the formula. To see that

π is continuous at N , we observe that if X tends to N on S, then x3 tends to +1 from

below. This implies that |π(X)| tends to +∞, that is, π(X) tends to ∞ in Ĉ.
If we regard the plane (x1, x2, 0) in R3 as the complex plane x1 + ix2, there is a nice

geometric description of the map π, called stereographic projection. That is the points N ,

X, and π(X) lie on a straight line in R3. See Figure 3.1.

Figure 3.1: Presentation of the map π.

The set Ĉ, with the convergence of sequences described above, is known as the Riemann

sphere. In view of the above construction, as we know S as a symmetric space, Ĉ should

be also viewed as a symmetric space. To discuss this further, we need to give some basic

definitions.

Let Ω be an open set in C. Recall that f : Ω → C is called continuous at a point

z ∈ Ω, if for every ε > 0 there is δ > 0 such that for all z′ ∈ Ω with |z − z′| < δ we have

|f(z)− f(z′)| < ε. This is equivalent to saying that f is continuous at z if and only if for

every sequence zn, n ≥ 1, in Ω that converges to z, the sequence f(zn) converges to f(z).

We use the above idea to define the notion of continuity for maps f : Ĉ → Ĉ. That is,
f : Ĉ → Ĉ is called continuous at z ∈ Ĉ, if every sequence that converges to z is mapped

by f to a sequence that converges to f(z).
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When f maps ∞ to ∞, the continuity of f at ∞ is equivalent to the continuity of the

map z (→ 1/f(1/z) at 0. Similarly, when f(∞) = a ̸= ∞, the continuity of f at ∞ is

equivalent to the continuity of the map z (→ f(1/z) at 0. When f(a) = ∞ for some a ∈ C,
the continuity of f at a is equivalent to the continuity of the map z (→ 1/f(z) at a.

As usual, f : Ĉ → Ĉ is called continuous, if it is continuous at every point in Ĉ.

Definition 3.2. Let f : Ĉ → Ĉ be a continuous map and a ∈ Ĉ. Then,

(i) When a = ∞ and f(a) = ∞, we say that f is holomorphic at a if the map z (→
1/f(1/z) is holomorphic at 0.

(ii) If a = ∞ and f(a) ̸= ∞, then f is called holomorphic at a if the map z (→ f(1/z) is

holomorphic at 0.

(iii) If a ̸= ∞ but f(a) = ∞, then f is called holomorphic at a if the map z (→ 1/f(z) is

holomorphic at a.

Continuous and Holomorphic maps from C to Ĉ, from D to Ĉ, and vice versa, are

defined accordingly.

Example 3.3. You have already seen that every polynomial P (z) = anzn + an−1zn−1 +

· · ·+a0 is holomorphic from C to C. As z tends to ∞ in C, P (z) tends to ∞ in C. Hence,
we may extend P to a continuous map from Ĉ to Ĉ by defining P (∞) = ∞. To see

whether P is holomorphic at ∞ we look at

1

P (1/z)
=

zn

an + an−1z + · · ·+ a0zn
,

which is well-defined and holomorphic near 0. When n > 1, the complex derivative of the

above map at 0 is equal to 0. When n = 1, its derivative becomes 1/a1. Thus, P is a

holomorphic map of Ĉ.

Proposition 3.4. If f : Ĉ → C is a holomorphic map, then f is a constant map.

Proof. We break the proof into several steps.

Step1. There is z0 ∈ Ĉ such that for all z ∈ Ĉ we have |f(z)| ≤ |f(z0)|. That is, |f |
attains its maximum value at some point.

To prove the above statement, first we note that there is M > 0 such that for all z ∈ Ĉ,
we have |f(z)| ≤ M . If this is not the case, there are zn ∈ Ĉ, for n ≥ 1, with |f(zn)| ≥ n.

As Ĉ is a compact set, the sequence zn has a sub-sequence, say znk that converges to some
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point w ∈ Ĉ. By the continuity of f we must have f(w) = limk→+∞ f(znk) = ∞. This

contradicts with f : Ĉ → C.
The set V = {|f(z)| : z ∈ Ĉ} is a subset of R, and by the above paragraph, it is

bounded from above. In particular, V has a supremum, say s. For any n ≥ 1, since s

is the least upper bound, there is zn ∈ Ĉ such that |f(zn)| ≥ s − 1/n. The sequence

zn is contained in the compact set Ĉ. Thus, there is a sub-sequence znl , for l ≥ 1, that

converges to some point z0 in Ĉ. It follows from the continuity of |f(z)| that |f(z0)| = s.

Therefore, for all z ∈ Ĉ, |f(z)| ≤ |f(z0)|.

Step 2. If z0 ∈ C, then the map f : C → C is holomorphic and |f | attains its maximum

value at a point inside C. By the maximum principle, f must be constant on C. Then, by
the continuity of f : Ĉ → C, we conclude that f is constant on Ĉ.

Step 3. If z0 = ∞, then we look at the map h(z) = f(1/z). Buy definition, h : C → C is

holomorphic and |h| attains its maximum value at 0. Again, by the maximum principle, h

must be constant on C. Equivalently, f is constant on Ĉ\{0}. As in the above paragraph,

the continuity of f : Ĉ → C, implies that indeed f is constant on Ĉ.

Example 3.5. The exponential map z (→ ez is holomorphic from C to C. As z tends to

infinity along the positive real axis, ez tends to ∞ along the positive real axis. But as

z tends to ∞ along the negative real axis, ez tends to 0. Hence there is no continuous

extension of the exponential map from Ĉ to Ĉ.

Definition 3.6. Let Ω be an open set in C and f : Ω → C be a holomorphic map. We

say that f has a zero of order k ∈ N at z0 ∈ Ω, if f (i)(z0) = 0 for 0 ≤ i ≤ k − 1, and

f (k)(z0) ̸= 0. Similarly, we can say that f attains value w0 at z0 of order k, if z0 is a zero

of order k for the function z (→ f(z) − w0. Here, the series expansion of f at z0 has the

form f(z) = w0 + ak(z − z0)k + ak+1(z − z0)k+1 . . . , with ak ̸= 0.

Definition 3.7. Definition 3.6 may be extended to holomorphic maps f : Ĉ → Ĉ. That

is, we say that f attains ∞ at z0 ∈ C of order k, if z0 is a zero of order k for the map

z (→ 1/f(z). Then, near z0 we have

1/f(z) = ak(z − z0)
k + ak+1(z − z0)

k+1 + ak+2(z − z0)
k+2 + . . . .
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This implies that

f(z) =
1

ak(z − z0)k + ak+1(z − z0)k+1 + ak+2(z − z0)k+2 + . . .

=
1

zk(ak + ak+1(z − z0) + ak+2(z − z0)2 + . . . )

=
1

(z − z0)k
(b0 + b1(z − z0) + b2(z − z0)

2 + . . . )

=
b0

(z − z0)k
+

b1
(z − z0)k−1

+
b2

(z − z0)k−2
+ . . . .

Recall that z0 is also called a pole of order k for f .

Similarly, if f(∞) = ∞, we say that f attains ∞ at ∞ of order k, if the map z (→
1/f(1/z) has a zero of order k at 0

Proposition 3.8. Let g : Ĉ → Ĉ be a holomorphic map such that for every z ∈ C,
g(z) ∈ C. Then, g is a polynomial.

Proof. The map g has a convergent power series on all of C as

g(z) = a0 + a1z + a2z
2 + a3z

3 + . . . .

We consider two possibilities.

If g(∞) ̸= ∞, then g : Ĉ → C is holomorphic and by Proposition 3.4, g must be

constant on Ĉ. Therefore, g(z) ≡ a0 is a polynomial.

The other possibility is that g(∞) = ∞. To understand the behavior of g near ∞, we

consider the map h(w) = 1/g(1/w) near 0. We have h(0) = 0. Let n ≥ 1 be the order of

0 at 0 for the map h, that is, h(w) = anwn + an+1wn+1 + . . . near 0. This implies that

there is δ > 0 such that for |w| ≤ δ we have

|h(w)| ≥ |anwn|
2

.

In terms of g, this means that for |z| ≥ 1/δ we have |g(z)| ≤ 2|zn|/|an|. Then, by the

Cauchy integral formula for the derivatives, for every j ≥ n+ 1 and R > 0 we have

g(j)(0) =
j!

2πi

∫

∂B(0,R)

g(z)

zj+1
dz.

Then, for R > 1/δ,

|g(j)(0)| ≤ 2 · j!
2π|an|

∫

∂B(0,R)

|z|n

|zj+1| dz ≤ 2 · j!
2π|an|

· 2πR · 1

Rj+1−n
.

Now we let R → +∞, and conclude that for all j ≥ n + 1, g(j)(0) = 0. Therefore, for all

j ≥ n+ 1, aj = g(j)(0)/j! = 0, and thus, g is a polynomial of degree n.
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3.2 Rational functions

Example 3.9. If Q(z) = a0 + a1z + a2z2 + · · · + anzn is a polynomial, then Q attains

∞ of order n at ∞. The map 1/Q(z) : Ĉ → Ĉ is well-defined and holomorphic. At every

point z0 where Q(z0) ̸= 0, 1/Q(z) is well defined near z0. If z0 is a zero of order k for

Q(z), then 1/Q(z0) = ∞ and z0 is a pole of order k.

Definition 3.10. If P and Q are polynomials, the map z (→ P (z)/Q(z) is a well-defined

holomorphic map from Ĉ to Ĉ. Any such map is called a rational function.

Theorem 3.11. Let f : Ĉ → Ĉ be a holomorphic map. Then, there are polynomials P (z)

and Q(z) such that

f(z) =
P (z)

Q(z)
.

Before we present a proof of the above theorem, we recall a basic result from complex

analysis.

Proposition 3.12. Let Ω be a connected and open set in C and f : Ω → C be a holomor-

phic map. Assume that there is a sequence of distinct points zj in Ω converging to some

z ∈ Ω such that f takes the same value on the sequence zj. Then, f is constant on Ω.

In the above proposition, the connectivity of Ω is necessary and is imposed to avoid

trivial counter examples. For example, one may set Ω = D ∪ (D+ 5) and defined f as +1

on D and as −1 on D+5. It is also necessary to assume that the limiting point z belongs to

Ω. For instance, the map sin(1/z) is defined and holomorphic on Ω = {z ∈ C : Re z > 0}
and has a sequence of zeros at points 1/(2πn), but it is not identically equal to 0.

Proof. Without loss of generality we may assume that the value of f on the sequence zj is

0 (otherwise consider f − c). Since f is holomorphic at z, it has a convergent power series

for ζ in a neighborhood of z as

f(ζ) = a1(ζ − z) + a2(ζ − z)2 + a3(ζ − z)3 + . . . .

If f is not identically equal to 0, there the smallest integer n ≥ 1 with an ̸= 0. Then,

f(ζ) = (ζ − z)n−1 · h(ζ), for some holomorphic function h defined on a neighborhood U of

z with h(z) ̸= 0. But for large enough j, zj belongs to U and we have f(zj) = 0. This is

a contradiction that shows for all n ≥ 1, an = 0. In particular, f is identically 0 on U .

Let us define the set E ⊆ Ω as the set of points w in Ω such that for all n ≥ 1 we have

f (n)(w) = 0. By the above paragraph, E contains z and hence it is not empty. Also, the

argument shows that E is an open subset of Ω (see Theorem 1.4).
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If E = Ω then we are done and f is identically equal to 0. Otherwise, there must be

an integer n ≥ 1 and w ∈ Ω such that f (n)(w) ̸= 0. Let us define the sets

Fn = {w ∈ Ω : f (n)(w) ̸= 0}, for n ≥ 1.

By the continuity of the map z (→ f (n)(z) on Ω, each Fn is an open set. In particular, the

union F = ∪n≥1Fn is an open set. Now, Ω = E ∪ F , where E and F are non-empty and

open sets. This contradicts the connectivity of Ω.

By the above proposition, if holomorphic functions f and g defined on Ω are equal

on a sequence converging to some point in Ω, they must be equal. This follows from

considering the function f − g in the above proposition. In other words, a holomorphic

function is determined by its values on a sequence whose limit is in the domain of the

function. However, this does not mean that we know how to identify the values of the

function all over the domain.

Proof of Theorem 3.11. If the map f is identically equal to a constant c ̸= ∞ we choose

P ≡ c and Q ≡ 1. If the map f is identically equal to ∞ we choose, P ≡ 1 and Q ≡ 0.

Below we assume that f is not constant on Ĉ.
If f does not attain ∞ at any point on Ĉ, then f : Ĉ → C is holomorphic, and by

Proposition 3.4 it must be constant on Ĉ. So, if f is not constant, it must attain ∞ at

some points in Ĉ.
There are at most a finite number of points in C, denoted by a1, a2, . . . , an, where

f(ai) = ∞. That is because, if f attains ∞ at an infinite number of distinct points in C,
since Ĉ is a compact set, there will be a sub-sequence of those points converging to some

z0 in Ĉ. Then, we apply proposition 3.12 to the map 1/f(z) or 1/f(1/z) (depending on

the value of z0), and conclude that f is identically equal to ∞.

Each pole ai of Q has some finite order ki ≥ 1. Define

Q(z) = (z − a1)
k1(z − a2)

k2 . . . (z − an)
kn .

Consider the map g(z) = f(z)Q(z). Since f and Q are holomorphic functions from Ĉ to

Ĉ, g is holomorphic from Ĉ to Ĉ. The map g is holomorphic from Ĉ to Ĉ. Moreover, since

the order of zero of Q at ai is equal to the order of the pole of f at ai, g is finite at any

point in C. Thus, by Proposition 3.8, g is a polynomial in variable z. This finishes the

proof of the theorem.

The degree of a rational map f = P/Q, where P and Q have no common factors, is

defined as the maximum of the degrees of P and Q. There is an intuitive meaning of the
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degree of a rational map as in the case of polynomials. Recall that by the fundamental

theorem of algebra, for c ∈ C, the equation P (z) = c has deg(P ) solutions, counted with

the multiplicities given by the orders of the solutions. As the equation f(z) = c reduces

to cQ(z) − P (z) = 0, the number of solutions of f(z) = c counted with multiplicities is

given by deg(f).

Theorem 3.13. A holomorphic map f : Ĉ → Ĉ is an automorphism of Ĉ, iff there are

constants a, b, c, and d in C with ad− bc = 1 and

f(z) =
az + b

cz + d
. (3.2)

Proof. By Example 3.9, every map f of this form is holomorphic from Ĉ to Ĉ. Moreover,

one can verify that the map g(z) = (dz− b)/(−cz+ a) satisfies f ◦ g(z) = g ◦ f(z) = z, for

all z ∈ Ĉ. Hence, f is both on-to-one and onto from Ĉ to Ĉ. This proves one side of the

theorem.

On the other hand, if f is an automorphism of Ĉ, by Theorem 3.11, there are poly-

nomials P and Q such that f = P/Q. Let us assume that P and Q have no common

factors. Since f is one-to-one, every point has a single pre-image. Thus, by the paragraph

preceding the theorem, we must have max{deg(P ), deg(Q)} = 1. Then, there are complex

constants a, b, c, d such that P (z) = az + b and Q(z) = cz + d, where at least one of a

and c is non-zero.

Since P and Q have no common factors, we must have ad− bc ̸= 0. We may multiply

both P and Q by some constant to make ad− bc = 1.

Definition 3.14. Every map of the form in Equation (3.2), where a, b, c, and d are

constants in C with ad− bc = 1 is called a Möbius transformation. By Theorems 2.5 and

2.7, every automorphism of D and C is a Möbius transformation.

Theorem 3.15. Every automorphism of C is of the form az+ b for some constants a and

b in C with a ̸= 0.

Proof. Let f : C → C be an automorphism. We claim that when |z| → +∞, |f(z)| → +∞.

If this is not the case, there is an infinite sequence of distinct points zi with |zi| → +∞
but |f(zi)| are uniformly bounded. As f is one-to-one, the values f(zi) are distinct for

distinct values of i. There is a sub-sequence of f(zi) that converges to some point in C,
say w′. Since f : C → C is onto, there is z′ ∈ C with f(z′) = w′.

There is a holomorphic map g : C → C with f ◦ g(z) = g ◦ f(z) = z on C. We have

g(w′) = z′, and by the continuity of g, the points zi = g(f(zi)) must be close to z′. This

contradicts |zi| → +∞.
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We extend f to the map f : Ĉ → Ĉ by defining f(∞) = ∞. By the above paragraph,

f is continuous at ∞, and indeed holomorphic (see Exercise 3.2) from Ĉ to Ĉ. It follows

that f ∈ Aut(Ĉ), and by Theorem 3.13, it must be of the form (az+b)/(cz+d). However,

since f maps C to C, we must have c = 0. This finishes the proof of the theorem.

Definition 3.16. The automorphisms z (→ z + c, for c constant, are called translations,

and the automorphisms z (→ c ·z, for c constant, are called dilations. When c is real, these

are also automorphisms of H. When |c| = 1, the map z (→ c · z is called a rotation of C.

3.3 Exercises

Exercise 3.1. Prove that

(i) for every z1, z2, w1, and w2 in C with z1 ̸= z2 and w1 ̸= w2, there is f ∈ Aut(C)
with f(z1) = w1 and f(z2) = w2;

(ii) for all distinct points z1, z2, and z3 in Ĉ and all distinct points w1, w2, and w3 in

Ĉ, there is f ∈ Aut(Ĉ) with f(zi) = wi, i = 1, 2, 3.

Exercise 3.2. Let f : Ĉ → Ĉ be a map whose restriction to C is holomorphic, and has a

continuous extension to ∞. Show that f : Ĉ → Ĉ is holomorphic.

Exercise 3.3. Let f : Ω → C be a holomorphic map that has a zero of order k ≥ 1 at

some z0 ∈ Ω.

(i) Prove that there is δ > 0 and a holomorphic function ψ : B(z0, δ) → C such that

ψ(z0) = 0, ψ′(z0) ̸= 0, and f(z) = (ψ(z))k on B(z0, δ).

(ii) Conclude from part (i) that near 0 the map f is k-to-one, that is, every point near

0 has exactly k pre-images near z0.

Exercise 3.4. Let Ω be an open set in C and f : Ω → C be a holomorphic map.

(i) Using Exercise 3.3, prove that if f is not constant, it is an open map, that is, f maps

every open set in Ω to an open set in C.

(ii) Using part (i), prove the maximum principle, Theorem 1.6.

Exercise 3.5. Let f : Ĉ → Ĉ be a Möbius transformation. Prove that the image of every

straight line in C is either a straight line or a circle in C. Also, the image of every circle

in C is either a straight line or a circle in C.
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Exercise 3.6. Let g : Ĉ → Ĉ be a holomorphic map which maps D into D and maps

∂D to ∂D. Prove that there are points a1, a2, . . . , ad (not necessarily distinct) in D and

θ ∈ [0, 2π] such that

g(z) = e2πiθ
d∏

j=1

z − aj
1− ajz

.

The maps of the above form are called Blaschke products of degree d.
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