Chapter 1

Preliminaries from complex analysis

1.1 Holomorphic functions

In this section we recall the key concepts and results from complex analysis.

Let \mathbb{R} denote the set of real numbers, and \mathbb{C} denote the set of complex numbers. It is standard to write a point $z \in \mathbb{C}$ as z = x + iy, where x and y are real, and $i \cdot i = -1$. Here $x = \operatorname{Re} z$ is called the *real part* of z and $y = \operatorname{Im} z$ is called the *imaginary part* of z. With this correspondence $z \mapsto (x, y)$, \mathbb{C} is heomeomorphic to \mathbb{R}^2 .

Definition 1.1. Let Ω be an open set in \mathbb{C} and $f : \Omega \to \mathbb{C}$. Then f is called *differentiable* at a point $z \in \Omega$ if the limit

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$$

exists and is a finite complex number. This limit is denoted by f'(z). The map f is called *holomorphic (analytic)* on Ω , if f is differentiable at every point in Ω .

It easily follows that if $f: \Omega \to \mathbb{C}$ is differentiable at $z \in \Omega$, then it is continuous at z.

It is important to note that in Definition 1.1 h tends to 0 in the complex plane. (This is rather an abuse of the terminology "differentiable", as we shall see in a moment!) In particular, h may tend to 0 in any direction. Let us write the map f in the real and imaginary coordinates as f(x + iy) = u(x, y) + iv(x, y), where u(x, y) and v(x, y) are real valued functions on Ω . When h tends to 0 in the horizontal direction, then

$$f'(z) = \lim_{x \to 0} \frac{f(z+x) - f(z)}{x} = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial f}{\partial x}.$$
 (1.1)

On the other hand, if h tends to 0 in the vertical direction, that is, in the y direction, then

$$f'(z) = \lim_{y \to 0} \frac{f(z+iy) - f(z)}{iy} = -i\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = -i\frac{\partial f}{\partial y}$$
(1.2)

Then, if f'(z) exists, we must have

$$\frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y} \tag{1.3}$$

In terms of the coordinate functions u and v, we must have

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$
 (1.4)

The above equations are known as the *Cauchy-Riemann* equations. On the other hand, if u and v are real-valued functions on Ω that have continuous first partial derivatives satisfying Equation (1.4), then f(x + iy) = u(x, y) + iv(x, y) is holomorphic on Ω .

Theorem 1.2 (Cauchy-Goursat theorem-first version). Let Ω be an open set in \mathbb{C} that is bounded by a smooth simple closed curve, and let $f : \Omega \to \mathbb{C}$ be a holomorphic map. Then, for any piece-wise C^1 simple closed curve γ in Ω we have

$$\int_{\gamma} f(z) \, dz = 0.$$

There is an important corollary of the above theorem, that we state as a separate statement for future reference.

Theorem 1.3 (Cauchy Integral Formula-first version). Let Ω be an open set in \mathbb{C} that is bounded by a smooth simple closed curve, and let $f : \Omega \to \mathbb{C}$ be a holomorphic map. Then, for any C^1 simple closed curve γ in Ω and any point z_0 in the region bounded by γ we have

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

The condition Ω bounded by a smooth simple closed curve is not quite necessary in the above two theorem. Indeed, you may have only seen the above theorems when Ω is a disk or a rectangle. We shall see a more general form of these theorems later in this course, where a topological feature of the domain Ω comes into play.

Theorem 1.3 reveals a remarkable feature of holomorphic mappings. That is, if we know the values of a holomorphic function on a simple closed curve, then we know the values of the function in the region bounded by that curve, provided we *a priori* know that the function is holomorphic on the region bounded by the curve.

There is an analogous formula for the higher derivatives of holomorphic maps as well ¹. Under the assumption of Theorem 1.3, and every integer $n \ge 1$, the *n*-th derivative of *f* at z_0 is given by

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} \, dz.$$
(1.5)

¹Chauchy had proved Theorem 1.2 when the complex derivative f'(z) exists and is a continuous function of z. Then, Édouard Goursat proved that Theorem 1.2 can be proven assuming only that the complex derivative f'(z) exists everywhere in Ω . Then this implies Theorem 1.3 for these functions, and from that deduce these functions are in fact infinitely differentiable.

In Definition 1.1, we only assumed that the first derivative of f exists. It is remarkable that this seemingly weak condition leads to the existence of higher order derivatives. Indeed, an even stronger statement holds.

Theorem 1.4 (Taylor-series). Let $f : \Omega \to \mathbb{C}$ be a holomorphic function defined on an open set $\Omega \subseteq \mathbb{C}$. For every $z_0 \in \Omega$, the infinite series

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n,$$

is absolutely convergent for z close to z_0 , with the value of the series equal to f(z).

The above theorems are in direct contrast with the regularity properties we know for real maps on \mathbb{R} or on \mathbb{R}^n . That is, we have distinct classes of differentiable functions, C^1 functions, C^2 functions, C^{∞} functions, real analytic functions (C^{ω}) . For any k, it is possible to have a function that is C^k but not C^{k+1} (Find an example if you already don't know this). There are C^{∞} functions that are not real analytic. For example, the function defined as f(x) = 0 for $x \leq 0$ and $f(x) = e^{-1/x}$ for x > 0. But these scenarios don't exist for complex differentiable functions.

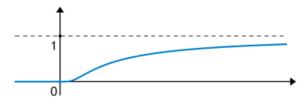


Figure 1.1: The graph of the function f.

Since a holomorphic function $f: \Omega \to \mathbb{C}$ is infinitely differentiable, higher order partial derivatives of u and v exist and are continuous. Differentiating Equations (1.4) with respect to x and y, and using $\partial_x \partial_y v = \partial_y \partial_x v$ and $\partial_x \partial_y u = \partial_y \partial_x u$, we conclude that the real functions $u: \Omega \to \mathbb{R}$ and $v: \Omega \to \mathbb{R}$ are harmonic, that is,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 and $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$

hold on Ω . We state this as a separate theorem for future reference.

Theorem 1.5 (Harmonic real and imaginary parts). Let f(x + iy) = u(x, y) + iv(x, y)be a holomorphic function defined on an open set Ω in \mathbb{C} . Then, u(x, y) and v(x, y) are harmonic functions on Ω . A pair of harmonic functions u and v defined on the same domain $\Omega \subseteq \mathbb{C}$ are called harmonic conjugates, if they satisfy the Cauchy-Riemann equation, in other words, the function f(x + iy) = u(x, y) + iv(x, y) is holomorphic.

Theorem 1.6 (maximum principle). If $f : \Omega \to \mathbb{C}$ is a non-constant holomorphic function defined on an open set Ω , then its absolute value |f(z)| has no maximum in Ω . That is, there is no $z_0 \in \Omega$ such that for all $z \in \Omega$ we have $|f(z)| \leq |f(z_0)|$.

On the other hand, under the same conditions, either f has a zero on Ω or |f(z)| has no minimum on Ω .

Let K be an open set in Ω such that the closure of K is contained in Ω . If $f : \Omega \to \mathbb{C}$ is an analytic function, |f(z)| is continuous on K and by the extreme value theorem, |f| has a maximum on the closure of K. But by the above theorem, |f| has no maximum on K. This implies that the maximum of |f| must be realized on the boundary of K. Similarly, the minimum of |f| is also realized on the boundary of K.