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Optimal Trade Execution

Optimal Trade Execution: Context

Partition a large trade into smaller trades so as to minimize the
effect of market impact.

E.g. big sell order placed one-shot could alert market players that we
wish to short a stock (we have a view the price will go down). Market
players will then offer less for the stock and the price will move down.
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Optimal Trade Execution Problem formulation

Optimal Trade Execution: Context

Problem: Sell X shares by the time T by minimizing cost and risk in the
execution. Costs are defined in terms of (instantaneous, transient,
permanent) market impact. Risk may be defined in different ways.

P is “mid price”, S is impacted price, X; is the amount left to be traded
at time t, we assume Xo = X, X7 = 0. Note S; < P; due to impact.

aXi

St = Pt — Kinst <_dt> — KRtrans p/{ 0 e_p(t_s)(—dxs) — Kperm (X—Xt).
s<

Trading the strategy t — X; will have a cost and a risk. Cost C(X) is
straightforward, risk R(X) can be measured in different ways (below).

Find the optimal trading schedule t — X} that minimizes cost plus risk,
or equivalently maximizes revenues minus risk.
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Optimal Trade Execution Static vs Adaptive solutions

Optimal Trade Execution: Context

In this talk, we consider static vs adaptive best solutions.
Qstatic Static strategies C Adaptive strategies Qagapted

We compare minimization of cost plus risk

MiNimize xc Q, ..., L[C(X) + ¢ R(X)]
versus
minimizexcq,,.,. E[C(X) + ¢ R(X)].

How much worse is the second solution when compared with the first?
Question complicated by the fact that popular papers jumped from one
problem to the other one when using different models.
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Optimal Trade Execution Previous literature and adaptive/static mix

Bertsimas & Lo (1998) [7]:
@ linearly increasing execution costs in the trading rate.
@ “Mid” asset price as arithmetic Brownian motion (ABM).

@ Cost minimization via dynamic programming (DP) over adaptive
strategies gives a static strategy.

@ Cost minimization with information (a AR1 process) gives an
adapted sol. that is not static

Almgren and Chriss (1999-2000) [1] and [2]
@ Assumes linearly increasing execution costs in the trading rate.
@ Asset “mid price” follows ABM.

@ combine expected execution cost and execution risk (taken as
variance of the cost).

@ Solution sought in the class of static strategies.
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Optimal Trade Execution Previous literature and adaptive/static mix

Gatheral & Schied (2011) [10]
@ As above but asset follows geometric Brownian motion (GBM)
@ VaR or ES risk added to cost to be minimized
@ obtain a closed form adapted (not static) solution.

B. & Di Graziano (2014) [8]

@ solve the problem using Gatheral and Schied result but with a
displaced diffusion asset price model

@ introduce new risk measures such as squared asset expectation
@ again adapted solution is found, not static.

The above does not do justice to the literature, but shows an important
point: Sometimes the optimal adapted solution is sought, and it
may turn out to be either static or adapted.

Other times the optimal static solution is sought directly.

(c) 2013-21 Prof. D. Brigo (ICL) Optimal Trade Execution QuantMinds 2019 7/34



Optimal Trade Execution Previous literature and adaptive/static mix

Question: how much worse is the optimal static
solution compared with the optimal adapted one (in
terms of revenues minus risk)?

B. and Piat [9] investigate this for the models of Bertsimas & Lo with
info and Gatheral & Schied.

They find minor differences between the optimal cost + risk using the
static solution vs the adapted one for most realistic parameters
configurations.

This means that there are not really important adaptive features in the
adaptive solution in these simple models.

Question: can we find models where optimal static & optimal adaptive
are relevantly different?

YES, but we may need to add TRADING SIGNALS [13]
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Optimal execution with trading signals Price model, Cost and Risk

Optimal Trade Execution with trading signals

Let us specify our problem more in detalil

@ The initial time is 0, the final time is T, and usually t € [0, T];
@ P unaffected pre-impact price at t, S; the impacted price;

@ X;: shares left to be traded at time t; Assumed absolutely
continuous and adapted;

@ Xp = X (sell X shares in total), X7 = 0 (all shares sold by T).
@ Selling shares negatively impacts the shares price:

aX o
St = Pt‘i‘ffinstT;‘f'/‘itrans P/ er(t s)dXS.

\ , {s<t}
negative

~
negative
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Optimal Trade Execution with trading signals

Cost and Risk of t — X;:

e Cost C(X) := J;] St dX;; Revenue: —C(X).
@ Risk R(X): several possible definitions (below). We use

.
R(X) = ¢/0 X? dt

see [3,12, 16, 15].

@ We are penalizing trading schedules that are far away from the
target 0. Ideally we would jump to 0 immediately to minimize
R(X), but note that then the negative impact term ~dX;/dt
contributing to C(X) would be very large. Trade off.

@ Find X that minimizes expected cost plus risk:

miniMizex agapted, x;=0E[C(X) + ¢ R(X)]
with ¢ a leverage param
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Optimal execution with trading signals Price model, Cost and Risk

Optimal Trade Execution with trading signals

Our minimiz prob for E[C(X) + ¢R(X)] is almost completely specified:
@ We need to postulate a Stochastic dynamics for P (and hence S).
For the dynamics, we use the model by Lehalle and Neumann [13]

dP; = lkdt + op th, Py

dlz = —’}//z dt—|- O'th, Io.

W and W are independent. An example of the signal / is limit order
book imbalance: best bid Qg and best ask Q4 of the order book,

Q(7) — Qa(7)

'ME(T) = Qe(m) + Q)

just before the occurrence of a transaction at time 7.
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_ Qp(7) — Qal7)
QB(T) + QA(T),

If Imb > 0, more participants want to buy than sell, and the price will
move up. The opposite if it is negative.

dP; = ldt + op dWy, Py, dly = —~lydt + o dWs, .

Imb(7)

This explains why [ is the correct drift for the price P.
Why is imbalance mean reverting?

If Imb > 0, more participants want to buy, but new participants who are
keen to buy may post a limit order at a higher price than current best
bid to avoid long queue. Price will go up and imbalance evens out.

I need not be precisely the imbalance as defined above. Related but
different trading signals are associated for example to pair trading and
operate on different time scales (see [13]).
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Optimal execution with trading signals Impact

Optimal Trade Execution: Dynamics and Risk

adP; = lkdt + op th, Po
d/t = f’y/; dt+ O'th, Io.

Set the trading rate r equal to
= —dXt/dt.
The impacted price is S < P,

St = Pt — Klt.
In the full paper we also deal with transient impact.
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Optimal execution with trading signals Static vs Adaptive solutions

Optimizing revenues minus risk: static vs adapted

dP; = ldt + op dW;, Py, dly = —~lidt + o dWs, .

Impacted S; = Py — k1.

Cost: C(X / S, dX;.

Risk: R(X) = ¢ /0 X2 dt.
We now look at
maximizex adapted, x;=0E[—C(X) — ¢ R(X)]
versus
maximizex, s, x,—oE[~C(X) — ¢ R(X)].
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Optimal execution with trading signals Static vs Adaptive solutions

Optimizing revenues minus risk: adapted solution

maximizex agapted, X;=0E[—C(X) — ¢ R(X)]
In [13] (see also [6]) the solution of the above problem is derived. One
has (ft = —dXt/dt

* 1 = *
r; ,adapted _27 (2 ( adapted + / / y(s—t)+1 f, o (u) duds)

where R
_ 14 28071 é
Vo(t) = v /ﬂ?ma B = P
It is clear that this solution is adapted in general, and not just static,
since I; (but not S; directly!) appears in the solution. If not for I, the
optimal adapted sol would be static (theorem below).

The proof is based on HJB type analysis and verification theorems.
op does not play a role since it is neutralized by the expectation. It can

be included in case bi slightly modifyina the risk function.
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Optimal execution with trading signals Static vs Adaptive solutions

Optimizing revenues minus risk: static solution

maximizex static, x,—0E[—C(X) — ¢ R(X)]

In [6] the solution of the above problem is derived. One has

Xi = Xo(t) + (1),

_sinh(B(T — 1)) e
P(t) = “sinh(AT) B = \/;

(1) = lo (1 B e "T=sinh(Bt) + e sinh(B(T — t)>
T 2652 —?) sinh(5T) '
This is clearly a static solution, and we can now compare it with the
adapted one. The proof is based on calculus of variations.
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v=01,0=01, T=10, k=05, ¢ =0.1, Xo = 10

Sample inventory trajectories
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Figure: Plot of the optimal static inventory X*S@ for the parameters above
except for ly. The optimal static strategy is presented for different initial values
of the signal: Iy = 0.5 (orange), I = 0 (green) and lp = —0.5 (blue).
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v=01,0=01, T=10, k=05, ¢ =0.1, Xo = 10

Sample inventory trajectories
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Figure: Note the negative blue plot. If the signal says the price goes down,
that’s not the right moment to start a liquidation. We haven’t enforced a sign
constraint (no exclusion of round trips)
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v=01,0=01, T=10, k=05, ¢ =0.1, Xo = 10

Inventory trajectories

104

Inventory

Time

Figure: Simulation of the inventory X*-2%pted The blue region is a plot of
1000 such trajectories of X*. In the black curve we present the optimal static
inventory. The parameters of the model are as above with.ly =0.2.
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v=01,0=01, T=10, k=05, ¢ =0.1, Xo = 10

Trading Window 25007 Signal Vol
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Figure: Left: comparison of E[—C(X) — ¢R(X)] resulting from the optimal
static strategy in blue, and the signal adaptive strategy in orange, for different
values of trading windows T. The parameters of the model are as above plus
Py =10 and fy = 0.2. Right: the same comparison for different values of
signal volatility o. The model parameters (except form o) are similar to the
previous plot. Large vols and long times make the difference relevant
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Good execution: Introduction

In the rest of the talk | would like to briefly introduce our “good
execution” framework [5].

Let’s go back to static vs adaptive strategies in general.
@ Static strategies
e moderate model dependency, because only the expected quantity
E[Si] enters the computations;
e does not react to different realisations of S;.
@ adaptive strategies
e heavy model dependency, because the full generator of the price
dynamics is needed for HJB equation;
e reactto different realisations of S; (e.g. Gatheral and Schied, in the
model with signals we use here reacts to realizations of /;).

We would like to find a middle ground between the adapted and static
settings. Before proposing this middle ground, we introduce a further
motivating consideration.
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Introduction

Let us adopt a more general notation. Write cost plus risk as
J(X) = C(X) + 6R(X / F(t, St Xe K)ot

where F = F(t, S, X, X) describes the cost of trading and the market

impact that the execution itself of the trade has on the fundamental
price S of the asset.

E.g., previously F(t,P,X,X)= XP + kjnstX? + ¢ X?
——

F(t.x.X)

T . T . . T
/ F(t,P, X, X)dt = / (XPdt + kingt X?)dt + / pX2dt =
0 0 0

T . T
/ (P; + kinst X) dX; + ¢ / X2dt = C(X) + 6R(X)
L S °
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Degeneracy to static strategies

Recall: set of static strategies Qstaric is @ subset of Qagaprive- It May
happen that an optimal adaptive strategy turns out to be in particular
static as in [7] (see also Cartea et al (2015) [Sec 6.3 & 6.4]).

Theorem (Optimal adaptive collapsing to static, e.g. /; = 0 or det.).

Assume that F(t,P,X,X)= XP+ F(t,X,X) , (1)
~~ ———
cost  impact plus risk
for F that does not depend on P. Let P be modelled
aP; = u(t)dt + O'(t, Pt)th, (2)

where the drift coefficient p is taken to be a deterministic function of
time only. Under (minor) technical assumptions, we have that the
optimal adaptive solution is in fact static, namely it holds

inf{EJ(X) X e Qstatic} = inf{EJ(X) X e Qadaptive}a

and the infimum is attained for some optimal deterministic X in Qstatic
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Good trade executions - motivation

Our aim in trying to find a setting that is in-between the static and
adaptive frameworks is twofold:

@ find a middle ground between moderate model dependency and
ability to react to actual price realisations;

@ avoid degeneracy to static strategy.

Our middle ground is “Good execution”.
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Good trade executions - informal definition

We say that X is a good trade execution if for all n in two sufficiently
large neighbourhoods (on different metrics) of X it holds

@ EJ(X) < EJ(n) (fornin L2 related neighborhoods of X);
Q J(X) < J(n) (fornin pathwise-related neighborhoods of X);

We do not assume any specific dynamics for P;, so that we are not
bound by particular cases of HJB

The second requirement entails a pathwise assessment of the
optimality of X. The fact that our concept of good trade executions
avoids the degeneracy to static strategy hinges on this.

Moreover, in good execution we replace the fuel constraint X7 = 0 with
the weakest requirement that E[X7] = 0. There will be a liquidation
error, for which we can introduce a penalization in case.
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Good trade executions - example

Let F(t,P,X,X)=XP + kinst X2 + ¢.X?,

which is another way to write our previous example with linear
instantaneous impact where « is the market impact coeff. and ¢ is risk
aversion. Then, for all stochastic models for P; such that t — E[P?] is
in L2[0, T], the following is a good trade execution

X(t) = (1—a(t)Xo+ a(t) i(L (convex combination)

=0 atleastin E

t

- 215/ cosh (\/¢/k(t — u)) Pudu (adj based on realization)
0

+ Ksinh(y/¢/kt),  (ensures final expectation zero)

where a(t) =1 —sinh((T — t))/sinh(y/¢/kT), and K is a constant.
Still adapted but now P can be anything.
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Good trade executions - example, cont'd
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Good trade executions - remarks

@ A good trade execution commits in general an error of liquidation.
Such an error depends on the volatility of the price. We can
explicitly compute the variance of it and its financial interpretation
is under investigation.

@ In the red trajectory the mid price is doing better than we expected
(blue), so we liquidate fast as the negative impact will do less
damage, and we complete liquidation around t = 0.8. In the yellow
one the trade is unfinished and we’ll have to trade a little longer.

© Other lagrangians (other impact functions and other risk functions)
than the one in the previous slide can be handled analytically
within our framework of good trade execution.
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Conclustions and References

Conclusions

@ In Optimal execution one should seek the optimal adaptive
solution, since traders monitor the market

@ In some models this solution turns out to be static

@ In other models it is truly adaptive

@ Other authors seek the solution in the static class directly, giving
up true (adaptive) optimality for tractability

@ Can we compare optimal static vs adapted solutions?

@ B. and Piat find that in classic models there is very little difference

@ Here we showed that for models with signals the difference can be
relevant

@ Examples of signal come from book imbalance, pair trading

@ Also, we introduced Good execution, a middle ground between the
optimal static and fully optimal adaptive settings
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