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Talk outline

• Information content in CDO market quotes;

• Bottom up and Top down approaches to Loss modeling;

• Common Poisson Shock model: excellent but... repeated defaults

• Address the problem at pool level only: GPL model

• Address the problem also at single name and cluster level: GPCL

• Calibration examples across capital strucure and maturity

• A model instead of an inconsistent Gaussian copula (correlation skew)

• Extensions, Pricing and Further Research
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Index CDO’s (iTraxx, CDX...)

Given a pool of names 1, 2, . . . , M , typically M = 125, each with
initial notional 1/M , the index default leg pays to the protection buyer the
loss increment occurring each time one or more names default, until final
maturity T = Tb arrives or until all the names in the pool have defaulted.

We denote with L̄t the portfolio cumulated loss and with C̄t the number
of defaulted names up to time t, re-scaled by M (and thus in the interval
[0, 1]).

Therefore

C̄t =
Number of Defaults by t

M
, 0 ≤ L̄t ≤ C̄t ≤ 1
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Information contained in CDO quotes

Recall the market quoted spreads for indices and tranches:

S0 =
E0

[ ∫ T

0
D(0, u)dL̄u

]

E0

[∑b
i=1 δiD(0, Ti)(1− C̄Ti

)
]

SA,B
0 =

E0

[ ∫ T

0
D(0, t)dL̄A,B

u

]
− UA,B

0

E0

[∑b
i=1 δiD(0, Ti)(1− L̄A,B

Ti
)
]

where L̄A,B
Ti

is the tranched loss at points A,B divided by the tranche

thickness B−A. If S0 and SA,B
0 are the only data on default correlation in

the market, we see that the only information are “expected losses”,
“expected tranche losses” and “expected number of defaults”.
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Loss models: The “BOTTOM UP” and “TOP DOWN”
approaches

Index and tranches contain information only on expected losses, expected
tranche losses and expected number of defaults.

Modeling loss and default number? 2 approaches: BOTTOM UP and
TOP DOWN.

BOTTOM UP: Model single defaults, correlate them and build
the loss from these through recovery assumptions on single names.
Mostly copula models. Static.

TOP (DOWN?): Model the loss and number of defaults directly
as the fundamental objects, and possibly achieve consistency with
single names a posteriori. Dynamics. Market feel.
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The Common Poisson Shocks Framework

We begin with the common Poisson shock framework (CPS).

The occurrence of a default can be originated by different events or
”factors”, either idiosyncratic or systematic.

Occurrence of event/factor number e, with e = 1 . . .m, is modelled as
a jump of a Poisson process N (e). Each event can be triggered many times
r = 1, 2, . . . as jumps go on.

Poisson processes driving different factors are independent.

The CPS setup assumes unrealistically that a defaulted name k may
default again. We address this limitation.
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For now we assume the r-th jump of N (e) to trigger a default event for

name k with probability p
(e)
r,k,

Name k =1
Factor e: 1 2 3 ...

Repetition r :
1 p1

1,1 p2
1,1 p3

1,1

2 p1
2,1 p2

2,1 p3
2,1

...

Name k =2
Factor e: 1 2 3 ...

Repetition r :
1 p1

1,2 p2
1,2 p3

1,2

2 p1
2,2 p2

2,2 p3
2,2

...
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The Common Poisson Shocks Framework

We have the dynamics for the single name default process Nk, jumping
each time name k defaults:

Nk(t) :=
m∑

e=1

N(e)(t)∑
r=1

I
(e)
r,k

where I
(e)
r,k is a Bernoulli variable with probability Q{I(e)

r,k = 1} = p
(e)
r,k.

Nk turns out to be itself Poisson.

Notice however that Nk and Nh are not independent since their dynamics
is explained by the same driving events.
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The Common Poisson Shocks Framework

A key result consists in mapping the single name defaults Nk into a
multi-name dynamics explained in terms of independent Poisson processes
Ñs, where s is a subset (or “cluster”) of names of the pool:

Ñs(t) =
m∑

e=1

N(e)(t)∑
r=1

∑

s′⊇s

(−1)|s
′|−|s| ∏

k′∈s′
I
(e)
r,k′

where |s| is the number of names in the cluster s.

In a summation, s 3 k means ”across all clusters s containing k”,
k ∈ s means ”across all elements k of cluster s”,
|s| = j means ”across all clusters of size j” and, finally,
s′ ⊇ s means ”across all clusters s′ containing cluster s as a subset”.
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GPCL: The Common Poisson Shocks Framework

The non-trivial proof of the independence of Ñs for different subsets s
can be found in Lindskog and McNeil (2003).

Notice that a jump in a Ñs process means that all the names in the
subset s, and only those names, have defaulted at the jump time.

We denote by λ̃s the intensity of Ñs(t), and we assume it to be
deterministic; we present extensions later.

Ñs(t) will be our new building blocks: for example single names are

dNk(t) =
∑

s3 k

dÑs(t), (1)

The first jump times survival copula across names for N1, ..., Nk, .. is
a Marshal Olkin copula. Top Down!
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The Common Poisson Shocks Framework

Zj(t) :=
∑

|s|=j

Ñs(t). (2)

Zj(t) describes the simultaneous default of any j names whenever it jumps
(by one); being the sum of independent Poisson, is itself Poisson.

Further, since the clusters corresponding to the different Z1, Z2, . . . , ZM

never overlap, the Zj(t) are independent.

The total number of defaults in the pool by t is

Zt :=
M∑

k=1

Nk(t) =
M∑

j=1

jZj(t) (3)

Credit Conference, University of Chicago, Stevanovich Center, Oct. 19-20, 2007 10



Copyright 2007 Damiano Brigo: The GPCL Loss model and consistent CDO calibration Q-SCI DerivativeFitch, Fitch QFR

Top Down Approach: The GPL Model

If we accepted repeated defaults, this would be a real top down
model for Zt/M (and then Loss when including recovery modeling).

How would the aggregate pool default counting process look like exactly?

Example : M = 125, Zt = 1 Z1(t) + 2 Z2(t) + . . . + 125 Z125(t).

If Z1 jumps there is just one default (idiosyncratic), if Z125 jumps there
are 125 ones and the whole pool defaults one shot (total systemic risk),
otherwise for other Zi’s we have intermediate situations (sectors).

A self-exciting feature, although extreme, is present in that more name
may default together (rather than one default increasing the intensity of
others)
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Improving CPS: Avoiding repeated defaults

Fundamental problem: repeated jumps (=defaults) of the same Poisson

processes, both at the cluster level, Ñs, and at the single name level,
Nk. These repetitions would also cause the default counting process Zt to
exceed the pool size M .

Lindskog and McNeil (2003) suppose that the default intensities of
the names are so small to lead to negligible “second-default” probabilities.
However, in our calibration results of GPL below, intensities are large
enough to make repeated defaults unacceptable in practice.
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Improving CPS: Avoiding repeated defaults

Strategy GPL (Default-counting adjusted approach). Modify the
aggregated pool default counting process so that this does not exceed
the number of names, by simply capping Zt to M , regardless of cluster
structures:

Ct := min(Zt,M)

Strategy GPCL (Cluster adjusted approach). Force clusters to jump
only once and deduce single names defaults consistently.

The first choice is ok at top level but it does not really go down. We
attack this first.

The second choice is a real top down model, which we attack later.
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Top (Down?) Approach: The GPL Model

Consider a number n of independent Poissons Z1, . . . , Zn with intensities
λ0

1, . . . , λ
0
n. Define the stochastic process (Generalized Poisson Loss, GPL)

Zt =
n∑

j=1

αjZj(t), Ct := min(Zt,M)

for increasing integers α1, . . . , αn

The density of Zt (and thus of Ct) can be obtained as the inverse Fourier
transform of the known characteristic function of Zt

The pool intensity (compensator) can be computed in closed form.

Multiple default intensities can be generalized to Gamma, CIR...
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Calibration

The GPL model is calibrated to the market quotes observed on March
1 and 6, 2006. Deterministic discount rates are listed in Brigo, Pallavicini
and Torresetti (2006). Tranche data and DJi-TRAXX fixings, along with
bid-ask spreads, are

Att-Det March, 1 2006 March, 6 2006
5y 7y 3y 5y 7y

Index 35(1) 48(1) 20(1) 35(1) 48(1)

Tranche 0-3 2600(50) 4788(50) 500(20) 2655(25) 4825(25)

3-6 71.00(2.00) 210.00(5.00) 7.50(2.50) 67.50(1.00) 225.50(2.50)

6-9 22.00(2.00) 49.00(2.00) 1.25(0.75) 22.00(1.00) 51.00(1.00)

9-12 10.00(2.00) 29.00(2.00) 0.50(0.25) 10.50(1.00) 28.50(1.00)

12-22 4.25(1.00) 11.00(1.00) 0.15(0.05) 4.50(0.50) 10.25(0.50)

Tranchlet 0-1 6100(200) 7400(300)

1-2 1085(70) 5025(300)

2-3 393(45) 850(60)

Credit Conference, University of Chicago, Stevanovich Center, Oct. 19-20, 2007 15



Copyright 2007 Damiano Brigo: The GPCL Loss model and consistent CDO calibration Q-SCI DerivativeFitch, Fitch QFR

Calibration

The cumulated intensities Λ0
i (T ) are real non-decreasing piecewise linear

functions in the tranche maturity.

The optimal values for the amplitudes α are selected as follows:

1. set α1 = 1 and all other α’s to zero. Calibrate Λ0
1;

2. find the best integer value for α2 by calibrating the cumulated intensities
Λ0

1 and Λ0
2 for each value of α2 in the range [1, 125],starting from the

previous Λ0
1 as a guess;

3. repeat the previous step for αi with i = 3 and so on, by calibrating
the cumulated intensities Λ0

1, . . . , Λ
0
i , starting from the previously found

Λ0
1, . . . , Λ

0
i−1 as initial guess, until the calibration error is under a pre-fixed

threshold or until the intensity Λ0
i can be considered negligible.
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Calibration

The objective function f to be minimized in the calibration is the squared
sum of the errors shown by the model to recover the tranche and index
market quotes weighted by market bid-ask spreads:

f(α, Λ0; β, γ) =
∑

i

ε2i , εi =
xi(α, Λ0; β, γ)− xMid

i

xBid
i − xAsk

i

where the xi, with i running over the market quote set, are the index values
S0 for DJi-TRAXX index quotes, and either the index periodic premium
rates SA,B

0 or the upfront premium rates UA,B
0 for the DJi-TRAXX tranche

quotes.
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Calibration: All standard tranches up to seven years

As a first calibration example we consider standard DJi-TRAXX tranches
up to a maturity of 7y with constant recovery rate of 40%.

The calibration procedure selects five Poisson processes. The 18 market
quotes used by the calibration procedure are almost perfectly recovered. In
particular all instruments are calibrated within the bid-ask spread (we show
the ratio calibration error / bid ask spread).

Att-Det Maturities
3y 5y 7y

Index -0.4 -0.2 -0.9

Tranche 0-3 0.1 0.0 -0.7

3-6 0.0 0.0 0.7

6-9 0.0 0.0 -0.2

9-12 0.0 0.0 0.0

12-22 0.0 0.0 0.2

α Λ(T )
3y 5y 7y

1 0.535 2.366 4.930

3 0.197 0.266 0.267

16 0.000 0.007 0.024

21 0.000 0.003 0.003

88 0.000 0.002 0.007
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Calibration: All standard tranches up to seven years
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Calibration: All standard tranches up to seven years

Notice in particular the large portion of mass concentrated near the
origin, the subsequent modes (default clusters) when moving along the loss
distribution for increasing values, and the bumps in the far tail.

In particular, the components with higher α’s are giving rise to the little
bumps in the far tail of the loss distribution and help with senior tranches.

These features are common to other approaches, such as the static
implied copula by Hull and White (as reimplemented in Torresetti, Brigo
and Pallavicini (2006)).
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Calibration: Tranchlets

The market quotes also non-standard tranches, which are quoted over the
counter. An interesting case is given by the so called “tranchlets”, namely
DJi-TRAXX tranches with attachment and detachment points possibly
smaller than 3%. On the first of march 2006 we obtain market quotes for
a set of tranchlets with maturity of five and seven years (see earlier table).

We calibrate the market data with constant recovery rate of 40%. The
calibration procedure selects five Poisson processes. The 18 market quotes
used by the calibration procedure are recovered, but within an error that is
occasionally larger than the bid-ask spread.
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Calibration: Tranchlets

Att-Det Maturities
5y 7y

Index -0.8 -2.1

Tranchlet 0-1 1.1 -1.4

1-2 1.7 -0.6

2-3 -0.1 -0.4

Tranche 0-3 0.1 0.4

3-6 -1.9 0.2

6-9 0.4 0.6

9-12 2.8 0.9

12-22 -0.4 -1.5

α Λ(T )
5y 7y

1 0.834 3.336

2 1.070 1.070

13 0.008 0.015

21 0.004 0.013

104 0.002 0.007

Table 1: Left side: calibration error with respect to the bid-ask spread for
tranches quoted by the market. Right side: cumulated intensities of the
basic GPL model. Each row corresponds to a different Poisson component
with jump amplitude α. Recovery rate is 40%.
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Pricing and Further research

Pricing products based on the loss distribution such as
tranche options, forward start tranches, cancelabe tranche etc,
even path dependent ones, with the calibrated model is simple
through simulation, given knowledge of the marginal and transition
distributions for the constituent Poisson processes.

This is maintained also under random (Gamma or scenario or CIR)
intensities.

Alternatively, if only the terminal losses are relevant, we may decide
to use the inverse Fourier transform of the known characteristic function
of the terminal distribution to obtain the loss density and then integrate
numerically the payoff against this density.
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Problem

This model, after the capping

Ct := min(Zt,M)

loses the rigorous top down interpretation, in that the default rate is
no longer associated with single name models whose defaults are connected
through a Marshal Olkin Copula.

So we cannot zoom on defaults of single names not even in principle,
nor can we know how losses of subpools are related (CDO2).

We attack this by indtroducing the second way to avoid repeated
defaults in the CPS framewor: The GPLC model.
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GPCL model: Cluster-adjusted approach

The key to consistently avoid repeated cluster defaults (and subsequently
single names) is to track, when a cluster jumps, which single-name defaults
are triggered, and then force all the clusters containing such names not to
jump any longer. Define

Js(t) :=
∏

k∈s

∏

s′3k

1{Ñs′(t)=0} =
∏

s′: s′∩s 6=∅
1{Ñs′(t)=0}

The process Js(t) is equal to 1 at starting time and it jumps to 0 whenever
a cluster containing one element of s jumps. Or one may view the process
Js as being one when none of the names in s have defaulted and 0 when
some names in s have defaulted.
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GPCL model: Cluster-adjusted approach

We now correct the cluster dynamics by avoiding repeated clusters
defaults. We define as new cluster dynamics the following:

dÑ2
s (t) = Js(t−)dÑs(t). (4)

Interpretation: every time a repeated cluster default process Ñs jumps,
this is a jump in our “no-repeated-jumps” framework only if no name
contained in s has defaulted in the past, i.e. if no cluster intersecting s has
defaulted in the past.
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GPCL model: Cluster-adjusted approach

Once the clusters defaults are given, single name defaults follow easily.
Define the single name dynamics as

dN2
k(t) :=

∑

s3 k

dÑ2
s =

∑

s3 k

Js(t−)dÑs(t). (5)

Now, re-define default counting processes in terms of our new cluster
dynamics. We obtain

dZ2
j :=

∑

|s|=j

dÑ2
s =

∑

|s|=j

Js(t−)dÑs(t). (6)
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GPCL model: Cluster-adjusted approach

The pool counting process reads

dZ2 =
M∑

j=1

j
∑

|s|=j

dÑ2
s =

M∑

j=1

j
∑

|s|=j

Js(t−)dÑs(t). (7)

If not for the cluster-related indicators Js(t−), Z2 would be a generalized

Poisson process. That is why we term the model N2
k , Ñ2

s , Z2
j the

Generalized Poisson Cluster-adjusted Loss model (GPCL).
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Beyond GPL: The GPCL model calibration

The recovery rate is considered as a deterministic constant and set equal
to R = 40%. Thus, the underlying driving model definition is

Ct := Z2(t) =
M∑

j=1

j Z2
j (t), where dZ2

j (t) ∼ Poisson
((

M − Z2
t−

j

)
λ̃j(t)dt

)

while the pool counting and loss processes are defined as

dC̄t := dZ2
t /M

dL̄t := (1−R) dZ2
t /M
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Beyond GPL: The GPCL model calibration

Given our recovery assumption, the prices of the products to be
calibrated, depend only on knowledge of the probability distribution of
the pool counting process Ct. Thus, our main issue is to calculate this law
as fast as possible.

With the GPCL model, the dependence of the intensity of the pool
counting process on the process itself

dZ2
j (t) ∼ Poisson

((
M − Z2

t−
j

)
λ̃j(t)dt

)

prevents us either to calculate the relevant characteristic function in closed
form (as for GPL instead) or to use the Panjer method.
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Beyond GPL: The GPCL model calibration

Calculate the forward Kolmogorov equation for pZ2
t
(x) = Q{Z2

t = x}:

d

dt
pZ2

t
(x) =

M∑
y=0

At(x, y)pZ2
t
(y), with trans rate matrix At = (At(x, y))x,y=0,...,M

At(x, y) := lim
∆t→0

Q{Z2
t+∆t = x|Z2

t = y}
∆t

=
(

M − y

x− y

)
λ̃x−y(t)

for x > y,

At(y, y) := lim
∆t→0

Q{Z2
t+∆t = y|Z2

t = y} − 1
∆t

= −
M−y∑

j=1

(
M − y

j

)
λ̃j(t).

for x = y, and zero for x < y.
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Beyond GPL: The GPCL model calibration

In matrix form we write

d

dt
π̂t = Atπ̂t, π̂t :=

[
pZ2

t
(0) pZ2

t
(1) pZ2

t
(2) . . . pZ2

t
(M)

]′

whose solution is obtained through the exponential matrix,

π̂t = exp
(∫ t

0

Audu

)
π̂0, π̂0 = [1 0 0... 0]′.

Matrix exponentiation can be quickly computed with the Padé
approximation (see Golub and Van Loan (1983)), leading to a closed
form solution for the probability distribution pCt = π̂t of the pool counting
process Ct. This distribution can then be used in the calibration procedure.

Credit Conference, University of Chicago, Stevanovich Center, Oct. 19-20, 2007 32



Copyright 2007 Damiano Brigo: The GPCL Loss model and consistent CDO calibration Q-SCI DerivativeFitch, Fitch QFR

Beyond GPL: The GPCL model calibration

If we define the cumulated cluster intensities as Λ̃j(t) =
∫ t

0
λ̃j(u) du,

then the entries of the matrix undergoing exponentiation in determining the
default counting distribution are given by

for x > y:
∫ t

0

Au(x, y)du =
(

M − y

x− y

)
Λ̃x−y(t)

for x = y:
∫ t

0

Au(y, y)du = −
M−y∑

j=1

(
M − y

j

)
Λ̃j(t).

We assume the Λ̃j to be piecewise linear in time, changing their values at

payoff maturity dates. We use Λ̃j as calibration parameters. We have bM
free calibration parameters, if we consider b maturities.
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Beyond GPL: The GPCL model calibration

Many Λ̃j(t) will be zero for all maturities, and we can ignore their Z2
j (t).

Call α1 < α2 < ... < αn the jump sizes with nonzero intensity. Then one
renumbers progressively the intensities according to the nonzero increasing
α: Z2

j becomes the jump of a cluster of size αj.

The calibration procedure for GPCL is implemented using the αj in the
same way as for GPL. We also calibrate GPL, for comparison.

In the tables we display
(

M
αj

)
Λ̃j, i.e. we multiply a cluster cumulated

intensity for a given cluster size for the number of clusters with that size at
time 0.

The calibration data set is the DJi-TRAXX main series on the run on
October, 2 2006.
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Beyond GPL: The GPCL model calibration

When we calibrate the GPL and GPCL models, and we obtain the
calibration parameters presented in Table 2

This is a joint calibration across tranche seniority and maturity, since we
are calibrating all and every tranche and index quote with a single model
specification.

Both our models perform very well on maturities of 3 years, 5 years and
7 years, for which the calibration error is within the bid-ask spread.

Both models are close to the 10y market values, as we see from the
left panel of Table 4. Notice, however, that the GPCL model has a lower
calibration error (10%− 20% better).
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αj Λ0
j(T )

3y 5y 7y 10y

1 0.778 1.318 3.320 4.261

3 0.128 0.536 0.581 1.566

15 0.000 0.004 0.024 0.024

19 0.000 0.007 0.011 0.028

32 0.000 0.000 0.000 0.007

79 0.000 0.000 0.003 0.003

120 0.000 0.002 0.003 0.008

αj

(M
αj

)
Λ̃j(T )

3y 5y 7y 10y

1 0.882 1.234 3.223 3.661

3 0.128 0.615 0.682 1.963

15 0.001 0.002 0.023 0.023

19 0.000 0.009 0.016 0.043

57 0.000 0.000 0.002 0.007

80 0.000 0.000 0.000 0.010

125 0.001 0.005 0.042 0.042

Table 2: DJi-TRAXX pool. Left side: cumulated intensities, integrated up
to tranche maturities, of the basic GPL model. Each row j corresponds
to a different Poisson component with jump amplitude αj. Right side:
cumulated cluster intensities, integrated up to tranche maturities, and
multiplied by the number of clusters of the same size at time 0. Each row
j corresponds to a different cluster size αj. The amplitudes/cluster-sizes
not listed have an intensity below 10−7. The recovery rate is 40%. All
calibration errors within one bid-ask
Credit Conference, University of Chicago, Stevanovich Center, Oct. 19-20, 2007 36



Copyright 2007 Damiano Brigo: The GPCL Loss model and consistent CDO calibration Q-SCI DerivativeFitch, Fitch QFR

Beyond GPL: The GPCL model calibration

We also apply the GPL and GPCL methods to the CDX index and
tranches, following the same procedure used for the DJi-TRAXX above.

We find better results, that are summarized in Table 3 and in the right
panel of Table 4.

Credit Conference, University of Chicago, Stevanovich Center, Oct. 19-20, 2007 37



Copyright 2007 Damiano Brigo: The GPCL Loss model and consistent CDO calibration Q-SCI DerivativeFitch, Fitch QFR

αj Λ0
j(T )

3y 5y 7y 10y

1 1.132 3.043 4.247 7.166

2 0.189 0.189 0.812 1.625

6 0.011 0.091 0.091 0.091

18 0.000 0.006 0.028 0.028

23 0.000 0.004 0.005 0.032

32 0.000 0.000 0.000 0.009

124 0.000 0.003 0.005 0.010

αj

(M
αj

)
Λ̃j(T )

3y 5y 7y 10y

1 0.063 0.552 3.100 6.661

2 0.804 1.531 1.531 2.076

3 0.020 0.195 0.195 0.195

17 0.000 0.010 0.037 0.087

32 0.000 0.003 0.009 0.032

110 0.000 0.000 0.000 0.010

125 0.000 0.011 0.054 0.054

Table 3: CDX pool. Left side: cumulated intensities, integrated up to
tranche maturities, of the basic GPL model. Each row j corresponds to a
different Poisson component with jump amplitude αj. Right side: cumulated
cluster intensities, integrated up to tranche maturities, and multiplied by
the number of clusters of the same size at time 0. Each row j corresponds
to a different cluster size αj. The amplitudes/cluster-sizes not listed have
an intensity below 10−7. The recovery rate is 40%.
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Att-Det DJi-TRAXX 10y
GPL GPCL

Idx 0.00 0.00

Trn 0-3 0.76 0.62

3-6 -2.35 -1.93

6-9 1.21 1.04

9-12 -0.40 -0.36

12-22 0.02 0.02

22-100 0.00 0.00

Att-Det CDX 10y
GPL GPCL

Idx 0.00 -0.06

Trn 0-3 1.43 1.60

3-7 -0.45 -0.22

7-10 0.22 0.25

10-15 -0.08 -0.12

15-30 0.01 0.07

Table 4: Calibration errors calculated with the GPL and GPCL models with
respect to the bid-ask spread (i.e. εi) for tranches quoted by the market for
the ten year maturity. The left panel refers to DJi-TRAXX market quotes,
while the right panel refers to CDX market quotes. Calibration errors for
the other maturities are within the bid-ask spread and therefore they are
not reported. The recovery rate is 40% .
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Beyond GPL: The GPCL model calibration

Loss distribution evolution of the GPL model (upper panel) and of the
GPCL model (lower panel) at all the quoted maturities up to ten years,
drawn as a continuous line.

The probability distributions implied by the two dynamical models are
similar at gross-grain view, as one can see in Figure 1, but they differ if we
observe the fine structure. Indeed, the tails of the two distributions show
different bumps. The GPCL model shows a more complex pattern, and, as
one can see from Table 2, its highest mode is the maximum portfolio loss,
while the GPL model has a less clear tail configuration.
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Model Extensions: Spread dynamics

The valuation of credit index forward contracts or options maturing at
time T = Ta requires the calculation of the index spread at those future
times, which in turn depends on the default intensity evolution.

The dynamics can be enriched by explicitly adding stochasticity to the
Poisson intensities λ̃j(t), e.g. resorting to the Gamma, scenario or CIR
extensions, similarly to what has been suggested for the GPL model.
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Recovery dynamics

dL̄t = (1−Rt)dC̄t (or, more precisely L̄t =
∫ t

0

(1−Ru)dC̄u). (8)

In general, for ease of computation, we assume recovery at default Rt to
be a Gt-adapted and left-continuous (and hence predictable) process taking
values in the interval [0, 1].

Here Gt denotes the filtration consisting of default-free market
information and of the default-count monitoring up to time t. This implies
in particular, that the loss L̄t is Gt-adapted too, as is reasonable.
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Recovery dynamics

The no-arbitrage condition dL̄t ≤ dC̄t is met if Rt takes values in [0, 1].
Equation (8) leaves us with the freedom of defining only two processes
among L̄t, C̄t and Rt. The more natural approach would be modeling
explicitly (C̄t, Rt), obtaining L̄t, or modeling explicitly (L̄t, Rt), obtaining
C̄t, all of them adapted.
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Recovery dynamics

In some formulations the predictability of the recovery is not possible.
It is also a notion not always realistic: whether one or 125 names default in
instant (t − dt, t] (i.e. dCt = 1 or dCt = 125, respectively), we would be
imposing the recovery Rt to be the same in both cases and, in particular,
to depend only on the information up to t−.
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Recovery dynamics

We now examine possible ways to model the loss more realistically,
starting from a GPL or GPCL model formulated in terms of default counting
process. This amounts to implicitly model the recovery rate, since the
number of defaults and the loss are linked by the recovery at default.

A first approach to implicitly model recovery rates consists in defining
the cumulated portfolio loss L̄t process as a deterministic function of the
pool counting process C̄t via a deterministic map.
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Recovery dynamics through Deterministic mapping

Set
L̄t := ψ(C̄t),

where ψ is a non-decreasing deterministic function with ψ(0) = 0 and
ψ(1) ≤ 1. What does this imply in terms of recovery dynamics? We can
easily write

dL̄t =
M∑

k=1

[
ψ(C̄t− + k/M)− ψ(C̄t−)

k/M

]
1{dC̄t=k/M}dC̄t

which shows that the recovery at default in this case would not be
predictable, depending explicitly from dCt, except for very special ψ’s.
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Recovery dynamics through Deterministic mapping

A generalization based on a random process transformation (rather
than a deterministic function) of the counting process leads to a more
sophisticated implicit dynamics of the recovery process.

Consider a stochastic process u 7→ Ψu in time u, Gu-adapted and taking
values in [0, 1], right-continuous with left limit, and independent of the
default counting process C̄t, and use it to map the positive non-decreasing
pool counting process C̄t taking values in [0, 1] into the portfolio cumulated
loss L̄t, sharing the same characteristics, i.e. define

L̄t := ΨC̄t
.
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Recovery dynamics through Deterministic mapping

Further, assume (no-arbitrage conditions):

Ψ0 = 0, Ψ1 ≤ 1, and dΨt ≥ 0

This way the cumulated portfolio loss can be viewed as a stochastic time
change of the process Ψ. Further, in order to allow for portfolio total loss,
we enforce the stronger condition Ψ1 = 1.
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Recovery dynamics through Deterministic mapping

The time change does not spoil the analytical tractability of the model.
If we know the probability distribution function of the pool counting process
and of Ψ, we can simply derive the probability distribution function of the
portfolio loss through an iterated expectation, thanks to independence:

Q{L̄t ≤ x} = E
[
Q{L̄t ≤ x|C̄t}

]
=

∫
Q{Ψy ≤ x}pC̄t

(y)dy
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Recovery dynamics through Deterministic mapping

As a relevant example, assume the process u 7→ Ψu is a Gamma process
with shape parameter µ(u) and scale parameter ν. The monotonicity of the
resulting loss process can be easily checked, while the probability distribution
of the process can be calculated explicitly. Indeed, as a direct calculation
can show, for any times s < t < T , the conditional distribution of Ψt, given
Ψs and ΨT is known in terms of the Beta distribution.

The calculation of the unconditional distribution of the cumulated
portfolio loss follows directly.

Exactly as for the previous case based on the deterministic transform
ψ, here the implicit recovery at default turns out to be not predictable in
general.
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GPL and GPCL loss models: conclusions

We extend the common Poisson shock (CPS) framework to avoid
repeated defaults, leading to the GPL and GPCL dynamical loss models.

GPCL attains good calibration as GPL, further allowing for consistency
with single names: one of the few explict top down approaches.

Consistently accounts for index and tranche market quotes across (i) the
whole capital structure and (ii) maturity.

Copula models, and in particular the Gaussian copula model leading to
implied correlation, cannot achieve (i), let alone (ii).

The model also reads a dynamics for the loss distribution from market
data, and we could also use the model to see Ratings under the risk
neutral measure, although this is not necessarily a good idea.
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GPL and GPCL loss models: conclusions

Further research concerns recovery dynamics, calibration and analysis
of forward start tranches and tranche options, when liquid quotes will be
available, and analysis of calibration stability through history.

Also, basic tranche quotes for bespoke portfolios are hardly available,
so dependence mapping from the quoted liquid portfolios (itraxx, cdx) to
bespoke portfolio needs to be available before we may use GP(C)L for
bespoke pools.

A preliminary analysis of stability with the GPL model is however
presented in Brigo, Pallavicini and Torresetti (2006b), showing good results.
This is encouraging and leads to assuming the GPCL stability as well,
although a rigorous check is in order in further work.
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