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Introduction

A less known event of 1968 in Paris was the publication of “Dix exposés sur
la cohomologie des schémas” by J. Giraud, A. Grothendieck, S.L. Kleiman,
M. Raynaud and J. Tate. Included there, with a kind permission of N. Bourbaki,
were two talks by Grothendieck in the Bourbaki seminar, entitled “Le groupe de
Brauer I” and “Le groupe de Brauer I1”, followed by a 100 pages long “Le groupe
de Brauer III”. More than fifty years later, it remains the principal source on
Grothendieck’s generalisation of the Brauer group of fields to the Brauer group
of schemes, in the language of étale cohomology. Masterfully written, with a
fresh appeal of a newly designed theory, Grothendieck’s two seminar talks and
a long paper are hardly a textbook.

Our first motivation for writing this book was to complement Grothendieck’s
foundational text with a more accessible modern exposition, and to give proofs
of some results not easily found in the literature. Our second motivation was to
describe recent developments in the theory of the Brauer-Manin obstruction and
local-to-global principles, as well as new geometric applications of the Brauer
group.

Let us give a brief sketch of the history of the Brauer—Grothendieck group.

Soon after the publication of “Le groupe de Brauer I, I, III” it became clear
that this is a very useful tool. In his 1970 ICM address, Manin defined a natural
pairing between the Brauer group of a variety X over a number field k£ and the
space of its adelic points X (Ay). He pointed out that this pairing generalises
pairings in the theory of abelian varieties (Cassels—Tate pairing on the Tate—
Shafarevich group, maps in the Cassels—Tate dual sequence) and in the theory
of algebraic tori (Voskresenskii). He also showed how several known counter-
examples to the Hasse principle building on reciprocity laws could be interpreted
in terms of this pairing. The Brauer—-Manin obstruction revolutionised the the-
ory of Diophantine equations by enabling one to study local-to-global principles
for rational points beyond the narrow confines of varieties satisfying the Hasse
principle and weak approximation.

In a separate development, in 1972 Artin and Mumford used the birational
invariance of the Brauer group to construct examples of unirational but not
rational varieties over complex numbers. This gave a negative answer to the
Liiroth problem in dimension at least 3, by a method different from those of
Clemens—Griffiths and Iskovskikh-Manin, found about the same time. In 1984
the unramified Brauer group was used by Saltman who found examples of finite
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subgroups G C GL(n,C) such that the quotient GL(n,C)/G is not rational.
This gives a negative answer to a problem of Emmy Noether motivated by the
inverse Galois problem.

In the 1970s and 1980s, Colliot-Thélene and Sansuc developed the theory of
descent and universal torsors, and linked it to the Brauer—-Manin obstruction.
Jointly with Swinnerton-Dyer they proved that the Brauer—-Manin obstruction
correctly describes the closure of the set of rational points X (k) in X (Ay)
for some intersections of quadrics. Important results for conic bundles were
obtained by Salberger, who also studied analogous results for zero-cycles. In
contrast to these developments, in 1997 Skorobogatov constructed a bielliptic
surface X over QQ which is a counter-example to the Hasse principle that cannot
be explained by the Brauer—Manin obstruction. Stronger versions of the Brauer—
Manin obstruction were soon proposed by Harari and Skorobogatov, but a more
radical counter-example found by Poonen in 2010 shows that these obstructions
are insufficient too.

Very recently, the birational invariance of the Brauer group has become
one of the ingredients of the specialisation method discovered by Voisin and
developed by Colliot-Thélene and Pirutka, and later by Schreieder. This method
was used by Hassett, Pirutka and Tschinkel to give examples of algebraic families
of smooth projective varieties over complex numbers some of which are rational
whereas some others are not even stably rational.

Contents

Let us give a brief outline of the contents of this book. We refer to the
introductions to individual chapters for more details.

The first two chapters contain preliminary material on Galois and étale co-
homology. For obvious reasons many results here are stated without proofs,
though we give a proof of compatibility of two definitions of the residue map
for the Brauer group of a discretely valued field.

Chapter 3 starts with definitions of the two Brauer groups of a scheme: the
Brauer group defined in terms of Azumaya algebras, which we call the Brauer—
Azumaya group, and the cohomological Brauer group, which we call the Brauer—
Grothendieck group. We reproduce de Jong’s proof of a theorem of Gabber
which says that a natural homomorphism from the Brauer—Azumaya group to
the torsion subgroup of the Brauer—Grothendieck group is an isomorphism for
a quasi-projective scheme over an affine scheme. Other fundamental subjects
discussed in this chapter are localisation and the purity theorem for the Brauer
group.

In Chapters 4, 5 and 6 we focus on the Brauer group of a smooth variety
over a field. In Chapter 4 we describe the structure of this group and methods
to compute it, both in the general case and for classes of varieties satisfying ad-
ditional geometric assumptions. In Chapter 5 we define the unramified Brauer
group and prove that the Brauer group of a smooth and proper variety is a bi-
rational invariant. Chapter 6 deals with Severi—-Brauer varieties, quadrics, and,
more generally, projective and affine hypersurfaces. Here we give a proof that
the Severi—Brauer variety associated to a cyclic algebra is birationally equivalent
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to the affine hypersurface given by a norm equation, a result which seems hard
to find in the literature.

Chapter 7 contains various results on the Brauer group of singular varieties,
which in particular provide counterexamples to the familiar properties of the
Brauer group in the smooth case.

In Chapter 8 we collect results on the Brauer group and on the unramified
Brauer group of a variety equipped with an action of a linear algebraic group,
such as a torsor or a homogeneous space. We discuss theorems of Saltman and
of Bogomolov that can be used to give negative answers to Noether’s problem.

Chapters 9, 10 and 11 are devoted to the Brauer group of a family of varieties.
The subject of Chapter 9 is schemes over a local ring and varieties over a local
field. Here we also discuss split fibres and explore their properties. In Chapter
10, after defining the vertical Brauer group of a morphism, we explain how to
compute the Brauer group of a conic bundle over a 1- or 2-dimensional base.
We present the Artin—-Mumford examples from this birational point of view.
Chapter 11 contains an exposition of the specialisation method with applications
to the behaviour of stable rationality in a family.

The next group of chapters concerns arithmetic applications. The Brauer—
Manin obstruction is introduced and studied in Chapter 12. Chapter 13 con-
tains an exposition of several results stating that for some classes of varieties
the Brauer—Manin obstruction correctly describes the closure of the set of ra-
tional points inside the topological space of adelic points. We discuss Schinzel’s
Hypothesis (H), applications of results in additive combinatorics due to Green,
Tao and Ziegler to rational points and sketch a proof of a theorem of Harpaz
and Wittenberg about families of rationally connected varieties. In this chapter
we also give an overview of the theory of obstructions to the local-to-global prin-
ciples for rational points. Chapter 14 deals with zero-cycle analogues of these
themes.

The last chapter concerns finiteness properties of the Brauer group of abelian
varieties, K3 surfaces, and varieties dominated by products of curves when the
ground field is finitely generated over its prime subfield. The treatment of K3
surfaces necessitates a detour via an interpretation of their moduli spaces as
Shimura varieties and the Kuga—Satake contruction. We give complete proofs
of the Tate conjecture and the finiteness of the Brauer group for K3 surfaces in
the case of characteristic zero.

The reader won’t fail to notice that the style of this book varies from chapter
to chapter, from a more in-depth treatment to a survey. The authors are aware
of these and other imperfections, as well as omissions of a number of important
subjects. In this book we only fleetingly discuss descent and torsors, for which
we refer to [Sko01]. Other subjects which could have been included but are not
included:

unramified cohomology in higher degrees,

the Brauer groups of varieties over finite fields,

Swinnerton-Dyer’s method for rational points on a pencil of genus 1 curves,
the integral Brauer—-Manin obstruction.
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We recommend Poonen’s recent book [Pol8] as an extremely helpful and com-
prehensive introduction to rational points. Another book on the Brauer group
of varieties was recently published by Gorchinskiy and Shramov [GSh18].

Acknowledgements

This book obviously stems from Grothendieck’s original work [Gro68]. We
have made extensive use of books by J.-P. Serre [SerCG, SerCL, Ser03], J.S. Milne
[Mil80], Ph. Gille and T. Szamuely [GS17], S. Bosch, W. Liitkebohmert and
M. Raynaud [BLR90], M. Olsson [Ols16], of the Stacks Project [Stacks], and of
Kleiman’s survey on the Picard scheme [Kle05]. We have tried to acknowledge
our debt to these and other sources whenever possible.

Much of the material for the book was taken from seminars and lecture
courses given by the authors over a number of years. The first named author
wants to mention his lectures at the following institutions: GAEL (Istanbul,
2007), Emory University (Atlanta, 2008), POSTECH (Pohang, 2010), Kloost-
erman chair (Leiden, 2011), Summer school (Yaroslavl, 2012), BICMR, (Beijing,
2012 and 2015), Arizona Winter School (Tucson, 2015), Lamé chair (Saint Pe-
tersburg, 2015), lectures in Santiago and Talca (Chile, 2018), School on bira-
tional geometry of surfaces (Gargnano, 2018). The second named author used
his lecture notes for his courses “Arithmetic geometry: rational points” at Impe-
rial College London (2013) and “The Brauer-Manin obstruction” at POSTECH
(Pohang, 2019), as well as his lecture courses at the following events: Summer
school (Yaroslavl, 2014), LMS-CMI Summer school on Diophantine equations
(Baskerville Hall, Hay-on-Wye, 2015), Autumn school: topics in arithmetic and
algebraic geometry (Mainz, 2017), Summer school-conference on the Brauer
groups (Moscow, 2018). We are grateful to the organisers of these meetings for
inviting us to speak.

We would thank Yang Cao, Yong Hu, Dan Loughran, Manuel Ojanguren and
Olivier Wittenberg for their comments. We are particularly grateful to Laurent
Moret-Bailly and Martin Orr for their careful reading of the draft of this book
and many helpful remarks and suggestions.



Notation

For an abelian group A we denote by A[n] the n-torsion subgroup of A, i.e.
Aln] = {z € Alnz = 0}. If ¢ is a prime number, we denote by A{¢} the ¢-
primary subgroup of A, i.e. the set of elements z € A such that ¢z = 0 for
some ¢ > 1. We denote by Ao the torsion subgroup of A, i.e. the union of
Aln] for all n > 1.

For a field k we write k for a fixed algebraic closure of k, and ks C k for the
separable closure of k in k. Let

T = Gal(k/k)

be the Galois group of k. The characteristic exponent of k is 1 if char(k) = 0
and p if char(k) is a prime number p.

The p-cohomological dimension of a profinite group G, where p is a prime,
is the smallest integer n such that H™ (G, M){p} = 0 for all G-modules M such
that M = Mo and all m > n. The cohomological dimension of a profinite
group G is the supremum of its p-cohomological dimensions over all primes p.
The cohomological dimension of a field & is the cohomological dimension of its
Galois group T'.

For a scheme X over a field k, we write X = X x; k and X% = X xp k. A
variety over k is defined as a separated scheme of finite type over k. In particular,
a variety is quasi-compact (i.e., it is a finite union of affine open subsets) and
quasi-separated (i.e., the diagonal morphism X —X Xz X is quasi-compact; this
implies that the intersections of two affine open subsets of a variety X over k is
a finite union of affine open subsets of X).

11
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Chapter 1

Galois cohomology

This chapter begins with a brief introduction to the classical theory of quater-
nion algebras over a field. After recalling basic facts about central simple al-
gebras, we give the classical definition of the Brauer group of a field in terms
of such algebras. We state several standard results about Galois cohomology
and descent, and then give the cohomological definition of the Brauer group
of a field and construct a natural isomorphism between the resulting groups.
For a thorough treatment of central simple algebras and the Brauer groups of
fields we refer to the book by P. Gille and T. Szamuely [GS17] from which we
borrowed some of the material for this chapter. Various aspects of the theory of
simple algebras and the Brauer group can be found in Bourbaki’s Algébre, Ch.
VIII [BouVIII], and in the books by J.-P. Serre [SerCL, SerCG], A.A. Albert
[Alb31], I. Reiner [Rei03] and I.N. Herstein [Her68].

In this chapter we also state several results about cyclic algebras and the
vanishing of the Brauer group for specific fields, such as finite fields, function
fields in one variable over an algebraically closed field, C-fields.

In Section 1.4 we discuss the Brauer group of discretely valued fields and
the associated crucial notion of residue. There are several approaches to the
definition of the residue; we explain how two of them are related to each other.
We finish by proving a theorem of D.K. Faddeev which describes the Brauer
group of the field of rational functions k(t), where k is a perfect field.

1.1 Quaternion algebras and conics

In this section k is a field of characteristic not equal to 2.

Quaternions

To a,b € k* one can attach a non-commutative associative k-algebra in the
following way.

13



14 CHAPTER 1. GALOIS COHOMOLOGY

Definition 1.1.1 A quaternion algebra over k is a k-algebra isomorphic
to the 4-dimensional associative algebra Qy(a,b) with basis 1, i, j, ij and the
multiplication table

where a,b € k*.
For a field extension k C K there is a natural isomorphism
Qk(a, b) Rk K;)QK(CL, b)

Exercise 1.1.2 The map k—Q(a,b) sending x to x - 1 identifies k with the
centre of Qr(a,b). The two-sided ideals of Qr(a,b) are 0 and Qx(a,b).

For example, Qr(—1,—1) is the algebra of Hamilton’s quaternions H. This
is a division algebra: every non-zero element of H is invertible.
A natural question is: for which a,b € k* is Q(a,b) a division algebra?

Definition 1.1.3 Let Q be a quaternion algebra. A pure quaternion in Q) is
0 or an element q € Q such that q ¢ k but ¢* € k.

It follows that if Q@ = Qk(a,b), then the pure quaternions are precisely the
elements of the form yi + zj + wij. (To see this, square x + yi + zj + wij, then
there are some cancellations, and if  # 0, then y = z = w = 0). Thus each
quaternion ¢ € @ is uniquely written as ¢ = qg + q1, where qo € k and ¢ is a
pure quaternion.

Definition 1.1.4 The conjugate of g =qo+q1 € Q is§@= qo—q1.- The norm
of g € @ is N(q) =qq € k. The trace of g € Q is Tr(q) = ¢+ g € k.

For any ¢1,¢2 € @ we have

-2 = @01, N(q1g2) = N(q1)N(q2), Tr(q1 + q2) = Tr(q1) + Tr(gz).

Exercise 1.1.5 If ¢ € Q is a pure quaternion such that ¢ is not a square in
k, then 1,q span a quadratic field which is a mazimal subfield of Q.

The quaternion k-algebras Qp(a,b) and Q(c,d) are isomorphic if and only
if there exist anti-commuting pure quaternions I,J € Q(a,b) such that I? = c,
J? =d. Then 1,1,J,1J is a basis of the k-vector space Q(a,b). Thus for any
u,v € k* we have Qg (au?, bv?) = Qy(a,b).

Lemma 1.1.6 If ¢ € k* is a norm from k(y/a)*, then Qy(a,b) = Qx(a,bc).

Proof. Write ¢ = 22 — ay® with z,y € k. Set J = xj + yij € Qr(a,b). One
checks Ji = —iJ and J? = —N(J) = be. O

If z € Qi(a,b) is an invertible element, then N(q) € k*. If N(q) = 0, then
qq = 0, so q is a zero divisor. Thus the invertible elements are exactly the
elements with non-zero norm. The norm on Qg(a,b) is the diagonal quadratic
form (1, —a, —b, ab), and this leads us to the following criterion.

We write M, (k) for the k-algebra of n x n-matrices with entries in k. In
fact, Ms(k) can be seen as a quaternion algebra of a special kind.
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Proposition 1.1.7 Let Q = Qk(a,b), where a,b € k*. The following state-
ments are equivalent:

(i) Q is not a division algebra;

(ii) @ is isomorphic to the matriz algebra Mo (k);

(iii) the diagonal quadratic form (1, —a, —b) represents zero in k;

(iv) the norm form N = (1, —a, —b, ab) represents zero in k;

(v) b is in the image of the norm homomorphism k(\/a)*—k*.
Proof. First assume a € k*?. The equivalence of all statements but (ii) is clear.
To prove the equivalence with (ii) we can assume that a = 1. The matrix algebra
My (k) is spanned by

10 (1 0 (0 b g 0 b
(5 8) (o ) s (Te) e ()

and so is isomorphic to Qx(1,b).

Now assume that a € k* is not a square. Then (i) is equivalent to (iv) since
N(g) = qq. Next, (iv) implies (v) because the ratio of two non-zero norms is a
norm. It is clear that (v) implies (iii) which implies (iv), since N is the diagonal
quadratic form (1, —a, —b,ab). So (iii), (iv) and (v) are all equivalent to (i).
Lemma 1.1.6 shows that under the assumption of (v) the algebra Q(a,b) is
isomorphic to Qx(a,b?) = Q(a,1), so we use the result of the first part of the
proof to prove the equivalence with (ii). O

If the conditions of this theorem are satisfied one says that Q(a,b) is split.
If K is a field extension of k such that Qk(a,b) = Qx(a,b) ®; K is split, then
one says that K splits Qx(a,b).

Since any quaternion algebra Q(a,b) is split by ks, we see that Qg(a,d) is
a (ks/k)-form of the 2 x 2-matrix algebra, which means that

Qr(a,b) @ ks = Mo (ks).

For example, H @g C = M3(C).
It is an easy exercise to show that the pure quaternions in My (k) are precisely
the traceless matrices.

Proposition 1.1.8 Any quaternion algebra Q split by k(\/a) contains this field
and can be written as Q = Qk(a,c) for some ¢ € k*. Conversely, if Q contains

k(y/a), then Q is split by k(v/a).

Proof. If the algebra @ is split, take ¢ = 1. Assume @ is not split, hence is a
division algebra. In particular, a is not a square in k. There exist gg,q1 € @,
not both equal to 0, such that N(qgo + q1+/a) = 0. Since Q is a division algebra,
we have gg # 0 and ¢; # 0. We have

N(q0 + ¢1v/a) = N(qo) + aN(q1) + Va(qq + ¢1%0) = 0,

hence N(qp) + aN(g1) = 0 and qoG1 + ¢1Go = 0. Set g2 = qo.G1. We have

% = q0-31-90-01 = —q0-G1-91-Go = —N(q0)N(q1) = aN(q1)>.
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Let I = q2/N(q1). Then I? = a. Since a is not a square in k, we see that
I ¢ k. The conjugation by I is a k-linear transformation of Q. It preserves the
subspace of pure quaternions, since it preserves the condition 22 € k. The order
of this linear transformation is 2 because I ¢ k, hence I is not in the centre of Q.
Thus the —1-eigenspace is non-zero, so we can find a non-zero pure quaternion
J € Q such that I.J + JI = 0. We have J? = ¢ € k, since .J is pure. This is
enough to conclude that Q = Qx(a,c).

The converse follows from the fact that k(v/a) @ k(y/a) contains zero divisors
(the norm form 22 — ay? represents zero in k(y/a)). Hence the same is true for

Q @ k(va). O

Corollary 1.1.9 The quadratic fields that split a quaternion division algebra
are exactly the quadratic subfields of this algebra.

Conics

Definition 1.1.10 Let Q be a quaternion algebra over k. Let Q1 C Q be the
3-dimensional subspace of pure quaternions. The norm form on Q induces a
non-degenerate quadratic form on Qy. The conic attached to @Q is the conic
C(Q) defined by this quadratic form in the projective plane P7 = P(Q1).

Thus the conic attached to the quaternion algebra Qp(a,b) is the plane
algebraic curve C(a,b) C PZ given by the equation

—az? — by? + abz® = 0.

Up to a change of variables, this conic is also given by the equation

2% —ax® —by? = 0.
By Proposition 1.1.7 the conic C(Q) has a k-point if and only if the quaternion
algebra @ is split.

Remark 1.1.11 1. Since the characteristic of &k is not 2, every conic can be
given by a diagonal quadratic form, and so is attached to some quaternion
algebra.

2. The projective line is isomorphic to the conic zz — y? = 0 via the map
(X:Y)— (X2: XY :Y?).

3. If a conic C has a k-point, then C' = P}. (The projection from a k-point
gives rise to a rational parameterisation of C', which is an isomorphism.)

4. Thus the function field k(C) of a conic C is a purely transcendental
extension of k if and only if C' has a k-point.

Exercise 1.1.12 1. Check that Qx(a,1 —a) and Qx(a, —a) are split.

2. Check that if k = F, is a finite field, then all quaternion k-algebras are
split. (By assumption ¢ is not a power of 2. Write az? = 1 — by? and use a
counting argument for z and y to prove the existence of a solution in F,.)
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3. Let @ be a quaternion algebra over k and let C' be the associated conic.
Then @ is split over & if and only if Q) is split over k(t). (Take a k(t)-point
on C' C P? represented by three polynomials not all divisible by ¢, and reduce
modulo t.)

4. @ is split over k(C(Q)). (Consider the generic point of the conic.)

The following theorem of Max Noether [Noe70] is a special case of Tsen’s
theorem (Theorem 1.2.12 below). It plays an important réle in the classification
of complex algebraic surfaces. The proof given here is due to Tsen.

Theorem 1.1.13 (M. Noether) Let k be an algebraically closed field. Then
all quaternion k(t)-algebras are split.

Proof. Tt is enough to show that any conic over k(t) has a point (this is Max
Noether’s statement). We can assume that the coefficients of the corresponding
quadratic form are polynomials in ¢ of degree at most m. We look for a solution
(X,Y, Z), where X, Y and Z are polynomials in ¢ (not all of them zero) of degree
n for some large integer n. The coefficients of these polynomials can be thought
of as points of the projective space P32, The solutions bijectively correspond
to the points of a closed subset of P3"*2 given by 2n 4+ m + 1 homogeneous
quadratic equations. Since k is algebraically closed this set is non-empty when
3n+2 > 2n+ m + 1, by a standard result from algebraic geometry. (If an
irreducible variety X is not contained in a hypersurface H, then dim(X N H) =
dim(X) — 1. This implies that on intersecting X with r hypersurfaces the
dimension drops at most by r, see [Sha74, Ch. 1}). O

The following theorem is due to Witt [Wit35, §2]

Theorem 1.1.14 (Witt) Two quaternion algebras are isomorphic if and only
if the conics attached to them are isomorphic.

Proof. We reproduce the proof of [GS17, Thm. 1.4.2]. Recall that C(Q)
denotes the conic attached to the quaternion algebra ). An isomorphism of
quaternion algebras ) = ' induces an isomorphism of their vector spaces of
pure quaternions respecting the norm form. Hence it induces an isomorphism
C(Q) = C(@Q).

Let us prove that if C(Q) = C(Q’), then Q = Q’. If Q is split, then C(Q)
has a k-point. Thus C(Q') also has a k-point. But then the norm form of @’
represents zero, and this implies that @Q’ is split.

Assume from now on that neither algebra is split. Write @ = Qx(a,b) and
write C' for the conic C(Q’') = C(Q) = C(a,b) given by the equation

22 —ax® —by? =0.

Let K = k(y/a) and let K(C) be the function field of the conic Cx = C Xy, K.
The conic C has a K-point, hence @’ is split by K. By Proposition 1.1.8 we
can write Q' = Qi (a, c) for some ¢ € k*. By Exercise 4 above @' is split by the
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function field k(C). By Proposition 1.1.7 this implies that ¢ € k* C k(C)* is
contained in the image of the norm map

c € Im[K(C)* —s k(C)*].

Let o € Gal(K/k) = Z/2 be the generator. Then we can write ¢ = f.o(f), where
f is a rational function on the conic Cx. One can replace f with fo(g)g~! for
any g € K(C)* without changing c.

The group Div(Cf) of divisors on Cx = PL- is freely generated by the closed
points of Ck. This is a module of Z/2 = (o) with a o-stable basis. The divisors
of functions are exactly the divisors of degree 0. The divisor D = div(f) is an
element of Div(Cf) satisfying (1 + 0)D = 0. By comparing the multiplicities
of points in the support of D we deduce that there is G € Div(Ck) such that
D=(1-0)G. Let P=(1:0:+/a). If n = deg(G) the divisor G — nP €
Div(Cf) has degree 0. Since Cx = P}, this implies G — nP = div(g) for some
g € K(C)*. We have

div(fo(g)g™") =D+ oG~ G+n(P —0cP) =n(P —cP) =n div (z—y\fax) .

It follows that Jar\"
_ z —yJ/ax .
ol = (V) e xo)
for some e € K*. Taking norms, we obtain

Z2—CL£L'

2 n
¢ = fo(f) = Nigju(e) (y) — Nip(OF" € k(C)*

) for some

hence ¢ = Ngp(e).b" € k*. Thus Q' = Q(a,c) = Q(a, Ny, /a/k(e).b"
,1). Since Q'

integer n. By Lemma 1.1.6, it is isomorphic to Q(a,b) or to Q(a
is not split, we must have @' = Q(a,b). O

1.2 The language of central simple algebras

1.2.1 Central simple algebras

Quaternion algebras and matrix algebras are particular cases of central simple
algebras.

Definition 1.2.1 An associative k-algebra A is called simple if the only two-
sided ideals of A are 0 and A. An associative k-algebra A is called central if its
centre is k. A central simple algebra is a finite dimensional k-algebra that
is both central and simple.

Recall that if V' and W are vector spaces over k, then V ®; W is the linear
span of vectors v ® w, v € V, w € W, subject to the axioms

(14+v)QW=v1 QW+ Qw, vV (W +ws)=vQw+v& ws,
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and
c(v@w)=(w)@w=v® (cw) forany cck.

This turns V @ W into a k-vector space. If (e;) is a basis of V, and (f;) is a
basis of W, then (e; ® f;) is a basis of V ®; W. The vector spaces (VU)W
and V ® (U @ W) are canonically isomorphic.

Given two k-algebras A and B, one defines the structure of a k-algebra on
A®y B by therule (z®y) - (¢ ®y') = (z2') ® (yy').

Properties. 1. Any central division algebra is a central simple algebra.

2. For any integer n > 1 the algebra of matrices M, (k) is a central simple
algebra. More generally, if D is a central division algebra, then M, (D) is a
central simple algebra [GS17, Example 2.1.2].

3. My, (k) @) My, (k) = My (k).

Later we will use the following important property of matrix algebras.

Proposition 1.2.2 Any automorphism of the k-algebra M, (k) is induced by
conjugation by an invertible matriz. This invertible matriz is well defined up to
multiplication by a scalar matriz.

Proof. [GS17, Lemma 2.4.1, Cor. 2.4.2]. O

The structure of central simple algebras is described by a theorem of Wed-
derburn.

Theorem 1.2.3 (Wedderburn) For any central simple algebra A there is a
central division algebra D such that A= D ®y M, (k) = M, (D).

The integer n is well defined, and the algebra D is well defined up to a
non-unique isomorphism. Proofs of this fundamental theorem can be found in
[BouVIII, §5, no. 4, Cor. 2], [Her68, Thm. 2.1.6], [GS17, Thm. 2.1.3].

Corollary 1.2.4 Any central simple algebra over an algebraically closed field k
is isomorphic to a matriz algebra M, (k).

Proof. We need to prove that a central division k-algebra D coincides with its
centre k. Pick any x € D. Let I C k[t] be the ideal consisting of polynomials
vanishing on x. This is a non-zero ideal, generated by some f(t) € k[t]. Since
D is a division algebra, f(t) is irreducible. As k is algebraically closed, f(t) has
degree 1, hence x € k. U

Lemma 1.2.5 Let k be a field and let A be a finite-dimensional k-algebra. Let
K /k be a finite field extension. Then A is a central simple k-algebra if and only
if AR K is a central simple K-algebra.

Proof. This is [GS17, Lemma 2.2.2]. O
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Theorem 1.2.6 Let k be a field and let A be a finite-dimensional k-algebra.
Then A is a central simple algebra if and only if there exists a positive integer
n and a finite field extension K/k such that A ®y K is isomorphic to M, (K).
Moreover, if this is so, one can choose K separable over k.

Proof. See [GS17, Thm. 2.2.1, Thm. 2.2.7]. See also [Alb31, Ch. IV, §7, Thm.
18] and [BouVIII, §10, no. 3, Prop. 4]. O

This theorem and properties 2 and 3 immediately imply that the tensor
product A ®; B of two central simple algebras is again a central simple algebra.
It also immediately implies that the dimension of a central simple algebra over
its centre k is a square of a positive integer d. This integer d is called the degree
of the algebra.

Two central simple algebras A and B are called equivalent if there are n and
m such that A ®y M, (k) = B ®x M, (k). The relation is transitive by property
3. The equivalence class of k consists of the matrix algebras of all sizes.

Theorem 1.2.7 (Brauer) The tensor product equips the set of equivalence
classes of central simple algebras over k with the structure of an abelian group.
It is called the Brauer group of k and is denoted by Br(k).

Proof. The neutral element is the class of k. Associativity follows from the asso-
ciativity of the tensor product. Commutativity follows from the isomorphisms
A® B—B® A given by z®y — y®x. The inverse element of the class of A is
the equivalence class of the opposite algebra A°P. Indeed, A ®j A°P is a central
simple algebra, and there is a non-zero homomorphism A®; A°?—End(A) that
sends a ® b to x — axb. It is injective since a central simple algebra has no
two-sided ideals, and hence is an isomorphism by the dimension count. [J

We write the group operation in Br(k) additively.

Theorem 1.2.3 implies that any class o € Br(k) is represented by a central
division algebra D which is well defined up to a non-unique isomorphism. In
particular, the degree of the algebra D is well defined. It is called the index of
(any algebra in) the class . The exponent of « is the order of « in the group
Br(k).

From Theorem 1.2.3 it follows that two central simple algebras of the same
dimension and the same class in Br(k) are isomorphic. We deduce that cancel-
lation holds: A ® B~ A® C implies B = C.

By Corollary 1.2.4, the Brauer group of an algebraically closed field is zero.
By Theorem 1.2.6 this also holds for a separably closed field. Since R, C and
H are the only finite dimensional division R-algebras (and C is not central), we
see from Theorem 1.2.3 that Br(R) = Z/2.

Given a field extension K /k there is a natural restriction map

resgy, : Br(k) — Br(K)
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defined by [A] — [A @ K]. The kernel of resg ), is denoted by Br(K/k) and is
called the relative Brauer group.

In the following lemma we assume that the characteristic of & is not 2.

Lemma 1.2.8 For any a,b,b’ € k* we have the following properties:
(i) Qr(a,b) @k Qrla,b') = Qr(a,bb') @p Ma(k).
(i) Qx(a,b) @k Qi(a,b) = My(k).

Proof [GS17, Lemma 1.5.2] The vector subspace of Qx(a,b) ®x Qx(a,b’) spanned
by 1®1,iR®1, j®7,1j®75 is A1 = Qx(a,bb’). Similarly, the span of 1®1, 1®j’,
i®i'j, —b(i ®i') is Ay = Qr(b',—a?’). The conic associated to Q(b', —a?b’)
clearly has a k-point, so Ay 2 My (k). The canonical map

Ay @k Ay — Qr(a,b) @k Qr(a,b’)

defined by the product in Qg(a,b) ® Qk(a,b’), is surjective. The kernel of
a homomorphism is a two-sided ideal, hence it is zero so that this map is an
isomorphism. This proves (i), and (ii) follows. O

Given a,b € k* we write (a, b) for the class of Qi (a,b) in Br(k). By Lemma
1.2.8 (i) we have (a,b) € Br(k)[2]. We have already seen that (au?, bv?) = (a,b)
for any u,v € k*. Lemma 1.2.8 (ii) shows that associating to a,b € k* the class
(a,b) € Br(k)[2] induces a bilinear map

E*/k*? x k* k"% — Br(k)[2].
By Proposition 1.1.7 we have (a,b) = 0 if and only if the conic 22 —az? —by? = 0
has a rational point. In particular, we have (a,—a) = 0, and (a,b) = 0 if

a + b = 1. Merkurjev proved that the 2-torsion subgroup of Br(k) is generated
by classes (a,b) (see [GS17, §8]).

1.2.2 Cyeclic algebras

Quaternion algebras are a special case of the following construction, cf. [GS17,
§2.5]. Let K/k be a Galois extension of fields such that the Galois group G =
Gal(K/k) is cyclic of order n. Let o be a generator of G and let x : G—Z/n
be the character sending o to 1 € Z/n. Let b € k*.

The cyclic algebra Dy (x, b) is defined as the k-algebra generated by the field
K and a symbol y with the relations y™ = b and Ay = yo(X) for any A € K.
This is a central simple k-algebra of degree n, which contains K as a maximal
subfield. Conversely, any central simple k-algebra of degree n which contains a
maximal subfield K which is cyclic of degree n over k is isomorphic to Dg(x, b)
for some b € k*.

We write (x,b) for the class of Dy(x,b) in Br(k).

When char(k) does not divide n and k contains all n-th roots of 1, one can
describe the cyclic algebra Dy (x,b) without mentioning the Galois action. Let
w € W, be a primitive root. For a,b € k* let (a,b), be the k-algebra with
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generators z,y and relations " = a, y™ = b, ry = wyx. One checks that this is
a central simple k-algebra. Permuting z and y we find

(a,b)e = (b,a),-1.

Assume that K = k[t]/(t" — a) is a field. Then K is a cyclic extension of k
of degree n. Let ¥/a € K be the image of t in K. There is a unique element
o € G = Gal(K/k) such that o({/a) = wi/a. If x : G—Z/n is the character
that sends o to 1 € Z/n, then the k-algebras (a, b),, and Dy (x, b) are isomorphic
[GS17, Cor. 2.5.5].

1.2.3 (C,-fields

The point of view of central simple algebras allows one to prove the triviality of
the Brauer group of several types of fields which are fundamental for arithmetic
and geometry.

Definition 1.2.9 (Lang) A field k is called a C1-field if any homogeneous form
of degree d in n > d variables with coefficients in k has a non-trivial zero in k.

One easily checks that any finite field extension of a Ci-field is a C;-field
[GS17, Lemma 6.2.4].

Theorem 1.2.10 If k is a C:-field, then Br(k) = 0.

Proof. A central simple k-algebra A comes equipped with a reduced norm,
which is a homomorphism Nrd 4 : A*—k*. Let d be the degree of A. Choosing
a basis of the vector space A over k one can write Nrd4 as a homogeneous
form of degree d in d? variables with coefficients in k. (By Theorem 1.2.6, after
extending the ground field from k to ks the algebra A ®; ks can be identified
with the matrix algebra My(ks). Under this identification, the reduced norm
becomes the determinant.) If A = D is a skewfield such that D # k, then Nrdp
has no non-trivial zero. (For all this, see [GS17, §2.6, §6.2].) Thus if k is a
Cy-field, then D = k, so that Br(k) = 0. O

Theorem 1.2.11 If k is a finite field, then k is a C1-field and Br(k) = 0.

Proof. By Wedderburn’s Little Theorem every finite ring with no zero divisors
is a field. In particular, the only central division k-algebra is k itself. This
gives Br(k) = 0. The stronger statement that a finite field is a C;-field is the
Chevalley-Warning theorem [GS17, Thm. 6.2.6]). O

Theorem 1.2.12 (Tsen) Let k be a field of transcendence degree 1 over an
algebraically closed field. Then k is a Cy-field and Br(k) = 0.

Proof. This is proved in [GS17, Thm. 6.2.8]. The proof is an extension of the
proof of Theorem 1.1.13. O
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For fields of transcendence degree 1 over a separably closed field, see Propo-
sition 3.8.2.

Recall that a local ring R with maximal ideal m and residue field k is
henselian if for every monic polynomial f(z) € Rx] every simple root in k
of the reduction of f(x) modulo m lifts to a root of f(z) in R. Define the com-
pletion of R at m as R= lgl R/m™. A local ring R is m-adically complete if the

canonical map R—R is an isomorphism. Using Newton’s approximation one
proves that any complete local ring is henselian. (See [Stacks, Section 04GE].)
If m is finitely generated, then the completion Rof Ratmis a complete local
ring with maximal ideal mR and residue field k, see [Stacks, Section 00M9).

Theorem 1.2.13 Let R be a henselian discrete valuation ring with algebraically
closed residue field k. Let K be the fraction field of R.

(i) If R is excellent, for example, if char(K) = 0 or R is complete, then K
is a Cy-field and Br(K) = 0.

(ii) In general, we have Br(K) = 0.

Proof. (i) See Lang’s thesis [Lan52], see also [Shatz, Thm. 27, p. 116]. The
excellence property, which is needed to ensure that Kisa separable extension
of K, is discussed in [BLR90, III, §6].

(ii) There are several other ways to establish Br(K) = 0 under the assump-
tion that R is complete [SerCL, Ch. XII, §1, §2]. As pointed out in [Mil80, Ch.
III, Example 2.22 (a)], these proofs also give Br(K) = 0 for R henselian with
algebraically closed residue field. [J

See Proposition 1.4.3 for the case when the residue field is separably closed
but not algebraically closed.

Corollary 1.2.14 Let R be a complete discrete valuation ring with perfect
residue field k and field of fractions K of characteristic zero. Let K. be the
mazximal unramified extension of K. Then Ky, is a C1-field.

Proof. The field K, is the field of fractions of a henselian discrete valuation
ring with algebraically closed residue field. Since char(K) = 0, the result is a
special case of Theorem 1.2.13. O

Remark 1.2.15 Let K a henselian discretely valued field and let K be the
completion of K. Then the natural map Br(K)—Br(K) is an isomorphism. For
a proof see Proposition 6.1.10.

1.3 The language of Galois cohomology

1.3.1 Group cohomology and Galois cohomology

We now assume that the reader is familiar with the cohomology theory of ab-
stract groups, which can be found in many places in the literature, for example
in [AWG65], [SerCG], [SerCL], [GS17] and [Harl7].
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Let G be a group and let M be a G-module. The group H*(G, M) := M
is the set of G-invariant elements of M. Higher cohomology groups H™(G, M),
n > 1, are the right derived functors of the functor from the category of G-
modules to the category of abelian groups that sends M to M%. They can
be computed using the standard projective resolution P,—Z of the trivial G-
module Z, as the cohomology groups of the complex Homg (P,, M). This leads
to the definition in terms of homogeneous cocycles, which can be restated as a
definition in terms of inhomogeneous cocycles.

We refer to the books mentioned above for the following aspects of the
cohomology of groups:

e relation with the cohomology of subgroups: restriction, inflation, and core-
striction in the case of a subroup H C G of finite index, Shapiro’s lemma;

e long exact sequences coming from the Hochschild—Serre spectral sequence;

e cup-products and their properties with respect to boundary maps in exact
cohomology sequences;

e cohomology of cyclic groups.

Let G be a group that acts on a not necessarily commutative group A pre-
serving its group structure. We denote the result of applying o € G to a € A
by %a. A 1-cocycle is a function @ = {a,} : G—A which satisfies the relation

Ogr = GaT c Qg
for all 0,7 € G. The function G—A whose image is the identity element of A is
called the trivial cocycle. Let Z1(G, A) be the set of 1-cocycles. Two cocycles
{as} and {b,} are called equivalent if there exists ¢ € A such that for any o0 € G
one has
ay =%¢ by - c L.

The 1-cohomology set H* (G, A) is defined as the set of equivalence classes of
ZY(G, A) with respect to this relation. The class of the trivial cocycle is the
distinguished point of H'(G, A), so we can talk about H!(G, A) as a pointed set.

Now suppose that G is a profinite group and the action of G on A is continu-
ous when A is given the discrete topology. One defines the continuous cohomol-
ogy pointed set H' (G, A) as the direct limit of the pointed sets H'(G/U, AY),
where U C G ranges over all open normal subgroups — any such subgroup being
of finite index in G. Alternatively, one defines H!(G, A) as the set of equiva-
lence classes of continuous cocycles G—A. Note that for an infinite group G
the continuous cohomology set need not coincide with the abstract cohomology
set. Unless otherwise mentioned, we shall only use continuous cohomology sets
in this book.

Given a short exact sequence of continuous discrete G-groups

1—A—B—C—1,
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where A is normal in B, there is a long exact sequence of pointed sets
1A= BY—CcY=HY(G, A)—HY(G, B)=»HY(G, 0).
If A is central in B, it extends to an exact sequence of pointed sets
1-A%—BY—CY=H (G, A)—H (G, B)—H (G, 0)—H?*(G, A).

An important particular case is when k is a field with separable closure kg
and absolute Galois group I' = Gal(ks/k) acting on the group of ks-points of
an algebraic group A over k. The pointed set H! (T, A(ks)) does not depend on
the choice of ks; it is well defined up to canonical isomorphism [SerCG, Ch. II,
§1, 1.1] and is denoted by H'(k, A). The map K ~ H'(K, A x; K) defines a
functor from the category of field extensions of k to the category of pointed sets.

We shall mostly deal with the case of the projective linear group, so let us
recall its definition. The group PGL, (k) is defined by the exact sequence of
groups

1 — k¥ — GL, (k) — PGL, (k) — 1,

where the second map is the embedding of the central subgroup of scalar ma-
trices. The multiplicative group G, ; represents the functor associating to a
commutative k-algebra R the group of invertible elements R*. The algebraic
group GL,, j, represents the functor GL,,(R). (In particular, G,, = GLj %.) Fi-
nally, the algebraic group PGL,, , is defined by the exact sequence of algebraic
k-groups

1—Gmr — GL,y — PGL, , — 1. (1.1)

If M is a continuous discrete G-module, then the continuous cohomology
group HY(G, M) is defined for any i > 0 as the direct limit of H!(G/U, M) over
the set of open normal subgroups U C G.

If A is a commutative algebraic group over k and I" = Gal(ks/k), the abelian
group HY (T, A(ks)) is well defined for any integer i > 0, up to canonical iso-
morphism [SerCG, Chap. II, §1, 1.1]; it is denoted by H!(k, A). The map
K +— HY(K, A x; K) defines a functor from the category of field extensions K
of k to the category of abelian groups.

1.3.2 Galois descent

A general reference for Galois descent is [BLR90, Section 6.2, Example B], see
also [SerCL, Ch. X], [PR91, Section 2.2], [Sko01, Section 2], [GS17, Ch. 2.3],
[O1s16, Ch. 4] and [Pol8, Ch. 4].

Let K/k be a finite Galois extension of fields with Galois group Gal(K/k).
The descent problem deals with the following question: when can a scheme
X' over K be descended to k, that is, is there a scheme X over k such that
X' = X x, K7 Grothendieck explored the analogy with the classical case,
where a topological space or a differentiable manifold can be constructed by
glueing together open subsets via transition functions which satisfy a compat-
ibility condition on triple intersections. A ‘descent datum’ is an analogue of
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this for schemes. (Descent data can be defined more generally for any category
fibred over a category with finite fibred products, see [Ols16, Section 4.2] or
Section 2.6.2 below.) In [BLR90, pp. 140-141] it is shown that giving a ‘descent
datum’ on a K-scheme X’ with respect to K /k is equivalent to giving an action
of Gal(K/k) on X’ that is compatible with the action of Gal(K/k) on K by
automorphisms. This descent problem is ‘effective’ (that is, there is a scheme X
over k such that X’ 2 X x; K) when X’ is quasi-separated and the Gal(K/k)-
orbit of every point of X’ is contained in a quasi-affine open subscheme of X’. In
particular, Galois descent is effective for quasi-projective varieties over a field.

Let X be a variety over k. Let K/k be a Galois extension (not necessarily
finite) with Galois group Gal(K/k). A k-variety Y is called a (K/k)-form of X
if there is an isomorphism Y x; K = X xj K of K-varieties. Using effectivity
of Galois descent one shows that if X is a quasi-projective variety over k, then
the (K/k)-forms of X are classified, up to isomorphism, by the elements of
the Galois cohomology set H (Gal(K/k), Aut(X xj, K)) in such a way that the
isomorphism class of X corresponds to the distinguished point. See [Pol8, §4.4,
§4.5] for a detailed proof of this classical result.

For example, the (ks/k)-forms of a projective space are called Severi—Brauer
varieties. It is not hard to see that Severi-Brauer varieties of dimension 1 are
precisely the plane projective conics. By a theorem of Chatelet, a Severi—Brauer
variety is isomorphic to P271 if and only if it has a k-point, see Section 6.1 for
this and other results on Severi—Brauer varieties. Note that the automorphism
functor of IPZ_I is represented by the group k-scheme PGL,, 4.

More generally, suppose that we have a quasi-projective variety X over k
endowed with an action of a group k-scheme A. By definition, each cohomology
class in H!(k, A) contains a 1-cocycle ¢ : I' = Gal(ks/k)—A(ks); it comes from
a l-cocycle ¢ : Gal(K/k)—A(K) for some finite Galois extension k¥ C K. The
cocycle ¢ defines a twisted action of Gal(K/k) on X X K as the composition of
the action on X xj K via the second factor with the action of ¢(g) € A(K). The
cocycle condition is equivalent to this being an action of Gal(K/k) on X xj; K
compatible with the action of Gal(K/k) on K by automorphisms. By effectivity
of Galois descent, there exists a quasi-projective variety X¢ over k such that the
K-varieties X x; K and X¢ X, K are isomorphic; this isomorphism identifies
the action of Gal(K/k) on X¢ x, K via the second factor with the twisted by
¢ action of Gal(K/k) on X xj K. The variety X¢ is called the twist of X by c.
By construction, it is a (ks/k)-form of X. Replacing ¢ by an equivalent cocycle
gives rise to a variety non-canonically isomorphic to X°¢. Particular cases of this
situation include (see [Sko01, pp. 12-13], [Pol8, §4.5]):

(a) Twists of the vector space k™ by a 1-cocycle with coefficients in A = GL,,
are isomorphic to k", cf. [Pol8, §1.3].

(b) Twists of the matrix algebra M, (k) by a l-cocycle with coefficients in
A = PGL,,j, are central simple algebras of degree n. Moreover, by [SerCL,
Ch. X, §5, Prop. 8], this gives a bijection between the isomorphism classes
of central simple algebras of degree n and the pointed set H!(k, PGL,, x).
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(c) Torsors of an algebraic k-group A are obtained by twisting A by a 1-
cocycle with coefficients in A acting on itself on the left. In this case A
represents the automorphism functor of A considered together with its
right action on itself, i.e. of A as a right A-torsor. Using effectivity of
Galois descent one shows that the isomorphism classes of right A-torsors
over k bijectively correspond to the elements of H!(k, A). (This is the
easy case of [BLR90, §6.5, Thm. 1], see also [SkoO1, p. 13].) For example,
the affine conic 22 — ay? = c is a torsor for the norm 1 torus given by
2?2 —ay? = 1. Also, a smooth projective curve of genus 1 is a torsor for

its Jacobian.

(d) Suppose that an algebraic k-group A acts on an algebraic k-group G by
automorphisms. Twisting G by a 1-cocycle I—A one obtains a (ks/k)-
form of G. For example, the group of invertible elements of a central
simple k-algebra of degree n is the group of k-points of a twist of GL,, j
by a 1-cocycle with values in A = PGL,, ;. For any commutative algebraic
group one defines quadratic twists by taking A = {£1}, where —1 sends
z to 7. For example, the quadratic twists of G, are the norm tori
2% —ay? = 1, where a € k*. The quadratic twists of an elliptic curve
y? = 2% + ax + b are the elliptic curves cy? = x + ax + b, where ¢ € k*.

Looking closer at the case of vector spaces one deduces the triviality of 1-
cocycles with coefficients in GL,, x.

Theorem 1.3.1 (Speiser) For any Galois extension of fields K/k with Galois
group G we have H (G, GL,(K)) = {1}.

Proof. The automorphism functor of the n-dimensional vector space is repre-
sented by GL,,. The twist of k™ by a 1-cocycle ¢ : G—GL,,(K) is a vector space
over k of dimension n, so it is isomorphic to k™. This isomorphism, after tensor-
ing with K, gives a linear transformation ¢ € GL,,(K) such that c(g) = 9p-p~1.
Thus ¢ represents the trivial class. See also [GS17, Example 2.3.4] and [Pol8,
Prop. 1.3.15]. O

This theorem is often proved by a direct cocycle computation, see [SerCL,
Ch. X, Prop. 3.

Theorem 1.3.2 (Hilbert’s theorem 90) For any Galois extension of fields
K/k with Galois group G we have H (G, K*) = 0.

This is a particular case of Speiser’s theorem for n = 1. For later use let us
record a corollary of this theorem. Given field extensions k C K C L with L/k
and K/k Galois, there is a short exact sequence

0 — H*(Gal(K/k), K*) — H*(Gal(L/k), L*) — H*(Gal(L/K),L*) (1.2)

where the first arrow is inflation and the second arrow is restriction.
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Applying Hilbert’s theorem 90 to (1.1) we see that for any field extension
K /k the group of K-points of PGL,, j is precisely PGL,, (X). Proposition 1.2.2
shows that the natural map

PGL, (K) — Aut g (M, (K))

is an isomorphism of groups, where K-alg stands for the category of K-algebras.
When K is a Galois extension of k, this isomorphism respects the Galois action
on both sides. This shows that the automorphism functor of the matrix algebra
M, (k) (which is a functor from the category of field extensions of k to the
category of groups) is represented by the algebraic group PGL,, j.

Theorem 1.3.3 (Skolem—Noether) All automorphisms of a central simple
algebra over a field are inner automorphisms.

Proof. Let A be a central simple algebra over a field k. Pick a finite Galois
extension K /k that splits A. The homomorphism A*—Autj_.i(A) sending an
element to the conjugation by this element extends to a similar map over K.
Let G = Gal(K/k). We then have the exact sequence of G-modules

1— K" — (A®p K)" — Autg_ag(A ® K) — 1,

where surjectivity of the third map follows from Proposition 1.2.2. The long
exact cohomology sequence gives an exact sequence of pointed sets

1 — k" — A" — Auty_ae(4) — HY(G, K*).

Since H' (G, K*) = 0 by Hilbert’s theorem 90, the homomorphism A*— Auty,_a1g(A)
is surjective. [J

There is actually a more general result.

Theorem 1.3.4 (Skolem—Noether) Let k be a field, let B be a simple k-
algebra and let A be a central simple algebra over k. Then all non-zero k-
homomorphisms B— A are injective and can be obtained from one another by
conjugations in A.

Proof. See [Rei03, Thm. 7.21]. O

1.3.3 Cohomological description of the Brauer group

Let K/k be a finite Galois extension of fields with Galois group G. Recall that
a central simple algebra of degree n over k is split by K, i.e., is a (K/k)-form
of M, (k), if and only if there exists an isomorphism of K-algebras A ®j K =
M, (K). Let us denote by Az, x the set of isomorphism classes of central simple
algebras of degree n over k which are split by K. As discussed in the previous
section, we have a bijection of pointed sets

Az, x——H"(G,PGL,(K)).
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Since HY(G, GL,,(K)) = {1} by Theorem 1.3.1, the exact sequence of pointed
cohomology sets attached to (1.1)

H'(G,GL,(K)) — HY(G,PCGL,(K)) — H*(G, K*),

gives rise to maps
Az, x — H*(G,K*)

with trivial kernel. One easily checks that for given n and r there is a commu-
tative diagram

1 - k* — GL,(k) — PGL,(k) — 1

I i }
1 - k* — GL,.(k) — PGL,. (k) — 1

where the middle vertical map sends a matrix M to the matrix with r diagonal
blocks equal to M and zero elsewhere. Replacing k& by K and taking Galois
cohomology we obtain commutative diagrams

H!(G,PGL,(K)) — H2(G,K*)

I |
H'(G,PGL,,(K)) — H(G,K*)

The left vertical map can be identified with the map Az, x—Az,, x sending A
to A®y M, (k). Passing to the limit over n we obtain a map of pointed sets

Br(K/k) — H*(G, K*)

with trivial kernel. Using Theorem 1.2.6 and passing to the limit over finite
Galois extensions K/k, we get a map of pointed sets

Br(k) — H2(k, k)
with trivial kernel. One then establishes the following properties.

e These maps are homomorphisms of groups, hence they are injective. See
[GS17, Prop. 2.7.9].

e These maps are surjective. This is proved by a cocycle computation using
the classical construction of crossed products, see [SerCL, Ch. X, §5, Prop.
9]. An elegant cocycle-free proof is given in [GS17, Thm. 4.4.1].

We summarise this as the following theorem.

Theorem 1.3.5 For a field k and a Galois extension of fields K/k there are
natural isomorphisms of abelian groups

Br(K/k)—H?*(Gal(K/k), K*)

and
Br(k)—H?(k, k).
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The second isomorphism is functorial with respect to arbitrary field exten-
sions of k, see [SerCL, Ch. 10, §4].

The cohomological description of the Brauer group is very useful. For ex-
ample, it immediately gives

Corollary 1.3.6 For any field k the Brauer group Br(k) is a torsion group.

Proof. The group Br(k) is the direct limit of Br(K/k) = H?(Gal(K/k), K*),
where K /k is a finite Galois extension. But if G is finite, then H (G, M), where
M is any G-module and 7 > 1, is annihilated by the order of G. (This follows
from the fact that the composition of the restriction to a subgroup H C G
followed by the corestriction is the multiplication by the index [G : H]. One
applies this to the case when H is the identity element of G.) O

Theorem 1.3.7 Let k be a perfect field, char(k) = p > 0. Then Br(k){p} = 0.

Proof. Let ks be a separable closure of k. The map x +— zP is an isomorphism
of the Galois module k¥. Thus multiplication by p is an automorphism of the
group Br(k) = H?(k, kZ). Since this is a torsion group, we are done. [J.

Let k C K be an arbitrary field extension. The map
resg i, : Br(k)—Br(K)

defined by associating to a central simple k-algebra A the central simple K-
algebra A ®; K coincides with the cohomological restriction map

H?(k, kY)—H*(K, K7).

Let us spell out the formalism of corestriction in the special case of the Brauer
group and finite separable extensions of fields. For a more general context,
which includes not necessarily separable field extensions, see Section 3.8. Let
K C kg be a separable finite field extension of k. We have an isomorphism

BI‘(K) = H2(K7 k:) = H2(kv (ks Ok K)*)

obtained using Shapiro’s lemma and the fact that (ks®x K)* is the direct product
of finitely many copies of k} indexed by the embeddings of K < kg, so the
Gal(ks/k)-module (ks ®) K)* is induced from the Gal(ks/K)-module k. The
norm Ng /i, : K—Fk gives rise to a map of Galois modules (ks ® K)*—k}, hence
to a homomorphism H?(k, (ks ®% K)*)—H?2(k,k?). This defines a corestriction
map

coresye/y, : Br(K) = H*(K, k) = H*(k, (ks @ K)*) — H?(k, k) = Br(k).
Since Nk (z) = 2™ for x € k, where n = [K : k], the composition
coresy, o resgy, - Br(k) — Br(K) — Br(k)

is the multiplication by the degree [K : k.



1.3. THE LANGUAGE OF GALOIS COHOMOLOGY 31

1.3.4 Kummer sequence, cyclic algebras and cup-products

Let k be a field with separable closure ks and Galois group I' = Gal(ks/k).
Assume that n is invertible in k. Then the map x +— z™ on k induces an
exact sequence of Galois modules

1— pp — kI — kI — 1, (1.3)

called the Kummer sequence. Taking Galois cohomology, and using Hilbert’s
theorem 90, we obtain isomorphisms

E* k" —H'(k, 1) and  H2(k, p,,)——Br(k)[n].

The first of these isomorphisms associates to an element a € k* the class of the
1-cocycle g = g(b)b™t € p,(ks), where b € k7 is such that b” = a, and g € T
This is precisely the image of a € k* under the connecting map § : k*—H?! (k, i,
in the long exact sequence of Galois cohomology attached to (1.3).

Let G be a cyclic group of order n. Fix a generator o of G. Let x €
Hom(G,Z/n) = HY(G,Z/n) be the homomorphism sending o to 1 € Z/n. The
exact sequence

0—Z—Z—Z/n—0

induced by multiplication by n on Z gives rise to an isomorphism
0:HYG,Z/n)—H*(G,Z)[n],

and so defines the class d(x) € H3(G,Z)[n]. For any G-module A the cup-
product with d(x) € H?(G,Z) defines an isomorphism

HY(G, A)——H"2(G, A)
for 4 > 1. For i = 0 it induces an isomorphism
A% /NgA = H(G, A)—H2(G, A),

where Ng € Z|G] is the formal sum of all elements of G. The first equality here
is the definition of Tate’s cohomology group Izlo(G7 A).

For a Galois field extension K/k with cyclic Galois group Gal(K/k) =Z/n
with generator o, the previous considerations give an isomorphism

k* /N g i (K*)—H2(G, K*) = Ker[Br(k)—Br(K)]. (1.4)

It is defined by the cup-product with d(x) € H2?(G,Z), so it depends on the
choice of a generator o € G.

Recall that for a € k* we denote by (x,a) € Br(k) the class of the cyclic
algebra Dy(x, a), see Section 1.2.2. It is known [GS17, Prop. 4.7.3, Cor. 4.7.4]
that

(x,a) =aUd(x) =9(x)Ua=xUd(a) € Br(k). (1.5)

Here §(a) € k*/k*™ = H'(k, u,) is the image of a under the connecting map
define by the Kummer sequence, and y U d(a) € H2(k,u,) C Br(k) is given
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by the cup-product H'(k,Z/n) x H(k, j1,,)—H?(k, j1,,). From the isomorphism
(1.4) we deduce that (x,a) = 0 in Br(k) if and only if a € k* is a norm for the
extension K/k.

Now assume p,(ks) C k, so that p, is isomorphic to Z/n as a I'-module.
Since H! (k, j1,,) = k*/k*™ we see that every cyclic field extension of k of degree
n is of the form k(/a) for some a € k*. The cup-product pairing

U: k"™ x k* k" = H (k, ) x HY (K, p) — H2(k, p£2).

is anticommutative, that is, aUb = —bUa. Choose an isomorphism p, —Z/n,
which is equivalent to choosing a primitive root of unity w € k (sent to 1 € Z/n).
This induces an isomorphism p®?-—+pu,,, hence an isomorphism

HP (k, 1) = H(k, p) © prn—H2(k, 1) = Br(k)|n.

The inverse map sends a class a € H?(k, f1,,) to a ® w. For a,b € k* we denote
the image of (a,b) under the composite map

E* x k' — KK x k* B — B2 (k, p©?%) — H2(k, un) = Br(k)[n]
by (a,b),. Under the isomorphism H2(k, u®?) = H2(k, j1,) ® 1, the class a Ub
corresponds to (a,b), ® w.

The class of (a,b),, is the class of the algebra defined in Section 1.2.2, see
[GS17, Prop. 4.7.1]. The equality (a,b),, = —(b,a),, follows from the equality
aUb=—-bUa.

For any integer n > 1, by treating separately odd and even integers one
checks that both —a and 1 — a are norms for the extension k[t]/(t" — a) of k.
Thus aU (—a) =0 and aU (1 —a) =0.

When n = 2 is invertible in k we recover the case of quaternion algebras.
The bilinearity of the cup-product then gives various properties that we proved
in a more explicit way in Section 1.1.

1.4 Galois cohomology of discretely valued fields

Let R be a discrete valuation ring with field of fractions K and residue field
k. Let ¢ be a prime number invertible in R. The literature contains various
constructions of residue maps

Or : Br(K){¢} — H'(k, Q¢/Z0).

When k is perfect of characteristic p > 0, there are constructions of a residue
map
Or : Br(K) — H'(k,Q/Z)

which also take care of the p-primary subgroup of Br(K).
One approach that we do not pursue here is via the Merkurjev—Suslin the-
orem, which gives an isomorphism Ka(F)/n = H?(F, u®?) valid for any field
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F and any integer n invertible in F (see, e.g., [GS17, Ch. 8]). When, more-
over, pi, C F, we obtain an isomorphism Ks(F')/n——Br(F')[n], which depends
on the choice of a primitive n-th root of unity in F. Thus if u, C K and
(char(K),n) = 1 we can combine the Merkurjev—Suslin isomorphism with the
tame symbol Ko (K)/n—k*/k*" to obtain a composite map

Br(K)[n] = Ko(K)/n =25 k* /k*"

without assuming that & is perfect or has characteristic coprime to n.

The classical case is that of local fields, i.e. complete discretely valued fields
K with finite (hence perfect) residue field k. Then K is either a finite extension
of the p-adic field Q, or the field of formal power series in one variable over
a finite field. In these cases the local class field theory gives an isomorphism
Br(K)——Q/Z, often called the local invariant. Its construction goes back to the
1930s and is due to Hasse and Witt [Wit37], and so predates Galois cohomology.
This approach uses Brauer classes of central simple algebras over local fields and
maximal orders in such algebras; the key fact is that a central division ring over
K contains a maximal subfield which is unramified over K, see [SerCL, Ch. XII,
§2] and [Rei03, Ch. 8]. We do not discuss this here but concentrate instead on
the cohomological constructions with finite and infinite coefficients.

1.4.1 Residue with finite coefficients

For this construction we assume that n is coprime to char(k). The goal is to
define a residue map
H?(K, p,,) — H'(k, Z/n),

which can then be composed with the inverse of the isomorphism
H? (K, ) —Br(K)[n]

provided by the Kummer sequence (1.3). Our exposition in this section is based
on Chapters IT and III of [Ser03] and Chapters 6 and 7 of [GS17].

Theorem 1.4.1 Let G be a profinite group and let N be a closed normal sub-
group of G. Let C be a discrete G-module.
(i) Suppose that H*(N,C) = 0 forn > 1. Then there is a long exact sequence

... —HY(T,cN)=H(G,C)—H"T,H (N, C))—-H(T,CV)—... (1.6)

(ii) Define I' = G/N. In addition to the assumptions of (i) assume that N
acts trivially on C, so that C' can be considered as a I'-module. If, moreover,
the exact sequence

1—N—-G—TI—1 (1.7)

1s split, then for each i > 1 there is a split exact sequence

0 — HYT,C) — HY(G,C) — H" (T, Hom(N, C)) — 0. (1.8)
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Here Hom(N, C) denotes the group of continuous homomorphisms N—C,
i.e. homomorphisms with finite image and open kernel.

Proof. (i) There is the Hochschild—Serre spectral sequence
HP(I',HY(N, C)) = HPT9(G, C).

The assumption of (i) implies that this spectral sequence gives rises to the exact
sequence (1.6).

(ii) We have CV = C. Let o : =G be a homomorphism such that the
composition '=G—T is the identity map. The composition of the inflation
map H(I', C)—H!(G, C) from (1.6) with the restriction o* : H/(G, C)—H' (T, C)
is the identity. This implies the injectivity of H* (T, C)—H!(G,C) for i > 0.
Thus we obtain the exact sequences (1.8). The same argument gives that these
sequences are split. [

Let R be a henselian discrete valuation ring with field of fractions K and
residue field k. We have a chain of field extensions

KCKanKtCKs,

where K is a separable closure of K, K,, C K is the maximal unramified
extension of K, and K; C K is the maximal tamely ramified extension of K.
Let G = Gal(K/K) and I' = Gal(Ky,/K) = Gal(ks/k). Let I = Gal(Ks/Ky,)
be the inertia group and let N = Gal(K;/K,;) be the tame inertia group. By
Hensel’s lemma, the field K,,, contains all n-th roots of 1, for n prime to the
characteristic of k.

The field K; is obtained from K, by adjoining the n-th roots of a fixed
uniformiser m € K, for all n coprime to char(k). Indeed, let L be a finite tame
extension of K, and let e = [L : K,,;] be its degree, which is prime to char(k).
Let m; € L be a uniformiser. We have m = un{, where v is a unit in L. By
Hensel’s lemma, any unit in L is an e-th power. Thus we can choose m; such
that 7 = n$. By Eisenstein’s criterion, L = Ky, (7'/¢).

Hence N = lim pu,, where (char(k),n) = 1. In other words, the profinite
group N is isomorphic to 7 if char(k) = 0, and is isomorphic to the quotient of
7 by its maximal pro-p-subgroup if char(k) = p > 0. It follows that cd(N) < 1,
that is, for any discrete torsion Galois module C' we have HY(N,C) = 0 for
any ¢ > 2. The wild inertia subgroup Gal(K,/K}) is trivial if char(k) = 0,
otherwise it is a pro-p-group. Thus for any continuous discrete torsion G-module
C annihilated by an integer coprime to char(k), one has H (Gal(K,/K;),C) = 0
for i > 0. The Hochschild-Serre spectral sequence then gives that H*(I,C) = 0
for all 7 > 2.

For each n > 1 coprime to p choose an n-th root m, of 7w in Ky in such a
way that (m,n)™ = m, for all m,n. Let K’ be the extension of K generated by
all the roots m,. It is clear that K, and K’ are linearly disjoint over K, and
K, = K,,K’. This implies that the exact sequence

0— N — G/Gal(Ky/K;) — T — 1
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is split. Since the p-cohomological dimension of T is at most 1 [SerCG, Ch. 2,
§2, Prop. 3], every homomorphism I'=G/Gal( K/ K}) lifts to a homomorphism
I'—=G, see [SerCG, Ch. 1, §3, Prop. 16]. Hence the following exact sequence is
also split:

1l—I—G—T—1.

Now Theorem 1.4.1 gives rise to split exact sequences for all i > 1
0 — H(k,C) — HY(K,C) = H" ' (k,C(~1)) — 0. (1.9)

Definition 1.4.2 Let C be a T'-module of exponent coprime to char(k), where
I' = Gal(K,,/K) = Gal(ks/k). Fori > 1 the map

r:H(K,C) — H™Y(k,C(-1))

is called the residue map. An element x € HY (K, C) is called unramified if
r(z) =0.

We have a cup-product pairing of Galois cohomology groups of K
U:HY(K, p,) x H YK, C(-1)) — HY(K, C). (1.10)

The exact sequence (1.9) allows one to identify H/ 1 (k, C'(—1)) with a subgroup
of H/=1(K,C(—1)). This gives rise to the pairing

U:HY K, py) x H Yk, C(-1)) — HY(K, C). (1.11)
The pairing (1.10) is functorial in K, so (1.11) is too (see [Ser03, Prop. 8.2]).

Examples Let C' = p,,, where (n, char(k)) = 1.
(1) For i =1 and one obtains a split exact sequence

0 — k*/k* — K*/K*" -5 Z/n — 0. (1.12)

The residue map in this sequence is induced by the valuation v : K*—Z. Indeed,
the following diagram commutes:

K*/K* % Z/n
T T
K* - Z

To see this we check that (7),, € K*/K*" is sent by r to
1 € Z/n = Hom(un, ptn) = Hom(N, py,) = Hom(I, piy, ).

By definition, r sends the class of the K-torsor with the equation ™ = 7 to the
class of the same torsor over K,,. The smallest extension of K, over which the
points of this torsor are defined, is K, ({/7). Thus the inertia group I acts on
the points on this torsor through its tame quotient N, more precisely, through
Gal(Kp, (/7)/Kunr) = pin. This is exactly the isomorphism used in the above
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description of N as the inverse limit of u,, for n coprime to char(k), so the
action on the points of our torsor corresponds to 1 € Z/n.

(2) For ¢ = 2 one obtains a split exact sequence
0 — H2(k, ) — HA(K, pn) — H'(k,Z/n) — 0, (1.13)
which, in view of the Kummer exact sequence (1.3), can be rewritten as follows:
0 — Br(k)[n] — Br(K)[n] — H'(k,Z/n) — 0. (1.14)

Proposition 1.4.3 Let R be a henselian discrete valuation ring with fraction
field K and residue field k. Let T’ be the absolute Galois group of K. Let p be
the characteristic exponent of k. If R is strictly henselian, i.e., if k is separably
closed, then we have the following statements.

(i) For any prime £ # p, any {-primary torsion I'-module C' and any integer
i > 2, we have H'(K,C) = 0. In other words, cd,(K) < 1.

(ii) For any i > 1 the group H(K,G,,) is a p-primary torsion group (so the
group is trivial when p =1).

(iii) The Brauer group Br(K) is a p-primary torsion group.

(iv) If k is algebraically closed, then cd(K) < 1 and H(K,G,,) = 0 for all
1> 1.

Proof. Part (i) is an immediate consequence of the exact sequence (1.9). State-
ment (ii) then follows from the Kummer sequence (1.3) and statement (iii) is
just the special case i = 2.

We owe the following proof of (iv) to L. Moret-Bailly. Quite generally, if R is
a discrete valuation ring with field of fractions K and L/K is an arbitrary finite
field extension, the integral closure S C L (which need not be finite over R if
R is not excellent) is a semilocal Dedekind domain, and for each maximal ideal
q of S, the quotient S/q if finite over R/(¢ N R). This is a special case of the
Krull-Akizuki Theorem [BouAC, Ch. 7, §2, no. 5]. If, moreover, R is henselian,
then since S is integral over R and has no zero-divisors, a limit argument shows
that it is a henselian local ring [Ray70b, Chap. I, §2, Prop. 2 p. 7]. In the
case considered in (iv), the residue fields of R and hence of S are algebraically
closed. By Theorem 1.2.13 we thus have Br(L) = 0 for any finite field extension
L/K. By [SerCG, Chap. II, §3.1, Prop. 5], this implies cd(K) < 1, which in
turn implies HY(K,G,,) =0 for all i > 1. [J

Remark 1.4.4 Let R be a complete discrete valuation ring with fraction field
K of characteristic 0 and residue field k& of characteristic p > 0. Assume that K
contains the p-th roots of 1. When £ is not perfect, Kato [Kat86] has constructed
a filtration on Br(K)[p] whose smallest term is H!(k, Z/p) C Br(K)[p] but whose
successive quotients involve the groups of absolute differentials QZ Iz of k, i.e.

the groups of differentials Q};/kp. See also [CT99a] and [GOO0S].

Proposition 1.4.5 Let R be a henselian discrete valuation ring with field of
fractions K and residue field k. Let C' be a I'-module of exponent n invertible
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in R. Let m be a uniformiser of R and let (m), be the image of m under the
map K*—H(K, u,) given by the Kummer sequence (1.3). Any a € HY(K,C)
1s uniquely written as

a=ag+ (7)), Uag,

where ag € Hi(k,C) and oy € H=Y(k,C(=1)). Moreover, a; = r(a).
Proof. See [Ser03, Ch. II, Prop. 7.11, p. 18]. O

Using this, one proves the following general formula [Ser03, 11.6.5, Exercise
7.12]. Let A, B,C be n-torsion I'-modules such that there is a I'-equivariant
pairing A x B—C'. It induces the pairing

U:HP(K,A) x HY(K, B) — HPTY(K, C).
For o € HP(K, A) and 8 € HY(K, B), one has
r(aUB) =r(a)UB+ (—=1)PaUr(B) +r(a)Ur(B)U(-1), € HP I (k, C(-1)),
where (—1),, € H'(k, j1,,) denotes the class of —1 € k*/k* = H(k, pu,)-
Here are some applications of this formula.
e The cup-product followed by the residue
HY(K, ) x HY (K, pn) — H(K, pu2%) == H (k, 1)
gives rise to the skew-symmetric pairing
K*/K* x K*/K*™ — k*/k*". (1.15)

The above formula for the residue of the cup-product shows that the value
of this pairing on the classes of a,b € K* is the image in k*/k*" of the
following element of A*:

(—1)v@v®pva) gu®) ¢ A*, (1.16)
o If we consider
HY(K,Z/n) x H'(K, pn) — H*(K, pi,) —— H'(k,Z/n),
then for any y € HY(k,Z/n) C HY(K,Z/n) and any b € K* we obtain
r(xUb) = —v(b)x € H' (k,Z/n).
e However if we consider
HY(K, ji,) x H (K, Z/n) — H*(K, tn) — H'(k, Z/n),
then for any y € H'(k,Z/n) C H'(K,Z/n) and any b € K* we obtain
r(bUx) = v(b)x € H (k,Z/n).
This implies that the map s : H*(k, Z/n)—H?(K, u,,) given by
s(x) = (m)n UX, (1.17)

where (7),, is the image of 7 in K*/K*", is a section of the residue r.
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1.4.2 Extensions of rings

Let R be a discrete valuation ring with field of fractions K and residue field k.
Let L be a finite separable extension of K. Then the integral closure B of R
in L is a semi-local Dedekind domain which is a finitely generated R-module
[SerCL, Ch. I, 84, Prop. 8]. Let my, for i = 1,...,n, be the maximal ideals of
B. Let k; = B/m; be the residue field at m;. Let e; be the ramification index
of m; over K.

Proposition 1.4.6 Let ¢ be a prime invertible in R. Then one has commutative
diagrams

Br(L){(} —— H'(ki, Qe /Z¢) Br(L){f} —— @i, H' (ki, Qe/Z0)
TresK/L Teiresk/ki icoresK/L \choresk/ki
Br(K){¢} L)Hl(k;,Qg/Z[) Br(K){¢} Hl(k‘,Qg/Zg)

Proof. We give a sketch of the proof and refer to [Ser03, §8] for details.

Let R be the completion of R and let K be the completion of K. Let
B be the completion of B with respect to the discrete valuation defined by m;.
Similarly, let L; be the completion of L at m;. Clearly, K is the field of fractions
of R and L; is the field of fractions of B;. By [SerCL, Ch. II, §3] we have

Lox K—=][L., BerR—=]]B:.
i=1 i=1
It is enough to prove the proposition in the case when R is complete. For the
first diagram, using Proposition 1.4.5, it suffices to check commutativity for
(rr) U x € Br(K){¢}, where xy € H'(k,Q¢/Z) and 7g is a uniformiser of R.
This follows from the functoriality of the pairing with respect to extensions of
the field K.

For the second diagram, one can reduce to the following two cases: L/K
unramified, i.e. e(L/K) = 1 and the residue field extension kr,/k is separable,
and L/K with kr,/k purely inseparable. In the first case, one considers (rg)UY,
where x € H'(kr,Q¢/Z;). In the second case it is enough to consider the
elements of Br(L){¢} of the form (73) U x, where x € H!(k,Q¢/Z;). The result
follows from the standard “projection formulae”. [

Proposition 1.4.7 Let K C L be an unramified extension of henselian dis-
cretely valued fields with residue fields k C kr. Let a € Br(K){{}, where
¢ is invertible in k. Suppose that resy k(o) € Br(L) is unramified, so that
resy /i () is the image of an element € Br(kr) under the injective map
Br(kp){¢}—Br(L){¢} from the exact sequence (1.14). Then B is contained in
the image of the restriction map resy, s, : Br(k)—Br(kr).

Proof. Take any n such that {"a = 0. By Proposition 1.4.5, a is uniquely
written as
a=ag+ (m)m Uay,
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where 7 € K is a uniformiser, (7)) € HY(K, jugn) is the image of 7 € K*
under the boundary map of the Kummer sequence, ag € Br(k)[¢"] and oy €
HY(k,Z /(™). Moreover, a; = rx () is the residue of a. By the compatibility of
pairings for K and L, the image of (7)¢ Uy in Br(L) is (7)e Uresy, jp(a1),
where 7 is understood as an element of L.

Since resy/x (cp) and resy,/k(a) are unramified, (7)g Uresy, /x(a1) is also
unramified. As L is unramified over K, the uniformiser 7 € K is also a uni-
formiser of L. Therefore, the residue map 75 : Br(L)[("]|—H!(kr,Z/{") sends
(m)en Uresy, ji(aq) to resy, sx(on) € HY (kr,Z/€™), so this last element is zero.
Hence (m)em U oy goes to zero in Br(L), so that resy,x(a) is the image of
reskL/k(ao). ([

Corollary 1.4.8 Let R C B be an unramified extension of (not necessarily
henselian) discrete valuation rings with fraction fields K C L and residue fields
k C A Let a € Br(K){¢}, where £ is a prime invertible in R. Suppose that
the image of « in Br(L) is unramified, so it is the image of a (well defined)
element B € Br(B). Then the image of 5 under the natural map Br(B)—Br()\)
is contained in the image of the restriction map Br(k)—Br(A).

Proof. The statement only concerns the value of 5 at the closed point Spec(\)
of Spec(B), so we can assume without loss of generality that R and B are
henselian. In this case the statement follows from Proposition 1.4.7. O

1.4.3 Witt residue

Let R be a henselian discrete valuation ring with fraction field K and perfect
residue field k. As above, we have inclusions of discretely valued fields

K C K, C K; C K.

The residue field of any of the fields K., K, K is the algebraic closure of k.
We have I' = Gal(K,,/K) = Gal(ks/k).

By Theorem 1.2.13 we have Br(K, ) = 0. By Hilbert’s theorem 90 the
Hochschild—Serre spectral sequence

HP (D, HY (K, KF)) = HPYU(K, K7) (1.18)

gives an isomorphism H?*(T, K} )——Br(K). Composing it with the Galois
equivariant map v : K}, —Z given by the valuation we obtain

Br(K)«—H*T,K:,) 2 H*(T, Z)«—H"(T,Q/Z) = Homeon (', Q/7Z),

where the isomorphism H*(T', Q/Z)——H?(T', Z) comes from Galois cohomology
of the exact sequence

0—Z—Q—Q/Z—0. (1.19)
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Definition 1.4.9 The resulting map
rw : Br(K) — H'(k,Q/Z)
is called the Witt residue.

We note that the choice of a uniformiser defines a section of the homomor-
phism v : K —Z, and hence of ry. In particular, the Witt residue map ry
is surjective (for the kernel of the Witt residue, see Theorem 3.6.2). This sec-
tion can be described in terms of the cup-product. Since I' is a quotient of
Gal(K/K), we can view a continuous character y : '=Q/Z as a character of
Gal(K,/K). Applying the differential in the long exact sequence attached to
the exact sequence of Gal(Ks/K)-modules (1.19) we obtain 6(x) € H?(K,Z).
For any b € K* the cup-product §(x) U b under the pairing

H*(K,7Z) x HY(K, K}) — Br(K) (1.20)

is an element of Br(K), see also [SerCL, Ch. XIV, §1]. (In Section 1.3.4 this
element was denoted by (x,b).) Thus, if 7 € R is a uniformiser, then the map

swx)=0(x)um (1.21)

is a section of ryy.

1.4.4 Compatibility of residues

Theorem 1.4.10 Let R be a henselian discrete valuation ring with fraction
field K and perfect residue field k. Let n be an integer invertible in R. The
composite map

H2 (K, 1)~ Br(K) [n] ™% H(k, Z/n),

where the first map comes from the Kummer sequence (1.3), coincides with the
opposite of the residue r : H?(K, p,)—H (k,Z/n).

Proof. This was proved by Serre’s in his 1991-1992 course at College de France,
cf. the appendix to the thesis of E. Frossard [Fro95, Lemme A.3.2]. See also
[GS17, Prop. 6.8.9].

The idea is to use explicit splittings of the residue maps r and ry given by
their respective sections s and sy, see (1.17) and (1.21). Let x € H*(k,Z/n) =
Hom(T',Z/n). We need to show that the Brauer class given by s(x) = (7), U x
is the opposite of sy (x) = d(x) Un. The proof of this property works more
generally for any field K of characteristic coprime to n. Let G = Gal(K /K).
We shall show that for any character x € Hom(G,Z/n) and any a € K* the
image of (a), Ux € H?(G, u,) in H2(G, K}) equals —§(x) U a.

We shall use the following well known properties, see [HS70, Ch. IV, §9] or
[BouX, §7.6, Prop. 5]. Suppose we are given an exact sequence of G-modules

0—A—B—C—0,
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a G-module M, and a positive integer m.

(a) The differential Ext{y (M, C)—Ext T (M, A) in the second argument can
be identified with the class of the splicing of an m-fold extension of M by C
with the given short exact sequence.

(b) The differential Extg (A, M)—Ext ™ (C, M) in the first argument can
be identified with the class of the splicing of an m-fold extension of A by M
with the given short exact sequence, multiplied by (—1)™+1.

We have a canonical isomorphism of functors Ext¢(Z,-) = H"(K,-). Thus
x € Hom(G,Z/n) = HY(K,Z/n) = Ext(Z,Z/n) gives rise to an extension of
Z by Z/n. This gives us the first short exact sequence in

0—Z/n— E,—Z—0, 0—Z—Z—Z/n—0; (1.22)

the second short exact sequence is obtained from the multiplication by n map
[n] : Z—Z. We denote it by M,, and write [M,] for the class of M, in
Exts(Z/n,Z). Given a € K*, we let f, : Z—K be the map of G-modules
sending 1 to a.

We write M,, UE, for the 2-fold extension of Z by Z obtained by splicing the
short exact sequences in (1.22). We write f,. M, for the extension of Z/n by K
which is the push-forward of M,, via f,. Similarly, fo. (M, UE,) = fo. M, UE,
is the push-forward of M,, U E, by f,. We use square brackets to denote the
classes of these extensions in the relevant Ext-groups.

The first two rows in the following diagram of pairings are Yoneda pairings,
which are defined by splicing exact sequences:

Exts(Z/n,Z) x Extg(Z,Z/n) — Exti(Z,7) = H*(G,Z)
1 I \ |
Extg(Z/n, K¥) x Extg(Z,Z/n) — Exti(Z,KX) = H*G,K})
€T I T
HY(G,pn)  x HYG,Z/n) = H2(G, )

The upper vertical maps denoted by arrows are given by the push-forward via
fo 1 Z—KZ. It is thus clear that the upper part of this diagram commutes.
The map ¢ is the edge map H' (G, Hom(Z/n, K*))—Exts(Z/n, KZ) from the
spectral sequence

H?(G,ExtY(Z/n, K7)) = Ext (Z/n, K7).

In the category of abelian groups we have Ext?(Z/n, K*) = 0 for ¢ > 1 since K*
is divisible by n, hence € is an isomorphism. The pairing in the bottom row is the
cup-product pairing, which is defined via the tensor product p, ®z Z/n—fi,.
The commutativity of the lower part of the diagram, i.e., the equality of the
‘internal product’ to the ‘Yoneda-edge-product’, is proved in [GH70, Prop. 4.5].

The upper pairing of the diagram applied to [M,] € Extf(Z/n,Z) and
[E\] € Ext&(Z,Z/n) gives [M,, U E,| € Ext}(Z,7Z), see [BouX, §7.4, Prop.
3]. By property (a) above this equals the differential of [E,] in the long exact
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sequence of Ext&(Z,-)’s in the second argument. This sequence is the same as
the long exact sequence of H"(G,-), so we conclude that [M, U E,] = §(x). It
follows that the middle pairing of the diagram sends [fq.M,] and [E,] to

[fa*Mn U Ex] = fax(0(x)) = 5(X) Ua=aU 5(X)-

The bottom pairing sends (a), and x to (a), Ux. By definition x goes to [E,],
o0 to prove that 6(x) U a is the image of —(a),, U x it remains to show that the
edge map € sends (a), to —[fo«M,].

To check this consider the following diagram:

Homg (Z, KY) — Extg(Z/n, K7)
I €T~
HY(G,Hom(Z,K?)) — HYG,Hom(Z/n, K}))

Here the upper horizontal arrow is the differential in the long exact sequence
of Ext’s in the first argument associated to the exact sequence M,. The lower
horizontal arrow is the differential in the long exact sequence of cohomology
attached to the Kummer exact sequence (1.3). The commutativity of the last
diagram is proved by a standard derived category argument based on the rep-
resentation of the left derived functor RHomg (-, K) from the bounded derived
category of continuous discrete G-modules to abelian groups as the composition
of the derived functors of Hom(-, K*) and M + M. By property (b) above
applied to m = 0 the upper arrow sends a to —[fq.M,]. We conclude that
€((a)n) = —[fax My]. O

1.5 The Faddeev exact sequences

Let k be a perfect field with algebraic closure ks = k and Galois group I' =
'y, = Gal(k/k). To a monic irreducible polynomial P(t) € k[t] we attach a free
Z-module Zp generated by the roots of P(t) in k with a natural action of T’
permuting these generators. It is clear that the I'-module Zp is induced from
the trivial Gal(k/k(P))-module Z, where k(P) = k[t]/(P(t)). In particular, by
Shapiro’s lemma, we have H"(I'y, Zp) = H"(T'y(py, Z) for all n > 0. For n = 2
we obtain a canonical isomorphism

H*(T'y, Zp) = Hom(T'y(py, Q/Z).
The valuations attached to the roots of P(t) give rise to a map of I'-modules

k(t)* — Zp,

which has a section sending the generator of Zp corresponding to a root € € k
to t —e. Using this notation we rewrite the natural exact sequence of I'-modules

0 — k* — k(t)* — Div(Az) — 0 (1.23)
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as a split exact sequence of I'-modules

0— k* — k()" — @ZP — 0, (1.24)
P(t)

where the sum is over all monic irreducible polynomials P(t) € k[t].

Proposition 1.5.1 (D.K. Faddeev) Let k be a perfect field. There is a split
exact sequence

0 — Br(k) — Br(k(t)) — @D Hom(Ty(p), Q/Z) — 0, (1.25)
P(t)

where the direct sum is over all monic irreducible polynomials P(t) € k[t]. The
second arrow is given by the inclusion of fields k C k(t). For each P(t), the
map Br(k(t))—Hom (T py, Q/Z) factors through the Witt residue attached to
the valuation given by P(t).

Proof. Applying H?(T'x,-) to (1.24) we obtain (1.25), once we identify the middle

term with Br(k(¢)). The natural isomorphism I'y, = Gal(k(t)/k(t)) gives rise to
the inflation map

inf : H2(T'y,, k(t)*) — H2(Gal(k(t) /k(t)), k(t) ) = Br(k(t)).

It is enough to prove that this map is an isomorphism. Indeed, inf fits into the
Hochschild—Serre spectral sequence

N JE— N R

HP (T, HY(Gal(k(t) /R (t), k(1) ) = HP*(Gal(k(t) /k (1)), k(t) ).
We have H!(Gal(k()/k(t)), k() ) = 0 (Theorem 1.3.2, Hilbert’s theorem 90)

and H? (Gal(%/k(t)),m*) = Br(k(t)) = 0 (Theorem 1.2.12, Tsen’s theorem).
The spectral sequence now implies that inf is an isomorphism.

It remains to check the compatibility with the Witt residue. Let k[t]p be
the localisation of k[t] at the principal ideal (P(t)), let k[t]% be the henselisation
of k[t]p. It is a henselian discrete valuation ring with residue field k(P). The
integral closure of k in k[t]% is a field of representatives for k(P) inside k[t]%,
that is, the reduction map induces an isomorphism between this field and the
residue field k(P). Henceforth we denote this field by k(P).

Let K C k(t) be the fraction field of k[t]%. Let K, be the maximal unram-
ified extension of K. We note that K, = K ®j(p) k and Gal(Kn,/K) = T(p)-
The map Br(k(t))—Hom(T'y(py, Q/Z) comes from H*(T'y,k(t)*)—H?(Tx, Zp)

which factors as
H?*(Ty, k(t)*) — H*(Ty, (K @k k)*) — H*(Tx, Zp).

Since H(T'y,, (K®1k)*) = HA(Ti(p), (K@p(pyk)*) = H2(Ti(p), K7i,) by Shapiro’s
lemma, our map can also be written as

H?(Di, k(t)*) — H*(Di(py, Kpi) — H*(Ti(py, Z).

Here the second map is given by the valuation, so, by definition, it is the Witt
residue. [
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Theorem 1.5.2 Let k be a perfect field. There is a split exact sequence

0—Br(k)—Br(k(t))— EB H(k(z),Q/Z)—H (k,Q/Z)—0, (1.26)
ze(PL)™

where the direct sum is over all closed points of Py.. The third map is compatible
with the Witt residues. The fourth map is the sum of corestrictions coresy(z)/k
over all closed points of IE”}C, including the point at infinity.

Proof. Instead of (1.23) we now consider the exact sequence of I'-modules
0 — k* — k(t)* — Div(P;) — Z — 0, (1.27)

where the fourth arrow is given by the degree. This sequence can be obtained
by splicing two exact sequences of I'-modules, both of which are split:

0 — k* — k(t)* — Divo(P;) — 0,
where Divo(P;) is the degree 0 subgroup of Div(P}), and
0 —» Divo(P}) — Div(P}) — Z — 0.

Applying H?(T'x,-) to (1.27) we obtain (1.26). The compatibility of the third
arrow with the Witt residues follows from the last sentence of Theorem 1.5.1.
The fourth map is the sum of maps

H2 (Fka Zk(ac)) — H2 (Fkv Z)a

each of which is induced by the summation map Zjy,)—Z%. This implies the
final statement of the theorem. O

The exact sequence (1.25) is split and it is instructive to write down an
element of Br(k(t)) that lifts a character x € Hom(I'y(py, Q/Z) for a given monic
irreducible polynomial P(t). Let 6(x) € H?(k(P),Z) be the image of x under
the differential § in the long exact sequence of cohomology groups attached to
the exact sequence of I'y(p)-modules (1.19). We also denote by d(x) the image
of this element in H?(k(P)(t),Z) under the restriction from k(P) to k(P)(t).
Let 7p be the image of ¢t in k(P) = k[t]/(P(t)). Then t — 7p € k(P)(t). Let us
denote by A, € Br(k(P)(t)) the cup-product of §(x) and t — 7p with respect to
the pairing (1.20):

H?(k(P)(t), Z) x HO(k(P)(t), Gm) — Br(k(P)(t)).

It is clear that A, is unramified on }P’}C(P) away from the k(P)-point ¢t = 7p and

the point at infinity, i.e. the residues of A, at all other closed points of IP}C( P)
are trivial. In Section 1.4.1 we have seen that the residue of A, at t = 7p is

r(Ay) =v(t—7p)x = x € H'(k(P),Z/n).



1.5. THE FADDEEV EXACT SEQUENCES 45

The same formula shows that the residue of A, at the point at infinity is —x.

Let us abbreviate the notation for the corestriction map from k(P)(t) to k(t)
as coresy,, /. Using Proposition 1.4.6 we see that coresy,, /1, (Ay) is an element of
Br(k(t)) unramified away from the closed point P, which is the zero set of P(t),
and possibly the point at infinity. More precisely, the residue of coresy(py /i (Ay)
at P is x and the residue at oo is —coresy(p)/k(X)-

Let A € Br(k(t)) be an arbitrary element. Let xp be the residue of A at
the closed point P of PL. Let S be the set of closed points P € A} for which
xp # 0. Then A — %, g coresypy/i(Ay,) is unramified over A}. Faddeev’s
exact sequence (1.25) now shows that

A= Z coresk(p)/k(AXP) + A()7
PeS

for some Ay € Br(k). In particular, if A is unramified at oo, then Ag = A(o0)
is the value of A at oo.
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Chapter 2

Etale cohomology

In the first two sections of this chapter we introduce notation and terminology,
and state basic results about étale sheaves and étale cohomology. It would not
be realistic to give proofs; instead, we try to help the reader navigate through
J.S. Milne’s book [Mil80], a main reference for this chapter. We refer to [SGA41,
Arcatal for a helpful gentle introduction to étale cohomology. See also [Tam94].

The third section reports on purity results for étale cohomology with torsion
coefficients and on residues in the étale cohomological context.

In the next two sections we discuss the first cohomology group of the multi-
plicative group, which is the Picard group, and then the relative Picard group
and the Picard scheme. Already for a smooth projective variety over a field, the
Brauer group of the ground field appears naturally when one wants to see if a
Galois invariant element of the geometric Picard group comes from an element
of the Picard group of the variety.

The last section is a very short summary of stacks and gerbes based on
M. Olsson’s book [Ols16, Ch. 9]. This material will be used in the next chapter.

2.1 Topologies, morphisms and sheaves

2.1.1 Grothendieck topologies on a scheme

We start with the basic definitions [Mil80, II, §1].

Let E be a class of morphisms of schemes which contains all isomorphisms
and is closed under composition, such that a base change of any morphism in
Fisin E.

Let X be a scheme. Let Cx be a full subcategory of the category of schemes
over X such that for any Y—X in Cx and any morphism U—Y in F the
composition U—X is in Cx.

An E-covering of an object Y of Cy is a family of E-morphisms {g; : U;—Y'}
such that Y = Ug;(U;).

The class of all such coverings of all such objects is called the E-topology on
Cx. The category Cx with the E-topology is the E-site Cx g. A map V—W

47
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in Cx which is in F is referred to as an open set of W in the E-topology.

A site Cx, g is small if the underlying category of schemes Cy is the category
of schemes Y/X such that Y—X is in E.

A site Cx g is bigif the underlying category Cx is the category of all schemes
over X. We recall the definitions of the sites that will be used in this book.

Xt is the small étale site, i.e. the category of schemes that are étale over
X endowed with the étale topology. In other words, an “open set” U;,—Y is an
étale morphism.

Xy, is the big étale site, i.e. the category of schemes over X endowed with
the étale topology.

X,ar is the small Zariski site, i.e. the category of open subschemes of X
endowed with the Zariski topology.

X7z is the big Zariski site, i.e. the category of schemes over X endowed
with the Zariski topology.

Xippf is the big flat site, so that the category consists of all schemes over X.
An “open set” U—Y is a flat morphism which is locally of finite presentation.

2.1.2 Presheaves and sheaves

A presheaf of abelian groups on X is a contravariant functor P from the under-
lying category of the site to the category of abelian groups. We refer to P(Y)
as the group of sections over Y. For example,

Ga,x is the presheaf such that G, x(Y) = H(Y, Oy),
Gy, x is the presheaf such that G,, x(Y) = H(Y, O%).
pin,x, for n > 0, is the presheaf such that p,(Y) = {z € HO(Y, 0% )[2" = 1}.

Presheaves on X form an abelian category, where a sequence of presheaves
is exact if and only if the corresponding sequence of sections over Y is an exact
sequence of abelian groups, for any Y/X in the underlying category. We denote
this abelian category by P(X), when the topology is clear from the context.

A presheaf P is a sheaf if for any scheme Y/X in our category, and any
covering {U;} of Y, any section over Y is uniquely determined by its restrictions
to all the U;, and any family of sections over the U; which agree on U; Xy U; come
from a section over Y. We denote by aP the sheaf associated to the presheaf P
[Mil80, Thm. II.2.11]. One can give an explicit construction of aP in terms of
the sheafified 0-th Cech cohomology presheaf H°(P), namely, aP = H(H°(P)),
see [Mil80, Remark III.2.2 (c)].

Let us define the category of sheaves S(X) as the full subcategory of P(X)
whose objects are sheaves. Thus, if 7 and G are sheaves on X, then a morphism
¢ : F—G in S(X) is the same as a morphism of presheaves F—G. The kernel
Ker(y) in S(X) is the same as the kernel of the morphism of presheaves ¢ : F—G
(which is a sheaf). However, the cokernel presheaf Coker(¢) is not always a sheaf
(for example, the cokernel of the differentiation on the sheaf of holomorphic
functions on C~\ {0} is not a sheaf). The cokernel in S(X) is the sheaf associated
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to the presheaf Coker (). This makes S(X) an abelian category'. It follows that
the inclusion functor i : S(X)—P(X) is left exact, and a : P(X)—S(X) is the
left adjoint of 4, so we have an isomorphism of (bi-)functors

Homgx)(aP, F) = Homp(x)(P,iF),

see [Mil80], Remark I1.2.14 (a) and Thm. I1.2.15. The functor a : P(X)—S(X)
is exact [Mil80, Thm. 2.15 (a)].

If G is a commutative group scheme over X, then the functor represented
by G, that is, the functor associating to a scheme Y/X the abelian group
Homx (Y, G), is not only a presheaf but is actually a sheaf for each of the topolo-
gies mentioned above, by [Mil80, Cor. II.1.7]. In particular, the presheaves G, x
and G,,, x are sheaves because they are represented by the additive group scheme
G, = Spec(Z[z]) and the multiplicative group scheme G,, = Spec(Z[z,z~1]),
respectively. This also holds for p,, x.

2.1.3 Points and stalks in the étale topology

Let 2z = Spec(k(x)) be a point of the scheme X. The local ring of X at z is
denoted by Ox . We have

OX,:L’ = hqu(U),

where the injective limit is taken over all open subsets U C X containing z.
The analogue of the local ring in the étale topology is

O})l(,m = @O(U)’

where U is a connected étale X-scheme equipped with a lifting z — U of x — X.
The superscript h says that 05‘(,1 is the henselisation of the local ring Ox . The
residue field of the local ring O% _ is k(x).

Now let Z— X be a geometric point, i.e. a morphism Spec(k(Z))—X, where

k(Z) is algebraically closed. One says that Z lies over z if x is the image of Z in
X; then k(x) C k(Z). Define

o, =l O(U),

where U is a connected étale X-scheme equipped with a lifting z—U of z—X.

The superscript sh says that O;?ﬁz is strictly henselian; it is the strict henseli-

sation of the local ring Ox . The residue field of the local ring (9%‘@ is the
separable closure of k(z) in k(Z). Speaking of “the” strict henselisation is a
common abuse of language, which we shall keep in this book. If k(z) is not
separably closed, the ring extension Oﬁgm of Ox , is defined up to a non-unique
isomorphism. Replacing — X by a different geometric point over x produces a
local ring isomorphic to (’)AS)?J; this isomorphism is determined by the induced

IThus S(X) is an abelian category and is also a full subcategory of P(X), but S(X) is not
an abelian subcategory of P(X), because the notion of cokernel is not the same.
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isomorphism of residue fields, which are two separable closures of k(x), hence
they are isomorphic but in a non-unique way.

One writes Ox z = 03?1

For more on henselisation and strict henselisation see [Ray70b, Chap. VIII],
[BLR90, §2.3] and [Stacks, Section 0BSK].

The stalk of an étale presheaf P on X at a geometric point u : T—X is
defined as

where U is connected and étale over X such that u factors through U— X, see
[Mil80], Section II.2. It is clear from the definition that we have

(Ga,x)z = Oxz, (G x)z = OX% ;.

2.1.4 Morphisms of sites. Direct and inverse images of
sheaves

Let 7 : X’—X be a morphism of schemes. Suppose that we have a site on X
and a site on X’. Then 7 is continuous or, in other words, defines a morphism
of sites, if the following properties are satisfied:

(a) if Y/X is in the underlying category of X, then Y xx X’/X’ is in the
underlying category of X’;

(b) if U—Y is “an open subset” of Y/X, then U xx X'=Y xx X’ is “an
open subset” of Y xx X'/X".

For example, the identity map on X defines morphisms of sites
Xfppf%XEt—)Xét*)Xzar.

Here is another example. Let K/k be an arbitrary extension of fields. Let
X be a k-scheme and X = X x;, K. For each of the above topologies, the
morphism of schemes X — X defines a morphism of the associated sites.

A continuous morphism of sites 7 : X’—X defines a functor 7, : P(X’)—P(X)
which associates to a presheaf P on X’ the presheaf on X which sends Y/X
from the underlying category of X to P(Y xx X’). It is obvious that m, is an
exact functor.

For a presheaf P on X and an object Y'/X’ of the underlying category of
X', define

7 (P)(Y') = lim P(Y),
where Y/ X ranges over the objects of the underlying category of X such that
the composed map Y’'— X’— X factors though Y. Then it is easy to check that
mP is a functor P(X)—P(X’) which is left adjoint to mp:

Homp(x) (Pl, prz) = Homp(X/)(WpP1, Pz)

In particular, the stalk of an étale presheaf P at the geometric point u : T—X is
the abelian group Pz = vPP. If 7 : X’—X belongs to the underlying category
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of X, then 7P(P) is easy to describe: this is just the restriction of the presheaf
P to X'.

It is easy to see that m, sends sheaves to sheaves [Mil80, I1.2.7]. In general,
this does not hold for 7P. However, for a geometric point u : T—X, u? does
send étale sheaves to étale sheaves. This implies that P and aP have the same
stalks [Mil80, Remark I1.2.14 (c¢)]. A sequence of étale sheaves is exact if and
only if the corresponding sequence of stalks is exact for all geometric points T
of X, see [Mil80, Thm. I1.2.15 (c)].

Let 7 : X’—X be a continuous morphism, and let F be a sheaf on X’. The
direct image ., F is defined as m,F, that is, 7. F(Y) = F(Y xx X'), where Y/X
is in the underlying category of the site on X. The inverse image 7*G of a sheaf
G on X is defined as anP@, so one can write 7* = anPi. If the Grothendieck
topologies on X and X’ are the same and the morphism 7 : X’'—X is in the
underlying category of X, then 7* is the restriction of F to X'.

In particular, if Gx is a sheaf on X represented by a commutative group
scheme G over X, then 7*Gy = Gx when m : X’—X is in the underlying
category of X. For example, this holds for the big étale site. (But 7*Gx # Gx-
for the small étale site unless 7 is étale.)

The functors m, and 7* are adjoint:

HomS(X)(]-', W*.F/) = HOI’IIS(X/)(W*]:, .F/),

and this implies that 7, is left exact. Note that since the cokernels in P(X) and
S(X) are not the same, 7, is not in general an exact functor. (Though 7, is
exact if X’'—X is a finite morphism, and the sites on X’ and X are the small
étale sites, see [Mil80, Cor. I1.3.6].) As for 7*, this functor is exact for the small
étale or Zariski sites, and also when the underlying category of the site is the
category of X-schemes ([Mil80], Prop. 11.2.6 (a) and the beginning of Section
I1.3). Thus 7* is exact for all the sites listed in Section 2.1.1.

Let 7 : X’—X be a morphism, and let F be an étale sheaf on X. If 2/ is a
point of X’ that maps to x € X, then we can choose a geometric point over z’
to be also a geometric point over x, that is, Z = z’. This formally implies that
we have (7*F)z = Fz (see also [Mil80, Thm. I1.3.2 (a)]).

Now let m be quasi-compact. Let x = Spec(k(z)) € X, and let 7 =
Spec(k(z)s). Let F be an étale sheaf on X’. One proves that the stalk of
m«F at T can be computed at the strict henselisation of X at x:

(m.F)z = F(X' xx Spec(OX'z)), (2.1)
where F is the inverse image of F with respect to the first projection
X' xx Spec(Oi?@,) — X,

see [Mil80, Thm. I1.3.2 (b)].
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2.2 Cohomology

2.2.1 Definition and basic properties

One proves that the category of sheaves on X has enough injectives [Mil80, Prop.
IT1.1.1], which makes it possible to define the cohomology groups H*(X, F) as
the right derived functors of the sections functor F — F(X). If 7 : X'—X is
a continuous morphism, e.g. a morphism of schemes, then the higher derived
image sheaves (R™m,)(F) are the right derived functors of m,. One proves that
(R"m,)(F) is the sheaf associated to the presheaf that sends an ‘open set’ U to
the group H"(U xx X', F).

If G is a sheaf on X, then the functor Homx (G, -) is left exact; so one defines
Ext’y(G,) as its right derived functors. Since F(X) = Homx(Zx,F), where
Zx is the constant sheaf defined by Z, we have Ext’ (Z, F) = H*(X, F).

Let us consider the small étale site on a scheme X. If 7 : X'— X is a quasi-
compact morphism, then the stalk of (R™7.)(F) at Z can be described in the
same way as we described (m.F)z in (2.1):

(R"m.)(F)z = H"(X' x x Spec(O%,), F),

where F is as in the end of the previous section. See [Mil80, Thm. II1.1.15].

If 7 : X’—=X is a proper morphism, then a corollary of the proper base
change theorem says that for a torsion sheaf F on X', the stalk of (R"m,)(F) at
T is H*(XL, F), where X, = 7=1(%) is the fibre of 7 at Z. See [Mil80, VI.2.5].

By a corollary of the smooth base change theorem [Mil80, VI1.4.2], if X is
a connected scheme, m : X’—X is a smooth and proper morphism, and n is
prime to the residual characteristics of X, then the groups H"(X%,Z/n) are
isomorphic for all geometric points . These results have many applications.
For example, if 7 : X—Spec(R) is a smooth and proper morphism, where R is a
discrete valuation ring with fraction field K and residue field k, and n is prime
to char(k) and char(K), then the restriction of the representation of Gal(K/K)
in H*(X®,Z/n) to the inertia group is trivial.

2.2.2 Etale and Galois cohomology

Let k be a field. Consider the small étale site on Spec(k). The underlying
category consists of finite dimensional étale k-algebras, i.e. finite direct products
of finite separable field extensions of k. Choose a separable closure kg of k, and
let I' = Gal(ks/k) be the absolute Galois group of k.

Let P be a presheaf on Spec(k). For a finite, separable field extension k'/k
we write P(k’) for P(Spec(k’)). When k'/k is Galois, the Galois group Gal(k’/k)
acts on P(k'). If P sends disjoint unions of schemes to direct products of abelian
groups, then it is a sheaf if and only if P(k') = P(k")S*"/K) for every finite
separable extension k’/k and every finite Galois extension k”/k’, cf. [Mil80,
Prop. I1.1.5].
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A continuous discrete I'-module M defines a presheaf Fj; on Spec(k) by the

formula
n n

Fu([] ki) =[] a1/,
i=1 i=1

where the fields k; are such that k C k; C ks. One checks that Fj; is a sheaf
[Mil80, Lemma I1.1.8], and that M — F, defines an equivalence of the category
of discrete I'-modules with the category of étale sheaves on Spec(k), see [Mil80,
Thm. II.1.9].

The inverse correspondence associates to a presheaf P on Spec(k) the discrete
Galois module

Mp = h_H)lP(kl)7

where k'/k is a finite separable extension. Indeed, we can assume that k' is
Galois over k, so that T’ acts on each P(k’), and thus on Mp. This module
is discrete because Mp is the union of the invariants with respect to all open
subgroups of T'.

For a discrete I'-module M the Galois cohomology group H™(I', M) for n > 0
is defined as the inductive limit of H*(I'/U, MY), where U ranges over all open
normal subgroups of T, see [SerCG, Ch. I, §2]. Recall from the previous chapter
that the resulting group is well defined up to unique isomorphism. It does not
depend on the choice of ks and is denoted by H™(k, M), see [SerCG, II, §1].

The étale cohomology groups HZ, (Spec(k), Far) are canonically isomorphic
to the Galois cohomology groups H™(k, M), since these are the right derived
functors of M + MT'. Similarly, the Ext group ExtSpec(r) (Fm, Furr) in the
category of étale sheaves on Spec(k) is the same as the Ext group Exty (M, M)
in the category of discrete I'-modules.

Now assume that 7 : X—Spec(k) is a scheme over a field k equipped with
the étale topology. Define X® = X Xy kg, and let F be the inverse image of F
with respect to the morphism X®—X. The sheaf 7.(F) on Spec(k) corresponds
to the I'-module

(meF)k, = I F(X x k') = F(X7),

where k' /k ranges over finite subextensions of ks/k. In the same way, the sheaf
(R"m,)(F) corresponds to the I'-module

(R ) (F)r, = lim H'(X x k', F) = H*(X*, F).

2.2.3 Standard spectral sequences

Recall that when we have three abelian categories A, B and C, such that A and
B have enough injectives, and left exact functors F' : A—B and G : B—C such
that F' sends injective objects in A to G-acyclic objects in B, then there is a
convergent first quadrant Grothendieck spectral sequence

EP? = (RPG)(RIF)A = RPTI(GF)A, (2.2)
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where A € Ob(A), see [Wei94, Thm. 5.8.3], [Mil80, Appendix B]. Let DT (A)
denote the derived category of bounded below complexes in the abelian category
A (for which we refer to [Wei94, Ch. X]). The above spectral sequence can be
viewed as the spectral sequence of composed functors between derived categories
RF : DT (A)—»D*(B) and RG : DY (B)—D"(C). In this interpretation (2.2)
comes from the fact that R(GF) is the composition RGoRF, see [Wei94, Thm.
10.8.3].
Suppose that we have continuous morphisms of sites
X" X T X,

and A, B and C are the categories of sheaves on X", X’ X, respectively. Since
m, has a left adjoint functor 7* which is exact, 7, sends injectives to injectives,

and hence for any sheaf F on X" we obtain the Leray spectral sequence [Mil80,
Thm. IIL.1.18(b)]

EY? = (RPm,)(Rn,)F = RPTI(rr). F. (2.3)

Similarly, for a continuous morphism 7 : X’— X we obtain the spectral sequence
[Mil80, Thm. III.1.18(a)]

EY? =HP(X, (R'r,.)(F)) = HTY(X' F), (2.4)
where F is a sheaf on X'.

Applications of these spectral sequences are many.

(1) Assume that X is a scheme over a field k equipped with the étale
topology. Let T' = Gal(ks/k). Let us apply (2.4) to the structure morphism
7w : X—Spec(k) and a sheaf F on X. To simplify notation we denote the in-
verse image of F on X® = X Xy ks also by F. As we have seen in Section
2.2.2, the sheaf (R™7.)(F) on Spec(k) corresponds to the I-module H" (X3, F).
Therefore, we obtain the spectral sequence

ER? = HP(k, HY(X®, F)) = HPYI(X, F). (2.5)

(2) Let 7 : Xy, —Xe be the continuous morphism induced by the identity
on X. For a sheaf F on Xg; there is a canonical isomorphism HF, (X, F) =
HE (X, 7" F), see [Tam94, Thm. II. 3.3.1] or [Mil80, Prop. IIL3.1]. Since
is induced by the identity on X, the functor 7, is clearly exact. Thus for any
sheaf G on Xy, the spectral sequence (2.4) gives a canonical isomorphism

HZ (X, 7.G)——HL (X, G).

In particular, if G = Gx is the sheaf on X, represented by a commutative
group scheme G over X, then 7,G is the sheaf on X¢; obtained by restricting G
from the category of all X-schemes to the category of étale X-schemes, so 7,.G
is the sheaf on X¢; represented by G. Thus we obtain a canonical isomorphism

H{ (X, Gx)—HE, (X, Gx). (2.6)
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For any commutative group scheme G over Y this allows one to define a natural
map ' 4
[T Hg (Y, Gy) — Hg (X, Gx) (2.7)

for any morphism f : X—Y where Gx is the sheaf defined by the group X-
scheme G Xy X. Indeed, in view of the canonical isomorphism (2.6) we can
replace the small étale site by the big étale site. Then f : X—Y is in the
underlying category of Y, so f*Gy = Gx, see Section 2.1.4. The adjunction
morphism Gy — f, f*Gy = f.Gx gives rise to the first arrow in

HL (Y,Gy) — HL (Y, f.Gx) — HY (X, Gx),

where the second arrow comes from the spectral sequence (2.4) attached to
f: X—=Y. The map in (2.7) is defined as the composition of these two maps.

(3) Now let m : Xpppr—Xe be the continuous morphism induced by the
identity on X. We refer to [Mil80, Thm. II1.3.9] for the following fact. If G is a
smooth quasi-projective commutative group scheme over X, then (R'7,)(G) = 0
for ¢ > 0. The Leray spectral sequence then gives isomorphisms

Hgt (Xu G) %H%;)pf<X7 G) (28)

In fact, the assumption that G is quasi-projective can be dropped, see [Gro68,
ITI, Thm. 11.7] and [Mil80, Rem. 3.11 (b)].

2.2.4 Passing to the limit

Suppose that we have a filtering projective system of quasi-compact and quasi-
separated schemes X; indexed by a set I, with affine morphisms X;— X for all
1,7 € I such that ¢ > j. Then there is a scheme X = lim X;. Now assume that
Gy is a group scheme over X for some 0 € I. For each ¢ € I such that ¢ > 0
define G; = Gy xx, Xi. Let G = Gy xx, X. Then for any integer n > 0 the
natural homomorphism

@Hgt(XivGi)%Hgt(Xa G)

is an isomorphism [SGA4, VII, Cor. 5.9], see also [Mil80, Ch. III, Lemma 1.16,
Remark 1.17 (a)]. In particular, we have natural isomorphisms

h_r)n Hgt(Xiv Gm)%Hgt(‘Xz Gm)'

2.3 Cohomological purity

2.3.1 Absolute purity with torsion coefficients

Let X be a scheme. We write DT (Xg;) for the derived category of bounded
below complexes of étale sheaves of abelian groups on X. Similarly, we write
Dt (Xe, Z/0™) for the derived category of bounded below complexes of étale
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Z/¢™-sheaves on X (for the comparison of the corresponding derived functors
see [Mil80, Ch. III, Exercise 2.25]). A standard reference for derived categories
is [Wei94].

Let F be a sheaf of abelian groups on X. Suppose that we have a closed
immersion ¢ : Z—X. Let U C X be the complement to Z. To an étale morphism
V—X one associates the abelian group

Ker[F(V) — F(Vy)].

The associated sheaf vanishes on U. It is the image under i, of a sheaf on Z
which is denoted by i'F. The functor from X-sheaves to abelian groups that
sends F to (i'F)(Z) is left exact. Its derived functors are denoted by H% (X, F)
and called the cohomology groups of F with support in Z.

At the level of sheaves we get the functor Ri' : DT (Xg)—D*(Zs). The
cohomology sheaves (R"i')(F) of (Ri')F are denoted by H%(X,F). By defini-
tion, these are the derived functors of the functor from X-sheaves to Z-sheaves
sending F to i'F. There is a Grothendieck spectral sequence of composed func-
tors involving Ri' and the derived functor of the sections functor I'(Z,-) (see
[Mil80, p. 241]):

EY = HP(Z,HL (X, F)) = HM9(X, F). (2.9)

Assume 7 is invertible on X. For ¢ > 0 one defines the sheaf Z/n(c)x = pu&%e.
For ¢ = 0, one writes Z/n(0)x = Z/nx. For ¢ < 0, one defines Z/n(c)x as the
sheaf which associates to an étale Y—X the group Homy (Z/n(—c)y,Z/ny).
For a sheaf F of Z/n-modules, one defines F(c) := F ® Z/n(c). See [Mil80,
Ch. II, §3, p. 78/79] for a general definition of Hom sheaves and tensor product
sheaves.

Theorem 2.3.1 (Gabber) Let X be a regular scheme, let i : Z — X be a
closed reqular subscheme of codimension ¢ everywhere, let £ be a prime different
from the residual characteristics of X and let m be a positive integer. In DT (Zg)
we have an isomorphism Z/{™—+(Ri')(Z/™)(c)[2¢]. In particular,

HL(X,Z/0™) =0 forn # 2¢, (Z/0M)(—c)z—=HE (X, Z/0M).

See [Riol4, Cor. 3.1.1, p. 324]. For schemes locally of finite type over a
perfect field, the theorem was proved in [SGA4, XVI, Cor. 3.9], see also [Mil80,
Thm. VL5.1].

We record a useful corollary of Theorem 2.3.1. By a strict normal crossing
divisor we understand an effective divisor D = Dy +...4+ D, in a regular scheme
X such that each irreducible component D; is regular and all intersections of
these components are transversal. Transversality means that at each point
x € D the local equations of the components D; containing x form a part of a
regular system of parameters for the local ring Ox ,. The following corollary of
Gabber’s absolute purity theorem is proved in [Riol4, Cor. 3.1.4, p. 324].
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Corollary 2.3.2 (Gabber) Let X be a regular scheme and let j : U—X be an
open immersion such that X ~\ U 1is a strict normal crossing divisor with the
wrreducible components Dy, ..., D,. Let ¢ be a prime different from the residual
characteristics of X. For n > 1 we have canonical isomorphisms of X -sheaves

n

(Rj)(z/em) = NR )@/ em) = N ( EB Z/t™)(-1)p,)-

2.3.2 Gysin exact sequence

We return to the situation where X is a regular scheme, ¢ : Z — X is a closed
regular subscheme of codimension ¢ everywhere, and ¢ is a prime invertible on
X. Let U = X ~Z and let j : U—X be the natural open immersion. The
functor j* has a left adjoint functor ji which is exact [Mil80, p. 78]. This
implies that we have an exact sequence of étale sheaves on X:

0 —Zy — Zx — Zz — 0, (2.10)

where Zy = j1j*Z and Zy; = i.i*Z, see [Mil80, p. 92]. Applying the functor
Ext(-,F), defined as the derived functor of the internal Hom, to (2.10) gives a
long exact sequence which breaks down into isomorphisms

(R" 1) F) =ML (X, F), n>2, (2.11)

see [Mil80, p. 242]. Thus the stalk of the sheaf H%(X,F) at a geometric point
zZeZis

HY (X, F)z = H"_l(Spec((’)ﬁgz) ~ Spec(O?E),f). (2.12)
From (2.11) we obtain canonical isomorphisms
e (Z)0) =2/, (R*T15.)(Z)0) = (Z/0™)(—c)z (2.13)

and
(R"j.)(Z/e™) =0 for n #£ 0, 2¢ — 1.

In view of these isomorphisms the spectral sequence
B} = WP(X, (R1j.) (Z/6)) = WP+ (U, Z,/0m) (2.14)

gives rise to the Gysin exact sequence

L =HYTR(Z, )0 (—c) = HY (X, 2/ 0™ —HY (U, Z) 0™ —H "2 Y Z, 7/0™ (=) — . ..

(2.15)
Here we used the canonical isomorphism

H"(X,(Z/t™)z) = H"(X,i.(Z/t™)) = H"(Z,Z/¢™)

coming from the spectral sequence HP (X, R%4,(Z/(™)) = HPT4(Z,Z/¢™). In-
deed, i, is an exact functor, because the closed immersion i : Z—X is a finite
morphism.
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Alternatively, the Gysin sequence can be obtained as follows. Consider the
long exact sequence

o (X, 2/ - Y (X, 20— (U, 20— T (X, 20—

obtained by applying Extx (-,Z/¢™) to (2.10). Then one identifies H% (X, Z/¢™)
with H"=2¢(Z,Z/¢™(—c)) using the spectral sequence (2.9) and Theorem 2.3.1.

2.3.3 Cohomology of a henselian discrete valuation ring

Let A be a henselian discrete valuation ring with fraction field K and residue
field k. If we set

X = Spec(4), Z =Spec(k), U = Spec(K),

then 4 : Spec(k)—Spec(A) is a closed immersion of regular schemes of codimen-
sion ¢ = 1, so this is a particular case of the situation considered in the previous
section. By Section 2.2.2 the étale cohomology groups of Spec(k) and Spec(K)
coincide with Galois cohomology groups of k£ and K, respectively. We now
describe how to interpret the étale cohomology of Spec(A) in terms of Galois
cohomology.

As before, let G = Gal(K/K), I = Gal(K/Ky,), I' = Gal(K,,,/K) = G/I,
where K,, C K is the maximal unramified extension of K, so K, is the field
of fractions of the strict henselisation AS". The category of étale sheaves on
Spec(A) is equivalent to the category of triples (M, N, ), where M is a I'-
module, N is a G-module, and ¢ : M—N' is a homomorphism of I'-modules
[Mil80, Example I1.3.12]. A morphism of triples

(M,N,p)=(M',N',¢")

is a pair consisting of a map of I'-modules M—M’ and a map of G-modules
N— N’ such that the obvious resulting diagram is commutative. To a sheaf F on
Spec(A) one associates the triple (i*F, j*F, ¢), where ¢ is the natural morphism
" F—i*j,j*F. This agrees with the definition of triples, because the stalk
of the Spec(A)-sheaf j, N at Spec(ks) is computed at the strict henselisation,
see (2.1), thus the Spec(k)-sheaf i*j.N corresponds to the I-module NI. In
particular, the Spec(A)-sheaf j, M, where M is a G-module, corresponds to the
triple (M1, M, id).

Let F(M, N, ¢) be the sheaf on Spec(A) corresponding to the triple (M, N, ¢).
It can be constructed as the fibred product of i, M and j,N over i,i*j. N, see
[Mil80, Thm. II1.3.10]. The constant Spec(A)-sheaf Z corresponds to the triple
(Z,7,id), thus the group of sections of F(M, N, ¢) is M'. It follows that

H'(Spec(A), F(M, N, p)) = H (k, M). (2.16)

2.3.4 Gysin sequence: residues and functoriality

We continue the discussion of the previous section keeping the same notation.
Let £ be a prime not equal to char(k). Then usm, where m is a positive integer,
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is an étale sheaf on Spec(A). By (2.16) we have
H" (Spec(A), i) = HP (k. pgr)

for any n > 1. Thus, after twisting, the Gysin sequence (2.15) becomes the
exact sequence

oo ™ (B g ) —H (K, prgm ) —H" "k, Z)0™)—H" P (K, prgm ) — ... (2.17)
This looks very similar to the exact sequence (1.9) with C = piym:
0 — H"(k, ptgm) — H"(K, pigm) — H* " (k, Z/0™) — 0. (2.18)

These two sequences are indeed the same, at least up to inverting the sign of
the residue map r.

Lemma 2.3.3 The long exact sequences (2.17) and (2.18) coincide, after re-
placing r with —r.

Proof. We need to check that these sequences come from identical spectral
sequences. In our case the spectral sequence (2.14) has the form

HP(Spec(A), (Rj.) (pem)) = HPFU(K, prom ). (2.19)
whereas the Hochschild—Serre spectral sequence is
HP (T, HY(T, pgm)) = HPYU(G, pugm).

On the one hand, the Hochschild—Serre spectral sequence is the spectral se-
quence of composed functors: the functor M +— M from continuous G-modules
to continuous I'-modules, followed by the functor of I'-invariants. On the other
hand, the spectral sequence (2.19) is the spectral sequence of composed functors
Jx from Spec(K)-sheaves to Spec(A)-sheaves, followed by the functor of sections
from Spec(A)-sheaves to abelian groups. As we have seen in the previous sec-
tion, the dictionary between étale Spec(A)-sheaves and triples interprets the first
of these as the functor sending a G-module M to the triple (M', M,id). The
functor of sections sends this to M¢, which shows that the spectral sequences
are indeed identical.

Finally, to compare the residue map r in (2.18) with the corresponding
arrow in (2.17) we need to make sure that the identification of Hom(I, pom )
with Z/¢™ on the Hochschild-Serre side is compatible with the identification
of (R*j.)(pem) with (Z/0™)spec(ry in (2.13). Since £ is coprime to the char-
acteristic of k, the field K, contains roots of unity of degree /™ and we have
Hom(I, pym ) = Hom(Gal(Ky /Ky ), piem ), where Ky C K is the maximal tamely
ramified extension of K. If 7 is a uniformiser of K, then the action of I on the
K,-points of the torsor t¢" = 7 for pem factors as

I = Gal(K,/Ky) — Gal(Ky/Kpnr) — Gal(Kpy (7/¢") / Kye) = pom.
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This homomorphism corresponds to 1 € Z/¢™ on the Hochschild—Serre side.
As explained in [Riol4, p. 324], the isomorphism (R'j,)(pem) = (Z/0™)spec(n)
in Gabber’s absolute purity theorem is induced by the section of (Rj.)(pem)
which is the opposite of the class of the torsor /" = 7. This finishes the proof
of the lemma. [

We now make some observations regarding the functoriality of the Gysin
sequence.

Let f : X’—X be a morphism of integral regular schemes. Let Z C X
and Z' C X’ be regular integral closed subschemes of codimension 1 such that
f(ZYC Z. Let U=X~\Zand U = X'\ Z'. Assume that f(U’) C U, so that
there is a commutative diagram

J
U ——X <——27

R

U4J>X<I;Z

Since f(X') is not contained in Z, we have a well defined divisor f~1(Z) C X’
supported on Z’. Thus we can write f~1(Z) = rZ’, where 7 is a positive integer.
Explicitly, since X is regular, any point of Z has an open affine neighbourhood
V C X such that ZNV is the zero set of a regular function on V. If 7 is a local
equation of Z C X in such an open set V, where V N f(X’) # 0, then 7 gives
rise to a non-zero rational function on X'; moreover, vz (7) = r, where vz is
the valuation of the discrete valuation ring Ox/ 7.

Lemma 2.3.4 Let ¢ be a prime invertible on X. There is a commutative dia-
gram

s (X, g ) —— HY(U, g ) —— H Y2 Z)0) —— .

f"T f*T [T]f*T

e HYX ) HY(U, i) —— B (Z,2)07)

Proof. By the construction of the Gysin sequence, the bottom row comes from
the spectral sequence of composed functors Rj. : DV (Us)—D T (Xet) and the
sections functor RI" : DT (Xg )—D'(Ab), where Ab is the category of abelian
groups (and similarly for the top row). From the functoriality of the spec-
tral sequence and the purity theorem we obtain the commutative diagram as
above, where we only need to identify the map linking H"~1(Z,Z/¢f™) and
H~Y(Z',7/m™).

A canonical adjunction morphism pim — (R f,)pem in DT (Ust ) induces a mor-
phism in DT (X ):

(R pem — (Rju) (R f)ppem = (R(Gf)«)prem = (Rf) (R ) pram.
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Since f* and f, are adjoint functors, we obtain a canonical morphism in D (X7, ):
(R pem — (R, ) pem.

We need to compute the induced map f*(Rj.)uem— (R*5.)puem. Recall from
the previous section that (Rj,)uem is identified with (Z/¢f™)z in such a way
that 1 € T'(Z,Z/¢™) corresponds to the negative of the class of the torsor given
by t*" = 7. Since vz (7) = r, the map H*~1(Z,Z/¢™)—H""1(Z',Z/¢™) in the
diagram is [r]f*. O

2.4 H'!' with coefficients Z and G,,

Lemma 2.4.1 Let X be a scheme. Let L be a field and let f : Spec(L)—X be
a morphism. We have the following properties:

(i) H (X, fiZ1) = 0;

(il) Hy (X, £.Gr,z) = 0;

(iii) R f.Z1 = 0;

(iv) R' Gy = 0.
If F is a sheaf on Spec(L), then for any i > 1

(v) the sheaf R f.F is a torsion sheaf;

(vi) the group H. (X, f+F) is a torsion group.

Proof. The spectral sequence (2.4) gives an injection
H (X, f(F)) < He (Spec(L), F).

Statements (i) and (ii) then follow since H'(L,Zy) = 0 and H(L,G,,,,.) = 0
(Hilbert’s theorem 90).

The sheaf R'f,Zp is associated to the presheaf sending an étale open set
U—X to H}, (U x x Spec(L),Zr,). But this group is zero, because U x x Spec(L)
is either empty or the spectrum of a finite product of fields, and H}, (F,Zg) = 0
when FE is a field. This proves (iii).

A similar argument, which uses Hilbert’s theorem 90, proves (iv).

The sheaf R’ f, F is associated to the presheaf which sends an open set U—X
to H, (U x x Spec(L),F). This group is a direct sum of Galois cohomology
groups, which are torsion groups for ¢ > 1. This proves (v).

In our case the spectral sequence (2.4) takes the form

E}? = HY, (X, R1f.F) = H,(Spec(L), F).

By part (v) the terms E5? are torsion groups when ¢ > 1. It follows that the
kernel of the natural map

Hciét(Xv [ F) — Hét(Spec(L),]:)

is a torsion group. But H'(Spec(L),F) is also a torsion group for i > 1, so
statement (vi) follows. O
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Proposition 2.4.2 Let X be a normal scheme. Then H} (X, Zx) = 0.

Proof. Here Zx is the sheaf associated to the constant presheaf Z. We may
assume that X is irreducible. Let ¢ : n—X be the generic point of X. We have
the natural map Zx—i.Z,. We claim it is an isomorphism. Indeed, let U—X
be an étale morphism. Then U is normal. If it is connected, then it is integral.
This shows that the map Zx—i,Z, is an isomorphim. Then Lemma 2.4.1 (i)
gives H} (X,Zx)=0. O

The Proposition holds more generally under the assumption that X is geo-
metrically unibranch.

2.5 The Picard group and the Picard scheme

Definition 2.5.1 The Picard group Pic(X) of a scheme X is the group of
invertible coherent sheaves of Ox-modules, considered up to isomorphism.

By this definition we have
Pic(X) = H},.(X,0%) = HL..(X, G, x).

zar

Let 7 : X¢t— X,ar be the continuous morphism induced by the identity on X.
We have (R'r..)(G,,) = 0; this is Grothendieck’s version of Hilbert’s theorem 90,
see [Mil80, Prop. I11.4.9]. The Leray spectral sequence then entails a canonical
isomorphism

Pic(X) = H}

sar (X, Gin, x ) = He (X, Gy x). (2.20)
The same is true for H}ppf (X, Gy, x). Alternatively, to an invertible sheaf £ one
directly associates a torsor T for G, x defined by T(U) = Isomy(Oy, f*L),
where f : U—X is étale. This gives an equivalence of the category of invert-
ible sheaves of Ox-modules and the category of étale X-torsors for G, x, see
[SGA4%, Arcata, Prop. 11.2.3].

The rest of this section is based on Kleiman’s excellent survey [Kle05], see
also [BLR90, Ch. 8]. Fix a noetherian base scheme S and let f : X—S be a
separated morphism of finite type. For an S-scheme T we write X7 = X xg T
and write fr : Xp—T for the projection to 7.

The relative Picard functor Picy g is defined as follows:

Picx/s(T) = Pic(Xr)/Pic(T).

Let Pic(x/s)zars Pic(X/S) it Pic(x/s)fppe be the associated sheaves in the big
Zariski, big étale, and fppf topologies.

Proposition 2.5.2 Assume that for any S-scheme T the canonical adjunction
morphism Or— fr«f7O0s = fr.Ox, is an isomorphism. Then the following
natural maps of presheaves on the category of schemes locally of finite type over
S are injective:

PiCX/S — PiC(X/S) Zar PiC(X/S) Et%PiC(X/S) fppf s (2.21)
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and the last map is an isomorphism. The first two maps in (2.21) are isomor-
phisms if f has a section. The second map is an isomorphism if f has a section
locally in the Zariski topology.

Proof. This is [Kle05, Thm. 2.5]. We sketch the proof given in [Kle05, Remark
2.11] because it is a good illustration of the use of the spectral sequence (2.4).

Take an S-scheme T. The Zariski sheaf on T, which is associated to the
presheaf sending Z/T to H}. (Xz,Gp x,), is leT*Gm7XT' Hence

Zar
PiC(X/S) Zar(T) = H%ar(Tv leT*Gm,XT)~
The morphism fr : X7—T gives rise to the spectral sequence (2.4):

Hzéar(T’ Rq-fT*Gm7XT) = Hp+q (XT7 Gm,XT)'

Zar

The assumption Or—— f7.Ox, implies G,, 7— f.G, x,. Hence the begin-
ning of the exact sequence of low degree terms of the spectral sequence is

0—Pic(T)—=Pic(Xr)—Pic(x/s) zar (1) = Hy o (T, G 1) = H7 0 (X1, G x10),

proving the injectivity of Picx,s—Pic(x/s)zar- A section of f induces a retrac-
tion of each canonical map

7 (T7 Gm,T)%Hgar(XTU Gm,XT)7

Zar

which is therefore injective. This implies that the first map in (2.21) is an
isomorphism.

Using (2.20), the same arguments apply to the étale and fppf topologies.
Hence we obtain a commutative diagram of exact sequences

Pic(T) — Pic(Xy) — Picysyza(T) — HZ(T,Gn) — HZ (X7,Gy)
| | ! ! !

Pic(T) — Pic(Xr) — Pic(X/S) 0T — H2Et (T,Gp) — H2E,t (X1,G,)
| | I I |

PiC(T) — PiC(XT) — PiC(X/S) fppf (T) — H%ppf (T, Gm) — H%ppf(XT’ Gm)

The injectivity of Picy, S—>Pic( X/8) Bt formally implies the injectivity of

PiC(X/S) Zar — PiC(X/S) Ets

since the latter map is obtained from the former by passing from presheaves
to associated Zariski sheaves, and this operation preserves injectivity by the
exactness of the functor a from presheaves to sheaves [Mil80, Thm. 2.15 (a)].

In view of (2.8), the Five Lemma applied to the two lower rows of the diagram
gives an isomorphism Pic(X/S) e~ Pic(x/s) fppf- U

Remark 2.5.3 If f : X— S is flat and proper with geometrically integral fibres,
then for any morphism 7'—S, the map Or— fr.Ox,. is an isomorphism. (See
[K1e05, Exercise 9.3.11].) This applies for instance when S = Spec(k) is the
spectrum of a field and X is a proper, geometrically integral variety over k.
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The following proposition shows that the condition that Or— fr.Ox,. is an
isomorphism holds for any flat S-scheme T if it holds for T'=S.

Proposition 2.5.4 Let f : X—S be a separated morphism of noetherian schemes
such that Og— f.Ox is an isomorphism. Then for any flat scheme T—S the
map Or— fr.Ox, is an isomorphism.

Proof. The statement is local on S and T. We may thus assume S = Spec(A)
and T = Spec(B) with B flat over A. Since X is separated, we can write X as a
finite union X = U; X; of affine open sets X; = Spec(A4;) with affine intersections
Xi; = Spec(A;j). We have the obvious exact sequence of A-modules

0— HO(X, Ox) — HAZ — ]:[Al]
i ij
The hypothesis that Og— f.Ox is an isomorphism then gives the exactness of
the sequence of A-modules

i

ij
Since B is flat over A, we have an exact sequence of B-modules

O—>B—>HA1'®AB—>HAU®AB'

ij

The scheme X7 = X xgT is covered by open subsets X; x ¢ T = Spec(A4; ®4 B)
with intersections X;; x gT" = Spec(Aij ®4 B), hence we have an exact sequence

0 — H(Xr,0x,) — [[4i @4 B — [[ Ai; ®4 B.

ij

Comparing the last two exact sequences, we find H*(T, Or) = B = H*(Xr,Ox,.),
thus Op(T)— f1.Ox,.(T) is an isomorphism. The same argument holds for any
Zariski open subset of T. We thus obtain an isomorphism Or— fr.Ox,.. O

Remark 2.5.5 This result is a particular case of the following general state-
ment. Let f : X—S be a quasi-compact and quasi-separated morphism and
let F be a quasi-coherent sheaf on X. Then the formation of the direct image
sheaves R'f.F, where i > 0, commutes with flat base change over S. See (EGA
ITI, Prop. 1.4.15) and [Stacks, Lemma 02KH].

If any of the functors Picy,g, Pic(x/s) zar; Pic(X/S) fes PiC(x/s) fppt 18 TEpre-
sentable, then the representing scheme (which is uniquely determined) is called
the Picard scheme and is denoted by Picx,g.

The main existence theorem for Picx g is the following result of Grothendieck,
see [Kle05, Thm. 4.8] for a slightly stronger statement.
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Theorem 2.5.6 Assume f : X—S is projective and flat with integral geometric
fibres. Then the scheme Picx g representing Pic(X/S) e €rists, is separated and
locally of finite type over S.

For f: X—S is projective and flat, Mumford showed that Picy, g exists if
the condition that the geometric fibres are integral is weakened to the condition
that the geometric fibres are reduced and connected, provided that the irre-
ducible components of all fibres are geometrically irreducible, see [Kle05, Thm.
4.18.1]. Another important result of Grothendieck is the following theorem
[Kle05, Thm. 4.18.2, Cor. 4.18.3].

Theorem 2.5.7 Assume that S is integral and X —S is proper. Then there is a
non-empty open subset V- C S such that Picx,, )y exists, represents Pic(x,, /v tppt;
and is a disjoint union of open quasi-projective schemes. In particular, this holds
for S = Spec(k), where k is a field.

Corollary 2.5.8 Let X be a proper and geometrically integral variety over a
field k. Then for any k-scheme T there is an exact sequence of abelian groups

0 — Picx/x(T) — Picx(T) — Br(T) — Br(Xr). (2.22)

If X(k) # 0, then Picx,,(T) = Picx(T) for any k-scheme T, so that the
Picard group scheme Picx ), represents the relative Picard functor Picx .

Proof. By the representability of Pic(X/k) ¢ We obtain (2.22) from the middle
row of the commutative diagram in the proof of Proposition 2.5.2. If X (k) # 0,
then the morphism Xr—T has a section, so that the map Br(T") — Br(Xr) is
injective. [J

Corollary 2.5.9 Let X be a proper and geometrically integral variety over a
field k. Then there is an exact sequence of abelian groups

0 — Pic(X) — Picx/(k) — Br(k) — Br(X). (2.23)

If K is a finite Galois extension of k with Galois group G = Gal(K/k) such that
X(K) # 0, then we have a canonical isomorphism

Picx (k) = Pic(Xx)“.

Proof. The exact sequence (2.23) is obtained from (2.22) by taking T = Spec(k).
Taking T' = Spec(K) in (2.22), we obtain a compatible exact sequence

0 — Pic(Xx) — Picy/(K) — Br(K) — Br(Xxg).
This is also a sequence of G-modules. Since X (K) # (J, Corollary 2.5.8 gives an

isomorphism Pic(Xx)——Picy,,(K). For the group k-scheme Picy/;, we have
PiCX/k(k) = PiCX/k(K)G
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2.6 Appendix. The language of stacks

This section will only be used in our sketch of de Jong’s proof of Gabber’s
theorem in Section 3.3. Our goal here is to give a very short list of key concepts
with some examples. This is not a replacement for a detailed introduction to
stacks, algebraic spaces and gerbes, for which we refer the reader to a very
helpful book by Olsson [Ols16], see also [Gir71] and [Vis05].

2.6.1 Fibred categories

We start with the definition of a fibred category [Ols16, §3.1].

Let C be a category. (We shall be mostly interested in the case when C' is
the category of schemes over a base scheme S.) A category over C is a category
F together with a functor p : F—C. For an object U of C define the fibre F(U)
over U as the category whose objects are the objects u of I’ over U, i.e. such
that p(u) = U, and whose morphisms are morphisms in F' that lift id : U—U.

A fibred category over C' is a category F' equipped with a functor p : F—C
such that for every morphism f : U=V in C and for every v € F(V') there exist
u € F(U) and a lifting ¢ : u—wv of f such that the following property holds.
If ¥ : w—wv is a morphism in F such that p(¢)) = fh is the precomposition
of f = p(¢) with a morphism h : p(w)—p(u) = U, then there exists a unique
lifting A\ : w—wu of h such that ¢ = ¢\. In this case the morphism ¢ is called
cartesian and u is called a pullback of v along f and is written u = f*v.

A morphism of fibred categories p : F—C to q : G—C is a functor g :
F—@G sending cartesian morphisms to cartesian morphisms such that there is
an equality of functors p =¢qog.

Examples 1. Let X be an object of a category C. Write C/X for the locali-
sation of C' at the object X. This is the category whose objects are the pairs
(Y, f) with Y an object of C and f is a morphism Y — X, and the morphisms are
the morphisms in C' making the obvious triangles commutative. The forgetful
functor C/X—C is a fibred category.

2. Let F : C°P—(Sets) be a contravariant functor from a category C to the
category of sets. Let F be the category of pairs (U, x), where U is an object of
C and z € F(U). A morphism (U’,2')— (U, z) is a morphism g : U'—=U such
that F(g)x = «’. It is easy to check that the functor F—C sending (U, x) to U
is a fibred category. This allows one to view presheaves as categories fibred in
sets, see [Ols16, Prop. 3.2.8]. We shall return to this example in the particular
case when C' is the category of schemes over a base scheme S.

Categories fibred in groupoids

The reference is [Ols16, §3.4].

A fibred category p : F'—C' is a category fibred in groupoids if the fibre F'(U)
is a groupoid for every U in C, i.e., every morphism in F(U) is an isomorphism.
Equivalently, every morphism in F is cartesian [Ols16, Exercise 3.D, p. 85].
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Let p: F—C be a category fibred in groupoids. For X in C' and for objects
x1 and zo in F(X) define the functor

Isom(xy1,z2) : (C/X)°P — (Sets)

that associates to f : Y =X the set Isomp(y)(f*z1, f*22), for some chosen pull-
backs f*x1 and f*xo along f. The definition of a category fibred in groupoids
then implies that a morphism g : Z—Y gives rise to a canonical map

Isom(zq, z2)(f : Y—=X) — Isom(x1,29)(fg : Z—X),

so this is indeed a functor. Up to canonical isomorphism it does not depend on
the choice of pullbacks.
As a particular case, for an object z of F(X) we get a functor

Aut, = Isom(z, z) : (C/X)® — (Groups).

2.6.2 Stacks

The references for this section are [Ols16, §4.2, §4.6].

Let p : F—C be a category fibred in groupoids, where C' has finite fibred
products. For a set of morphisms {X;—X}, i € I, one defines F({X;—X}) to
be the category of descent data, consisting of objects E; of F(X;), for i € I,
and isomorphisms o;; : pri(E;)—pr5(E;) in F(X; xx X;), for each i,j € I,
satisfying the standard compatibility condition on triple intersections. If the
natural functor F(X)—F({X;—X}) is an equivalence of categories, then one
says that the set of morphisms {X;—X}, i € I, is of effective descent for F.

Now let C' be a site, i.e. a category with a Grothendieck topology on it, for
example, the category Sch/S of schemes with the étale topology over a base
scheme S. A category fibred in groupoids p : F—C'is a stack if for every object
X and any covering family {X;— X}, i € I, the functor F(X)—F({X;—X}) is
an equivalence of categories.

Equivalently [Ols16, Prop. 4.6.2], for any covering of any X in C' any descent
datum with respect to this covering is effective, and Isom(x1, z2) is a sheaf, for
any x1 and x5 in F(X). In particular, Aut, is also a sheaf.

Example 1 The stack associated to a sheaf on a site. A set is canonically
turned into a groupoid by defining morphisms to be the identity maps on the
elements of this set. In Example 2 of Section 2.6.1 we have seen that a functor
f: C°P—(Sets) naturally gives rise to a category fibred in sets over C, whose
fibre over X is the set f(X). This category is a stack if and only if f is a sheaf
[Vis05, Prop. 4.9].

Yoneda’s lemma

For an S-scheme X we have the functor of points hx : (Sch/S)°P—(Sets)
defined by hx(Y) = Homg(Y, X). Yoneda’s lemma says that the functor of
points is a fully faithful functor Sch/S—Hom((Sch/S)°P, (Sets)), hence it gives
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an embedding of Sch/S into the category of contravariant functors from Sch/S
to (Sets). Moreover, for any functor F : (Sch/S)°P—(Sets) we have a bijection

Hom(hx, F)—F(X)

given by evaluating on the object id : X—X of hx(X). This allows one to
replace an S-scheme X by its functor of points hx, which is an object of a
larger category.

This operation can be refined as follows. As we have seen, for an S-scheme
X the category Sch/X of X-schemes is a fibred category over Sch/S, via the
functor that forgets X. This is a replacement for hx. The 2-Yoneda lemma
[O1s16, §3.2] says that if p : F—Sch/S is another fibred category, then the
functor

£ : HOMgep,5(Sch/X, F) — F(X)

that sends a morphism of fibred categories to the value of this morphism on the
object id : X—X of Sch/X, is an equivalence of categories.

Example 2 The stack associated to an S-scheme. This allows one to replace an
S-scheme X by the fibred category Sch/X—Sch/S. One immediately checks
that this is a category fibred in groupoids, more precisely, in sets with the
identity maps. Moreover, it is a stack since, by a theorem of Grothendieck, hx
is a sheaf in fpqc, hence also in fppf and big étale topologies [Vis05, Thm. 2.55]
(this is also trivially true for the big Zariski topology).

2.6.3 Algebraic spaces and algebraic stacks

The definition of algebraic stacks [Ols16, §8.1] uses algebraic spaces, so we need
to recall their definition too, see [Ols16, Ch. 5].

Since morphisms of schemes can be obtained by glueing morphisms on Zariski
open coverings, any S-scheme X gives rise to the big Zariski sheaf hyx. Assume
that S is an affine scheme and let Affg be the category of affine schemes over
S. Let F : AffP—(Sets) be a functor which is a big Zariski sheaf. Then F is
representable by a separated S-scheme if and only if

(1) the diagonal morphism F—F x F' is an affine closed embedding, and
(2) there is a family of affine S-schemes X; and affine open embeddings
hx,—F such that the map of Zariski sheaves [ [, hx, —F is surjective.

See [Ols16, Prop. 1.4.11]. (A map of Zariski sheaves A— B is surjective if for any
affine S-scheme U and for any section in B(U) there is a Zariski open covering
{U;} of U such that the restriction of this section to each U; is in the image of

Here we use the terminology that if F' and G are functors Affy’—(Sets), then
a morphism of functors F—G has a property like “affine closed embedding” if
it is representable, i.e. for every Z € Affg and any morphism hz—G the fibred
product functor hy Xg F' is isomorphic to hy for some Y € Affg, and the
resulting morphism Y —X is an affine closed embedding.
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Let S be a scheme and let F' be a sheaf on (Sch/S) with the étale topology.
An important observation is that if the diagonal morphism F—F X F' is repre-
sentable (by schemes), then any morphism hr—F, where T is an S-scheme, is
representable too. This follows from the isomorpism Tx pZ = (T X g Z) X pxp F,
for any S-scheme Z and any morphism hz—F'.

If in the above characterisation of S-schemes as big Zariski sheaves with
certain additional properties we replace the Zariski topology with the big étale
topology, we obtain the definition of an algebraic space. Namely [Ols16, Def.
5.1.10], an algebraic space over S is a functor X from (Sch/S)°P to (Sets) which
is a big étale sheaf such that

(1) the diagonal X—X Xxg X is representable by schemes, and

(2) there is a surjective étale morphism U— X, where U is an S-scheme.

Condition (2) makes sense in view of the observation we made above.

Alternatively, one can define algebraic spaces as quotients of schemes by
étale equivalence relations [Ols16, §5.2]. (In particular, this leads to examples
of algebraic spaces which are quotients of schemes by free group actions, which
may not be schemes.)

Like schemes, algebraic spaces with quasi-compact diagonal are sheaves for
the fpge and hence for fppf topology [Ols16, Thm. 5.5.2].

Consider stacks over Sch/S with étale topology. Since an algebraic space is
a big étale sheaf, it gives rise to a stack (see Example 1 in Section 2.6.2). A
morphism of stacks X—) is called representable if for every algebraic space V'
and every morphism V—) the fibred product X xy V is an algebraic space.

A stack X is called algebraic (or an Artin stack) if

(1) the diagonal A : XY —X x g X is representable, and

(2) there exists a smooth surjective morphism from an S-scheme to X'.

Property (1) is equivalent to the following property: for every S-scheme U
and any two objets u; and ug in X(U) the sheaf Isom(u;,us) is an algebraic
space [Ols16, Lemma 8.1.8].

An algebraic stack is a Deligne-Mumford stack if there is a surjective étale
morphism from an S-scheme to it.

Important examples of algebraic stacks over the category C of S-schemes are
quotient stacks [Ols16, Example 8.1.12]. If G is a smooth group S-scheme that
acts on an algebraic space X over S, then [X/G] is defined as the stack whose
objects are triples (T, P, m), where T is an S-scheme, P is a sheaf of torsors for
G xg T on the big étale site of T, and 7 : P—X xg T is a G X g T-equivariant
morphism of sheaves. In the particular case when G acts trivially on .S, the
quotient stack [S/G] is called the classifying stack of G and is denoted by BG.

We summarise the logical links between the concepts we discussed above in
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the following diagram:

(S-schemes)

(S-algebraic spaces)

(algebraic stacks over S)

(stacks over S)

(categories fibred in groupoids over S)

2.6.4 Gerbes and twisted sheaves

The references for this section are [Ols16, §12.2], [deJ], [Lie08].

Let G be a sheaf of abelian groups on the big étale site of Sch/S. For an
S-scheme X, by an abuse of notation, we write G for the sheaf of abelian groups
on Sch/X induced by G.

Gerbes

A G-gerbe over Sch/S is a stack p : F—C together with an isomorphism of
sheaves of groups ¢, : G—>Aut, for every object x in F such that the following
conditions hold.

(G1) Objects exist locally: every S-scheme Y has a covering {f; : V;—=Y}
such that all F(Y;) are non-empty.

(G2) Any two objects are locally isomorphic: for any objects y and ¢ in F(Y)
there exists a covering {f; : Y;—Y} such that fy and fy’ are isomorphic in
F(Y;) for all i.

(G3) For every S-scheme Y if o : y—y’ is an isomorphism in F(Y), then the
induced isomorphism o : Myﬁﬂy, is compatible with the isomorphisms ¢,
that is, 1y = 0y.

By (G1) and (G2) the sheaf Isom(z1,x2) is a G-torsor on Sch/X, for every
S-scheme X and every z; and z2 in F(X), see [Ols16, Remark 12.2.3].

A morphism of gerbes is defined as a morphism of stacks f : F'—F such

that for every object x of F' the composition G % Aut, ELN Auty(,) is equal
to G % Aut f#(z)- Any morphism of G-gerbes is in fact an isomorphism [Ols16,
Lemma 12.2.4].

If G is a smooth group S-scheme, for example G = G,,, then any G-gerbe
on the big étale site of S is an algebraic stack [Ols16, Exercise 12.E].
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Gerbe of liftings of a torsor Let us give an example of a gerbe. Consider an
exact sequence of sheaves of groups (where G is abelian but not necessarily H
and K) on the big étale site of a given scheme S:

l1—G—H—K—1 (2.24)

A K-torsor P over S gives rise to the G-gerbe over Sch/S whose objects are
liftings of P to an H-torsor. More precisely, consider the fibred category Gp
over Sch/S whose objects are triples (X, R, ¢€), where X is an S-scheme, R is
an H-torsor over Sch/X, and ¢ is an isomorphism of the push-forward of R
along H—K (the quotient of R by G) with P. It is clear that Gp is a category
fibred in groupoids over Sch/S, via the forgetful functor sending (X, R, €) to
X, and for any object x of Gp the sheaf Aut, is canonically isomorphic to G
over Sch/X. Using the effectivity of descent for sheaves and for morphisms of
sheaves one shows that Gp is a G-gerbe [Ols16, Prop. 12.2.6].

Gerbe associated to a cohomology class Using the previous construction,
one associates a G-gerbe to any cohomology class a € H?(S,G). Namely, con-
sider an exact sequence of sheaves of abelian groups (2.24) such that H is injec-
tive. The boundary map induces an isomorphism

HY(S, K)—H(S,G),

so « gives rise to a K-torsor over Sch/S, to which we associate the gerbe of its
liftings to an H-torsor as above. The fact that morphisms of G-gerbes are iso-
morphisms implies that another injective resolution gives rise to an isomorphic
gerbe. A theorem from Giraud’s book [Gir71, Thm. IV.3.4.2 (i)] says that this
gives an isomorphism between H?(S,G) and the group of isomorphism classes
of G-gerbes over Sch/S.

In particular, the Brauer group Br(S) = H%(S,G,,) is identified with the
isomorphism classes of G,,-gerbes over Sch/S. For each a € Br(S) we denote
by Sa a Gy,-gerbe over Sch/S whose isomorphism class is defined by a.

Suppose that
l1—A—B—C—D—1 (2.25)

is an exact sequence of sheaves of abelian groups. Consider the map that
sends a section of D to its inverse image under C—D. This inverse image
is a B/A-torsor; so we obtain a map H°(S, D)—H!(S, B/A). (According to
[Gir71, II1.3.5.5.1] this map is the opposite of the map defined using injective
resolutions.) Next, associating to a B/A-torsor the gerbe of its liftings to a B-
torsor defines a map H'(S, B/A)—H?2(S, A), which is in fact a homomorphism,
see [Gir71, IV.3.4.1.1]. By [Gir71, Thm. IV.3.4.2 (ii)] the above identification
of H2(S,G) with the isomorphism classes of G-gerbes over Sch/S is such that
the composition

H%(S, D) — H'(S, B/A) — H*(S, A) (2.26)

is the opposite of the map defined using injective resolutions.
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If B and C in (2.25) are injective, the first map in (2.26) is surjective with
kernel the image of H°(S,C), and the second map is an isomorphism. Lift a
cohomology class in H2(S, A) to a section in H(S, D). The gerbe attached to a
cohomology class in H?(S, A) is isomorphic to the gerbe of liftings of this section
to a section of C.

Twisted sheaves

We refer to [Ols16, Ch. 9] for the theory of quasi-coherent sheaves on algebraic
stacks over a given scheme S. This uses the lisse-étale site of a stack.

Let m : S—S be a G,,-gerbe over Sch/S given by a € H%(S,G,,). Let n
be an integer. A quasi-coherent sheaf of Og-modules £ is called an n-twisted
sheaf if for any field k and any morphism x : Spec(k)—S the natural action of
Aut, = Gy, ;; on the k-vector space x*& is via the character ¢ — t".

It is easy to see ([Olsl6, Lemma 12.3.3], [Lie08, Lemma 3.1.1.7]) that the
tensor product of an n-twisted sheaf and an m-twisted sheaf is an (n+m)-twisted
sheaf; the Hom sheaf of an n-twisted sheaf with values in an m-twisted sheaf
is an (m — n)-twisted sheaf. The functor 7* sends quasi-coherent Og-modules
to O-twisted sheaves on S, and induces an equivalence of these categories. In
particular, if £ is an n-twisted sheaf on the gerbe S, then the sheaf End(€) is a
0-twisted sheaf and hence isomorphic to 7*A for a unique quasi-coherent sheaf
of Og-algebras.

There is a closely related notion of a-twisted sheaf. By a theorem of Artin,
if S is quasi-projective over an affine scheme, for any class a € H2(S, F) where
F is a sheaf on the small étale site of S, there is an étale covering {U;—S} of
S such that « is represented by a Cech cocycle ayjx € T'(Uyjx, F), see [Mil80,
Thm. II1.2.17]. Here we use the standard notation U, = U; xx U; xx U.
Now let F = G,,. For a € H%(S,G,,,) an a-twisted sheaf (with respect to this
covering) is given by quasi-coherent sheaves of Oy,-modules M; together with
isomorphisms ¢;; : M, Ui; %MﬂUﬁ. such that restricting to U;;;, we have

PikPij = OijkPik-

Note that in general an a-twisted sheaf is not a sheaf on a scheme in the usual
sense. If 85 € T'(Uijk, Gpn) is another Cech cocycle, defining a class 8 €
H?(X,G,,), then the naturally defined tensor product is an (a + 3)-sheaf.

Lemma 2.6.1 Let a € H%(S,G,,). The category of a-twisted sheaves on the
scheme S is equivalent to the category of 1-twisted sheaves on the G,,-gerbe S
defined by a.

Sketch of proof. See [deJ, Lemma 2.10]. To construct an a-twisted sheaf from
a l-twisted sheaf one chooses an exact sequence (2.25) with A = G,,, and B,
C injective. Choose a section in H°(S, D) that lifts « € H%(S,G,,). Choose
an étale covering {U;—S} that trivialises «. Since « restricts to 0 on each U,
this section lifts to a section of C' over U;. Hence the morphism U;— S lifts
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to a morphism U;—S. Then the pullback of our 1-twisted sheaf to U; is a
quasi-coherent sheaf of Op,-modules. The differences of sections of C on Uj;
lift to a section of A which we use to define ¢;;. One then checks the formula

PikPij = QijkPik. U
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Chapter 3

Brauer groups of schemes

There are two ways to generalise the Brauer groups of fields to schemes. The
definition of the Brauer group of a field k£ in terms of central simple algebras
over k readily extends to schemes as the group of equivalence classes of Azu-
maya algebras. We call it the Brauer-Azumaya group. The Brauer-Azumaya
group Bra,(X) of a quasi-compact scheme X is a torsion group. The cohomo-
logical description Br(k) = H?(k, k*) also extends and gives rise to the Brauer—
Grothendieck group Br(X) = HZ (X,G,, x). There is a natural inclusion of
Bra,(X) in Br(X). In Section 3.3 we reproduce de Jong’s proof of Gabber’s
theorem which says that this defines an isomorphism of Bra,(X) with the torsion
subgroup of Br(X) when X is a quasi-projective scheme. Note that there exist
integral normal noetherian schemes such that Br(X) is not a torsion group, for
example, already some normal complex surfaces are like this, see Chapter 7. In
Section 3.5 we prove a theorem of Grothendieck that the Brauer—Grothendieck
group Br(X) of a regular integral scheme X is naturally a subgroup of the
Brauer group of its field of functions F. In particular, Br(X) is then a torsion
group.

The purity theorem for the Brauer group of a regular integral scheme X is
discussed in Section 3.6 in the special case of schemes of dimension 1, and in
Section 3.7 in the general case. For torsion of order invertible on X the purity
theorem can be stated and proved in terms of residues at the generic points
of the irreducible divisors on X. We state the absolute purity theorem for the
Brauer group of a regular scheme, whose proof has been recently completed.
This leads to a description of the Brauer group of a regular integral scheme in
terms of discrete valuations of its function field.

3.1 The Brauer—Azumaya group of a scheme

The following theorem is due to Azumaya, Auslander and Goldman, and Grothen-
dieck, see [Gro68, I, Thm. 5.1] and [Mil80, Ch. IV, §2].

(0]
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Theorem 3.1.1 Let X be a scheme and let A be an Ox-algebra which is a
locally free Ox-module. The following conditions are equivalent:

(i) For each x € X the fibre A ® k(x) is a central simple algebra over the
residue field k(z).

(ii) The natural map A @py AP—=ENdo 4 -mod(A) is an isomorphism.

(iii) For each x € X there exist a positive integer v, a Zariski open set
U C X with x € U and a finite, surjective, étale morphism U'—U such that
AU’ = MT<OU’)-

(iv) For each x € X there exist a positive integer r, a Zariski open set U C X
with x € U and a surjective étale morphism U'—U such that Ay = M, (Oy).

An algebra A satisfying these equivalent conditions is called an Azumaya
algebra. If X is connected, then the integer r in (iii) is constant on X. It is
called the degree of the algebra.

A generalisation of the Skolem—Noether theorem leads to a proof that the set
of isomorphism classes of Azumaya algebras of degree r on X is in a natural bi-
jection with the étale Cech cohomology pointed set Hét (X,PGL, x), see [Mil80,
p. 122]. This pointed set classifies PGL,-torsors on X [Mil80, Cor. IIL.4.7].

Two Azumaya algebras A and B on X are called equivalent if there exist
locally free Ox-modules P and @ locally of finite rank and an isomorphim of
Ox-algebras

ARoy Endoy-mod(P) = B ®0y ENdo-mod(Q).

The set of equivalence classes is called the Brauer—Azumaya group Bra,(X).
Tensor product makes it into a commutative monoid such that the class of Ox
is the identity element. It is actually an abelian group.

The group Bra,(X) is a torsion group when X has finitely many connected
components, which is the case when X is quasi-compact [Mil80, Prop. IV.2.7].

The equivalence of (iii) and (iv) in the above theorem is due to the following
remarkable fact: if A is a local ring, then any PGL,, 4-torsor is split by a finite
étale extension of A. More generally, we have the following theorem.

Theorem 3.1.2 Let A be a semilocal ring and let G be a semisimple group
scheme over A. Then any G-torsor over A is split by a finite étale extension of
A. The same holds if G is a reductive group scheme over a normal noetherian
ring A.

Proof. See [SGA3, XXIV, Thm. 4.1.5, Cor. 4.1.6]. O

3.2 The Brauer—Grothendieck group of a scheme

Grothendieck’s definition of the (cohomological) Brauer group formally resem-
bles his formula for the Picard group (2.20).

Definition 3.2.1 The Brauer—Grothendieck group of a scheme X is
Br(X) = HZ (X, Gy, x).
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For an affine scheme X = Spec(A), where A is a commutative ring, one
often writes Br(A4) := Br(X). In the particular case X = Spec(k), where k is
field, we obtain the classical description of the Brauer group of a field in terms
of continuous 2-cocycles of its absolute Galois group I' = Gal(ks/k), where kg is
a separable closure of k:

Br(k) = B?(k, k7)) = H3(T, k7).

One may also consider the Zariski cohomological Brauer group of a scheme X.
Let us denote it by HZ, (X, G,,). Write 7 : X¢— X,ar for the morphism of sites.
Then we have Gy, zar = TGy, and R'7.(G,,) = 0. From the spectral sequence
(2.4) we get an injection

02, (X,G,,) — H%(X,G,,).

zar

Note, however, that this injection need not be an isomorphism. Indeed, if X is
integral and locally factorial, then H2, (X, G,,) = 0, see Remark 3.5.1.

zar

A morphism of schemes f : X—Y which is locally of finite type gives rise to
a morphism (2.7). In the case of G = G,,, we obtain

f>k : Hgt(Y, Gm)y) — Hgt(X7 Gm,X)- (31)

For n = 2 this gives a natural map of Brauer groups f* : Br(Y)—Br(X),
which is sometimes referred to as the restriction map. If K is a field and
M : Spec(K)—X is a K-point of X, then one writes A(M) = M*(A) € Br(K)
and refers to A(M) as the value, or specialisation, of A at M.

The Brauer group and cohomology with finite coefficients

The link of the Brauer group to étale cohomology with finite coefficients is
provided by the Kummer exact sequence

n
ozt

1— por — Gy x —— Gy x — 1.

Here ¢ is a prime invertible on X and n is a positive integer. The associated
long exact sequence of cohomology gives an exact sequence

0 — Pic(X) /0" — HZ (X, pgn) — Br(X)[¢"] — 0. (3.2)
At the level of H' the Kummer sequence gives an exact sequence
0 — HY(X,G,)/H(X, Gy )" — HE, (X, pign) — Pic(X)[("] — 0,

where H(X, G,,,)¢" stands for the group of £"-powers of invertible regular func-
tions on X. At the level of H3 we have another useful exact sequence

0 — Br(X) /0" — H2, (X, ppn) — H3 (X, G)[0"] — 0. (3.3)
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The Mayer—Vietoris sequence

Theorem 3.2.2 Let X be a scheme and let X = U UV be an open Zariski
covering. Write W = U N V. Then there is an infinite exact sequence

0 —I'(X,0%) — T(U,05) @ T(V,0%) — T (W, 0})
— Pic(X) — Pic(U) @ Pic(V) — Pic(W)
— Br(X) — Br(U) @ Br(V) — Br(W) — HE(X,G,,) — -+~

Here the arrows like Pic(X)—Pic(U) ¢ Pic(V) are restriction maps, and the
arrows like Pic(U) @ Pic(V)—Pic(W) are differences of restriction maps. This
is a particular case of the Mayer—Vietoris sequence for an étale sheaf G,, x on
X [Mil80, Ch. III, §2, Exercise 2.24].

As a consequence of Theorem 3.2.2; if the open set U is locally factorial, for
instance if U is regular, then one has a short exact sequence

0 — Br(X) — Br(U) ® Br(V) — Br(W).

This can be compared with Theorem 3.5.5 below.

Passing to the reduced subscheme

Proposition 3.2.3 Let X be a noetherian scheme. Let X.o.q C X be the reduced
subscheme.
(i) If X is affine, then the natural map Br(X)—Br(Xieq) is an isomorphism.
(i) If dim(X) < 1, then Br(X)—Br(Xyed) is an isomorphism.
(iil) If dim(X) < 2, then the natural map Br(X)—Br(X,eq) is surjective.

Proof. Cf. [De75], [CTOP02, Lemma 1.6]. There are closed immersions
Xed=XoCXjC...C X, =X

and ideals Z; C Ox;, for j = 1,...,n, such that Ox, , = Ox,/Z; and 1'72 = 0.
On each X; we have an exact sequence of sheaves for the étale topology

0—Z; — Gpx, —rGnx,_, — 1,

where r : X;_1—Xj is the given closed immersion, the coherent ideal Z; is
viewed as a sheaf for the étale topology, and the map Z;—G,, x, is given by
x — 1+ x. For any i we have H% (X;,Z;) = H., . (X;,Z;). If X is affine, then

all these groups vanish for ¢ > 1. If dim(X) < 1, then these groups vanish for
i > 2. If dim(X) < 2, these groups vanish for ¢ > 3. Thus

H?ﬁt(Xﬁ Gm) — Hgt(Xj, T*Gm’inl)

is an isomorphism if X is affine or if dim(X) < 1. If dim(X) < 2, then this map
is surjective. Since r is a closed immersion, we have Rir,(F) =0 for i > 1 and
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any sheaf . The Leray spectral sequence for the immersion X;_;—X; and the
sheaf G,,, gives
HZ (X5, 7Gx, ) HE (X1, G).

Thus the natural map H%, (X, G,,)—HZ (X;-1,G,,) is an isomorphism if X is
affine or dim(X) < 1; it is surjective if dim(X) < 2. O

As we shall see in Section 7.1, as soon as dim(X) > 2, the map Br(X)—Br(X;eq)
need not be injective.

Proposition 3.2.4 Let X be a noetherian scheme. Let n be a positive integer
invertible on X. Then we have the following statements.

(a) The natural map Br(X)/n—Br(X,eq)/n is injective.

(b) The natural map Br(X)[n]—=Br(X,ea)[n] is surjective.

(¢) If X is a scheme over a field of characteristic 0, then the natural map

Br(X)tors—Br(Xred )tors s surjective.
Proof. If F is a coherent sheaf on X, then multiplication by n on H., (X, F) =
H: (X, F) is an isomorphism for any i > 0. The arguments from the proof of
Proposition 3.2.3 then give an exact sequence

A — Br(X) — Br(X;ed) — B

with A and B uniquely n-divisible. The three statements then follow from a
diagram chase. The second statement may also be established by using the
Kummer sequence and invariance of étale cohomology with coefficients p,, for
Xrea—X when n is invertible on X [SGA4, VII, §1]. O

3.3 Comparison of the two Brauer groups

Let us fix an integer n > 1. There is a natural exact sequence of group schemes
over X

1— Gpx — GL,,x — PGL, x — 1, (3.4)

where G, x +GL,, x is the central subgroup of scalar matrices. It gives rise to
a boundary map of pointed cohomology sets

6n : HY (X, PGL, x) — H2,(X,G,,) — H%(X,G,,) = Br(X).

Theorem 3.3.1 Let X be a scheme. Then we have the following statements.

(i) The set T}, (X,PGL, x) can be identified with the set of isomorphism
classes of Azumaya algebras of degree n on X.

(ii) The boundary maps 6, forn > 1 are compatible and induce a homomor-
phism of abelian groups Bra,(X)—Br(X).

(iii) This homomorphism Bra,(X)—Br(X) is injective.

(iv) 6,(HL (X, PGLy,, x)) C Br(X)[n).
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Proof. See [Mil80, Thm. IV.2.5]. Milne also gives a proof of (iii) via gerbes,
which does not use the exact sequence (3.4). (See Proposition 3.3.3 below.) O

The fundamental result linking the Brauer—-Azumaya group to the Brauer—
Grothendieck group is the following theorem of Gabber. Previous results in this
direction were obtained by Gabber in his thesis and also by Hoobler. A proof
in the affine case is given in [Lie08, Cor. 3.1.4.2].

Theorem 3.3.2 (Gabber) Let X be a quasi-compact separated scheme with
an ample invertible sheaf, for example, a quasi-projective scheme over an affine
scheme. Then the map

Bra,(X) — Br(X)tors

is an isomorphism.

By definition (see [Stacks, Def. 01PS]) X has an ample invertible sheaf means
that there exists an invertible sheaf £ of Ox-modules such that for any x € X
there is an s € HY(X, £L®") for some n > 1 such that s(z) # 0 and the open
subset s # 0 is affine. This holds for any quasi-projective scheme over an affine
scheme.

The separateness assumption is necessary. Indeed, there exist non-separated,
normal varieties X over C with torsion elements in Br(X) that are not in the
image of Bry,(X), see [EHKVO01] and [Ber05].

The remaining part of this section is a sketch of de Jong’s proof of Theo-
rem 3.3.2, see [deJ].

We begin by interpreting the map Bra,(X)—Br(X) as a map that associates
to an Azumaya algebra a certain G,,-gerbe.

To an Azumaya algebra A on X one attaches the category X (A) whose
objects are triples (T, M, j), where T is an X-scheme, M is a locally free Or-
module, and j is an isomorphism j : End(M)—>Ar. A morphism of triples
(T, M, §)—=(T",M’,j") is a pair (f,i) consisting of a morphism of X-schemes
f: T—T" and an isomorphism i : f* M’—>M compatible with j and j'. Note
that there is a natural map G,,(T)—Aut(T, M, j) sending u to (idp,u).

Proposition 3.3.3 The forgetful functor m : X(A)—Sch/X is a G,,-gerbe.

Proof. [Ols16, Prop. 12.3.6] One checks that X'(A) is a stack. The verification
that X(A) is a Gy,-gerbe can be done locally, so one can assume that A =
End(0%). Furthermore, we can assume that M = OF. After localising again,
we can assume that j comes from the conjugation by an element of Aut(O%).
Thus any object in X' (A) is locally isomorphic to (T', O%,id), so any two objects
are locally isomorphic. Now the automorphism sheaf of the object (T, O%,id)
is G, acting by scalar multiplication on OF. O

Since the isomorphism classes of G,,-gerbes over X are classified by the el-
ements of H?(X,G,,), this gives a map Bra,(X)—Br(X). The class in Br(X)
associated to A can be described as follows. Assume that A is an Azumaya
algebra over X of dimension n2. Consider (3.4) as an exact sequence of sheaves
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of groups for the étale topology. Let P be the functor on Sch/X sending
Y—=X to Isome, (M,(Oy),Ay). Using essentially the Noether—Skolem the-
orem one shows that this functor is a PGL,-torsor over Sch/X. Then the
class associated to A is the image of the class of this torsor under the map
HY(X,PGL,)—H?(X,G,,) which sends a PGL,,-torsor to the gerbe of its lift-
ings to a GL,-torsor as defined in Section 2.6.4, see [Ols16, Lemma 12.3.9].

To any cohomology class @ € Br(X) one associates a G,,-gerbe X, (well
defined up to isomorphism) using the construction of a gerbe associated to a
cohomology class in Section 2.6.4. Namely, one takes (2.24) to be the extension
(3.4). One wants to show that X, is isomorphic to X'(A) for some A.

A sheaf F of Ox-modules is called finite locally free if every point x € X
has a Zariski open neighbourhood U C X such that F|y = OF" for some n.
We refer to [Ols16, Ch. 9] for the theory of quasi-coherent sheaves on algebraic
stacks; then one also has the notion of finite locally free sheaves in this context.

The gerbe X(A) has a tautological finite locally free 1-twisted sheaf M
together with an isomorphism End(M) = n*A of algebras over X(A). Then
A =m.End(M).

Proposition 3.3.4 A G,,-gerbe X over Sch/X ‘s isomorphic to the gerbe
X (A) for some Azumaya algebra A on X if and only if X has a finite locally
free 1-twisted O x-module M of positive rank. In this case A = m.End(M) is an
Azumaya algebra on X, the adjunction map n* A—End(M) is an isomorphism,
and X =2 X(A).

Proof. See [Ols16, Prop. 12.3.11] O

The goal is thus to show that this is the case for the G,,-gerbe X = X,
for any o € Br(X)iors, when X has an ample invertible sheaf. Recall that by
Lemma 2.6.1 the categories of 1-twisted sheaves on X and of a-twisted sheaves
on X are equivalent. So our task is to construct a finite locally free a-twisted
sheaf on X.

Let a € Br(X)tors, say na = 0 for some n > 1. Let £ be an ample invertible
sheaf on X. One can represent (X, L) as a filtering projective limit of pairs
(X, L;), where X; is of finite type over Z and £; is an ample invertible sheaf
on X;, with affine transition morphisms X;—X;. By Section 2.2.4 the group
HZ (X, G,,) is naturally isomorphic to the direct limit of the groups HZ, (X, G,,).
Hence Br(X)iors is the direct limit of the groups Br(X;)iors. Thus without loss
of generality we can assume that X is a quasi-projective scheme of finite type
over Spec(Z), so X is noetherian.

In the course of the proof X will be repeatedly replaced by Xg for some
ring R which is finite and flat over Z. This is justified by a lemma of Hoobler
[Hoo82, Prop. 3] that says that if ¢ : Y—X is a finite locally free morphism
(which is the same as finite and flat as X is noetherian, see [Stacks, Lemma
02KB]), then a € H?(X,G,,) comes from an Azumaya algebra on X if and
only if ay € H?(Y,G,,) comes from an Azumaya algebra on Y. To prove this
lemma, de Jong argues as follows. If ary comes from an Azumaya algebra on Y,
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then there is a finite locally free ay-twisted sheaf F on Y. Then the naturally
defined direct image . F is a finite locally free a-twisted sheaf on X.

The proof starts with an application of a theorem of Gabber which solves the
problem in the particular case when X is affine. We do not reproduce the proof
of this result here; it can be found in [Ga81, Ch. 2, Thm. 1], see also [KO81,
Thm. 3.1] and [Lie08, Cor. 3.1.4.2]. There is a section s € H?(X, £®™), for
some m > 1, such that the open set X is affine. By this result, the restriction
of a to X, is represented by an Azumaya algebra A. Hence there is a finite
locally free a-twisted sheaf Fs on X,. By taking direct sum on the connected
components we can assume that F has constant rank. Let us write j : Xz—X
for the open immersion defined by X, < X. Then j,.F; is a quasi-coherent «-
twisted sheaf on X. Representing it as a direct limit of coherent sheaves allows
one to find a coherent a-twisted subsheaf F C j.Fs such that j*F = F;.

We can ensure that X, contains any given finite set of closed points (see
[EGA 1II, Cor. 4.5.4]), so our coherent a-twisted sheaf F is finite locally free at
each of these points.

A quasi-coherent sheaf of Ox-modules is finite and locally free if and only if
it is flat and of finite type [Stacks, Lemma 05P2]. Thus the task is to ensure that
our a-twisted sheaf F is flat. Let Sing(F) be the set of points of X at which
F is not flat. What we have obtained now is the case ¢ = 1 of the following
statement.

(H.) For any finite set T' of closed points of X, after a finite flat ring extension
of R, there exists an a-twisted sheaf F which is finite and locally free at T, of
constant positive rank outside of Sing(F), and such that codimxSing(F) > c.

The strategy of the proof is to use ring extensions to increase ¢; in view of
Hoobler’s lemma, the theorem will be proved if one can make ¢ = dim(X) + 1.

Step 1

Assume that (H.) holds for a finite set of closed points T' C X. The claim
of this step is that, after replacing R by a finite flat extension ring, there exist
n + 1 coherent a-twisted sheaves Fy, ..., F, (recall that na = 0) and finite sets
of closed points Sy, ..., S, in X with the following properties:

(1) T is disjoint from (J!-, Sing(F;);

(2) each F; has constant positive rank on X \ Sing(F;);

(3) each irreducible component of Sing(F;) of codimension ¢ contains a point
of Si;

(4) for any i # j the sheaf F; is finite locally free at all the points of \S;.
Indeed, (H.) ensures the existence of Fy which is locally free at T. Choose a
closed point in each irreducible component of Sing(Fy) of codimension ¢; let
So C X be the set of these points. Define Tp = T U Sy. Now (H.) ensures
the existence of F; which is locally free at Tj. If a codimension c¢ irreducible
component of Sing(F;) is contained in Sing(Fp), then it is a codimension ¢
irreducible component of Sing(Fp), but this is not possible because F7 is locally
free at some closed point of this component. Thus we can choose a closed
point in each codimension ¢ irreducible component of Sing(F;) which is not
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in Sing(Fp). Let S1 C X be the set of these points, and let T3 = Ty U Sy.
The pairs (Fo, So) and (Fi,S1) satisfy properties (1) to (4) with n = 2. Next,
one constructs Fp and so on. If Fy,...,F;_1 are already constructed so that
properties (1) to (4) are satisfied, one constructs F; which is locally free at all
the points of TUSyU...US;_1 and chooses S; in Sing(F;) outside of the union
of Sing(F;) for i =0,...,5 — 1.

Step 2

Replacing each F; by ]-'i@m'i for appropriate positive integers m; we ensure
that there is a positive integer r such that the rank of F; on X \ Sing(F;) is r.
Later on we shall assume that r is large. Define

glz(fo@-u@]:n)@r", Go=FoR...0 Fp.

It is clear that Gy is an a-twisted sheaf; in fact, G, is also an a-twisted sheaf
since na = 0. It follows that

H =Hom(G1,G2)

is a O-twisted sheaf on X, so is a coherent Ox-module. Recall that £ is an
ample invertible sheaf on X. Replacing X by Xpg preserves the ampleness of L.

Let 1) be a section of H ® L®N over X for some positive integer N, and let
F be the kernel of the map ¢ : G1—Gs @ LV,

Let U be the complement to |J;'_, Sing(F;) in X. The aim of Step 2 is to give
conditions for F to be finite locally free of positive rank on a larger open set than
U. More precisely, one gives conditions ensuring that codimxSing(F) > ¢+ 1,
in terms of pullbacks at closed points of X.

To define the pullback at a geometric point Z = Spec(x(Z)) € X one chooses
a lifting of the morphism T—X to a morphism Zz— X, which is possible as
a € Br(X) is annihilated by the restriction to the algebraically closed residue
field x(Z). The same works for a closed point with finite residue field, by the
triviality of the Brauer group of a finite field.

Claim. Let F = Ker[t) : G1—Go @ LON], where 1 is a section of Hom(G1,Ga ®
LENY over X, for some positive integer N. Assume that the following conditions
are satisfied.

(a) For every geometric point T = Spec(k(Z)) € U the pullback to T gives a
surjective map of k(T)-vector spaces

Yz 1 G1 @ K(T) — Go @ LN @ k(7).
(b) For anyi=0,...,n and any s = Spec(k(s)) € S; the composition
FE" @ k(s) = G1 @ k(s) — Ga ® LZN @ k(s)
s an isomorphism, whereas the following composition is zero:

(@)% @ k(s) = G1 @ K(s) — Go © LN @ k(s).
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Then F is an a-twisted sheaf on X such that Sing(F) C I, Sing(F;) and
Sing(F) is disjoint from S = U ,S;. In particular, codimx Sing(F) > ¢+ 1.

This shows that if ¢ satisfying (a) and (b) exists, then (H.) implies (Hq41).

Proof of Claim. It is clear that 7 = Ker(7)) is an a-twisted sheaf on X. The
last sentence of the statement is a consequence of the fact that each codimension
¢ irreducible component of Sing(F;) contains a point of .S;.

Condition (a) implies that the restriction of H to the open subscheme U C X
is the kernel of a surjective map of finite locally free sheaves. Locally such a
map has a section, so its kernel is finite locally free.

Let us prove that condition (b) implies that F is finite locally free at each
x € S. Let Ox , be the local ring at = and let OE‘(’I be the henselisation of Ox ;.
The Brauer group Br(0§(7x) is canonically isomorphic to the Brauer group of
the residue field Br(x(z)), see Theorem 3.4.2 (i). Since k(z) is finite, we have
Br(k(z)) = 0. It follows that there is a finite étale extension of local rings
Ox  C B with trivial residue field extension such that the image of « in Br(B)
is zero. Thus there is a lifting Spec(B)—X of Spec(B)—X so that each F; pulls
back to the quasi-coherent sheaf on Spec(B) associated to a finitely generated
B-module M;.

We have = € 5; for some 7. Then for j # ¢ the B-module M; is free of rank
r. Let us write M = M;. If H, is the stalk of H at x, then

n+1

H, ® B =Homp(M®" M®") @ Homp (B M®™").

Write ¢ ® B = 11 ® 2. Since the residue field of B is k(z), condition (b)
gives that v is an isomorphism and ¥9 = 0. Hence F = Ker(¢)) is the direct
summand BO""" G1,B, so F is finite locally free at each point of S. This
proves the claim.

As a preparation for the last step of the proof we point out that the fibre
of H at a geometric point € U is the k(Z)-vector space of matrices of size
(n 4+ 1)r"*1 x r7+1 Condition (a) at Z is satisfied if ¢z avoids the subset
of matrices of rank less than r”*!. This is a closed homogeneous subset of
codimension

(n+1)r"tt — et 1 s et

We can make r arbitrarily large and thus ensure that this codimension is greater
than dim(X) + 1.

Step 3

It remains to show that if N is sufficiently large, then there exists a section
1 satisfying conditions (a) and (b) above. This is a purely algebraic-geometric
statement, so this part of the proof has nothing to do with either Brauer elements
or gerbes.

Let R be a ring which is finite and flat over Z, and let X be a quasi-projective
scheme over R with an invertible sheaf £. We write L for the line bundle on
X whose sheaf of sections is £. Let H be a coherent O x-module which is finite
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locally free over an open subscheme U C X. We write H for the vector bundle
on U whose sheaf of sections is the restriction of H to U. For any point x in X
fix an isomorphism £ ® k(x) & L, = k(z).

Suppose that for every u € U we are given a closed homogeneous subset
Cy C Hy, of codimension greater than dim(X)+1. Suppose also that for a finite
set of closed points S C X N\ U we are given s € H @ k(s), for each s € S.
Then there exists a positive integer N, a finite flat extension of rings R C R’
and a section ¥ € T'(Xp, H @ LEN) such that 1, ¢ C, @ LEN for u € Ugs,
and for each closed point s’ of Xg' over a point s € S the value of 1 at s' is a
non-zero multiple of ;.

This isomorphism L, 2 x(u) identifies C, C H, with C, @ LN c H,@L®N.
For the proof we may assume R = Z.

Let Zg C Ox be the sheaf of ideals defined by S. For all N sufficiently large
one can find sections ¥; € I'(X,Zg ® H ® LZN), for i in a finite set I, such
that the map of sheaves O% —Zs ® H ® LZN sending 1; to ¥, is surjective. In
particular, the sections ¥; generate the sheaf H @ L&V over U.

Next, by increasing N further, for each s € S one finds a section ¥y €
(X, Zs (s} @ H @ LZY) whose value at s is ;.

Let A = Spec(Z|z;,ys;i € I,s € S]) be the affine space over Z of relative
dimension |I| + |S|. Write A x X for A xz X and consider the universal section

V=3 alit Yyl

el ses

of the pullback of H® LZN to A x X. The value ¥, ,, of ¥ at (a,u) € AxU is an
element of H, @ L®Y which we identified with H,. Let Z C A x X be the closed
subset defined by the condition ¥, , € C,. The values of the sections ¥;, for
i € I, generate the k(u)-vector space H,,, hence the dimension of each fibre of the
natural projection Z—U is at most |I|+|S|—codimy, (C,). By assumption we
have codimpy, (Cy,) > dim(X) + 1, hence dim(Z) < |I| +|S| — 1 = dim(A) — 2.
Thus the Zariski closure Z’ of the projection of Z to A has codimension at
least 2.

Let m : A—Z be the structure morphism. For each s € S define Z, C A to be
the closed subscheme defined by the ideal (7(s),ys). To finish the proof we need
to find a point in A(R) outside of the codimension 2 closed subset Z' Ul J, g Zs,
for some finite flat extension Z C R. Note that 7 induces a surjective morphism
AN Z—Spec(Z). The result then follows from Rumely’s local-to-global principle
[Rum86] in the form of [Mor89, Thm. 1.7]: an irreducible scheme V' which is
separated and of finite type over a ring of integers O of a number field K has a
point in the ring of all algebraic integers if the structure morphism V—Spec(Ok)
is surjective with geometrically irreducible generic fibre V. It is clear that such
a point is defined over a finite extension of Z. [
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3.4 Localising elements of the Brauer group

Lemma 3.4.1 Let X be a scheme. For any element o € Br(X) there exists an
étale cover f : U—=X such that f*a =0 € Br(U).

Proof. This is a special case of a general statement: for any étale sheaf F' on
a scheme X, any i > 0 and any cohomology class o € H!(X, F) there exists an
étale cover {U;—X }jes such that the restriction of a to each H'(U;, F) is zero
[Mil80, Prop. IIL.2.9, Remark II1.2.11 (a)]. Take U = [[,c, U;. O

Theorem 3.4.2 (Azumaya) Let R be a henselian local ring with residue field k.
(i) The embedding of the closed point Spec(k)—Spec(R) induces an isomor-
phism Br(R)—Br(k).
(ii) If R is a strictly henselian local ring, i.e. if k is separably closed, then
Br(R) = 0.

Proof. For any smooth quasi-projective commutative group R-scheme G we
have an isomorphism H'(Spec(R), G)——H(k,G x r k) when i > 1, see [Mil80,
Remark I11.3.11 (a)]. For G = G, we get the desired statement Br(R)—Br(k).
(ii) follows from (i). Alternatively, by [Mil80, Thm. I1.4.2 (d)] an étale
morphism U—Spec(R) has a section provided U contains a k-point which goes
to the closed point of Spec(R). Thus (ii) is a consequence of Lemma 3.4.1. [J

The original theorem of Azumaya concerns the Brauer—Azumaya group. We
briefly outline the proof given in [Mil80, Cor. IV.2.13]. Let o € Br(R). Since
R is local henselian, Lemma 3.4.1 implies that there exists a finite étale cover
R’'/R of henselian local rings such that « goes to 0 under the natural map
Br(R)—Br(R’). This implies that o belongs to Bra,(R). Therefore, Bry,(R) =
Br(R). Then one applies Hensel’s lemma to suitable auxiliary smooth schemes
over R to show that Bra,(R) = Br(k).

Corollary 3.4.3 Let R be a noetherian henselian local ring with mazimal ideal
m. Let R be the m-adic completion of R. Then the natural map Br(R)—Br(R)
18 an isomorphism.

Proof. Since R is noetherian, Risa complete local ring with residue field R/m.
In particular, R is a henselian local ring. Now Azumaya’s theorem says that

~

the natural map Br(R)—Br(R) is the identity map on Br(R/m). O

Corollary 3.4.4 Let k be a field, let X be a k-scheme and let P € X (k) be a k-
point. For any o € Br(X) with a(P) =0 € Br(k) there exist an étale morphism
f:U—=X and a k-point M € U(k) such that f(M)= P and f*a =0 € Br(U).

Proof. Let R be the henselisation of the local ring of X at P. By Theorem
3.4.2 (i) the image of @ under the natural map Br(X)—Br(R) is zero. The ring
R is a filtering direct limit of rings R;, each of them equipped with an étale map
fi : Spec(R;)—X and a k-point M, such that f;(M;) = P. The group Br(R) is
the direct limit of the groups Br(R;), see Section 2.2.4. Thus « goes to zero in
Br(R;) for some i, so we can take U = Spec(R;). .
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Lemma 3.4.5 Let k be a field and let X be a variety over k. Let A € Br(X).
There exists an integer n > 0 such that nA vanishes in each residue field of X.

Proof. Suppose this has been proved for all varieties of dimension at most d.
Let X be a variety of dimension d+ 1. To prove the result for X we may assume
that it is reduced and irreducible. Let k(X) be its function field. By Section
2.2.4, the torsion group Br(k(X)) is the direct limit of the groups Br(U), where
U is non-empty open in X. Thus there exists a non-empty open set U C X
such that the restriction of A to U is an element of Br(U) annihilated by some
positive integer n. Let Z = X \ U. By the induction hypothesis there exists an
integer m > 0 such that the restriction of mA to residue fields of Z vanishes.
Thus the restriction of nmA to residue fields of X vanishes. [

3.5 Going over to the generic point

A noetherian scheme X is called geometrically locally factorial if for any étale
U— X each local ring of U is a unique factorisation domain. In particular, X is
normal.

The notion is local on X for the Zariski topology. A regular local ring is
geometrically locally factorial. More generally, a noetherian local ring which
is a complete intersection in a regular local ring and which is regular in codi-
mension < 3 is geometrically locally factorial. For this result of Auslander and
Buchsbaum, see [SGA2, Thm. XI.3.14].

Let X be a normal integral noetherian scheme and let j : Spec(F) — X be
its generic point. There is a natural exact sequence of sheaves in étale topology,
which describes the embedding of the group of invertible regular functions into
the group of non-zero rational functions as the kernel of the divisor map:

0— Gn,x — 3«Gpr — @ 1D« Zk(D)s (3.5)
Dex @

see [Mil80, Example I1.3.9]. Here ip : Spec(k(D)) — X is the embedding of
the generic point of an irreducible divisor D C X; the direct sum ranges over
all such divisors. The map j.Gpm r—ip«Zyp) can be described on an étale
open set U— X as follows. Let D’ be an irreducible divisor on U contained in
D xx U. Since X is normal, U is also normal, hence the local ring Oy, p/ is
a discrete valuation ring with valuation vp : Oy ps \ {0}—=N. The group of
sections HO(U, .Gy, r) is the group of invertible elements in the ring of rational
functions on U. The map H(U, j*Gm,F)%HO(U,iD*Zk(D)) sends a function f
to the integer vp/(f).

Now assume, in addition, that X is geometrically locally factorial. Then
WEeil divisors are the same as Cartier divisors, i.e. any divisor locally at each
point is given by one equation. Thus (3.5) extends to an exact sequence

0— Gm,X — j*Gm,F — @ iD*Zk(D) — 0. (36)
Dex ()
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Remark 3.5.1 The exact sequence (3.6) restricted to the Zariski site of X
is a flasque resolution of the Zariski sheaf G,, x. Recall that a Zariski sheaf
F on X is flasque if for any Zariski open set U C X the restriction map
HY(X, F)—HO(U, F) is surjective. As remarked by Grothendieck in [Gro57],
this implies HY, (X, G,, x) = 0 for i > 2. This argument can be applied to any

X which is locally factorial (in the usual sense, i.e. for the Zariski topology)
and not necessarily regular.

Lemma 3.5.2 Let X be a geometrically locally factorial integral scheme, for
example, a reqular integral noetherian scheme. Then the groups HZ, (X, G, x)
are torsion groups for n > 2. In particular, the Brauer group Br(X) is a torsion

group.

Proof. This follows from Lemma 2.4.1 and the long exact sequence of cohomol-
ogy attached to (3.6). O

Lemma 3.5.3 Let X be a geometrically locally factorial (for example, reqular)
integral scheme with generic point j : Spec(F) — X. If D C X is an irreducible
divisor, we denote its generic point by Spec(k(D)). There is an exact sequence

0 — Br(X) — H*(X,4.Gmr) — € H'(K(D),Q/2). (3.7)
Dex®

Proof. By Lemma 2.4.1 the long exact sequence of cohomology groups attached
to (3.6) gives

0 — Br(X) — H*(X, jsGm.r) — € H*(X,ip.Zup)).
Dex @)

By the same Lemma 2.4.1 the spectral sequence
HP(X, (R%ip.)(Zi(p))) = BT (k(D),Z)

gives an injective map H2(X,iD*Zk(D))—>H2(k(D),Z). Multiplication by any
non-zero integer is an automorphism of the abelian group Q; however, any
Galois cohomology group of positive degree is a torsion group [SerCG, Cor.
2.2.3], so H"(k(D),Q) = 0 for n > 0. Thus the long exact sequence associated
to the exact sequence of trivial Galois modules

0—72Z—Q—Q/Z—0 (3.8)
gives an isomorphism H!(k(D),Q/Z)—H?(k(D),Z)). This gives (3.7). O

Theorem 3.5.4 Let X be a geometrically locally factorial (for example, regu-
lar) integral scheme with generic point Spec(F'). The natural map Br(X)—Br(F')
1s injective. For any non-empty open subset U C X this map factors through
the natural map Br(X)—Br(U), which is therefore also injective.
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Proof. By Lemma 2.4.1 the spectral sequence
Hp(X’ (qu*)(GM,FD = Hp+q(F) Gm,F) (39>

implies that H?(X, j.G,, r) is a subgroup of H*(F,G,,, ) = Br(F). Now (3.7)
shows that Br(X) is naturally a subgroup of Br(F). O

Theorem 3.5.5 [Ber05] Let X be a separated noetherian scheme and let U C X
be an open subscheme. Assume that U contains every generic point and every
singular point of X. Then the restriction homomorphism Br(X)—Br(U) is
injective.

Proof. Let V' be the open set of regular points. Then X = U U V. Let W =
UNV. Since V is regular, the restriction map Pic(V)—Pic(W) is surjective.
By the Mayer—Vietoris sequence (Theorem 3.2.2) the diagonal restriction map
Br(X)—Br(U) @ Br(V) is injective. If & € Br(X) has a trivial image in Br(U),
then it has a trivial image at each generic point of U, hence it has a trivial image
in Br(V). Indeed, as V is regular, the restriction map to the generic points is
injective (Theorem 3.5.4). Thus o =0 € Br(X). O.

Remark 3.5.6 In Section 7.7 we give counter-examples to the injectivity of the
restriction map Br(R)—Br(K), where R is an integral local ring which is a local
complete intersection and K is the field of fractions of R. In the second counter-
example R is normal of dimension 2, in the third counter-example R is regular
in codimension 2, but not in codimension 3. The ring R is not geometrically
locally factorial.

3.6 Regular 1-dimensional schemes

This section follows [Gro68, III, §2] and [Mil80, III, Example 2.22]. Proposition
1.4.3, whose proof uses the Krull-Akizuki Theorem, enables one to recover all
results stated in [Gro68, III, §2], without the excellence assumption added in
[Mil80, III, Example 2.22].

Proposition 3.6.1 Let X be an integral reqular scheme of dimension 1 with
generic point Spec(F).
(i) For any prime £ invertible on X there is an infinite exact sequence

0—H?(X,G,){(}=H*(F,G,,){{}— @ H! (k(z), Q¢/Z¢)—H3(X,G,){{}— ...
zeX @)

S H(X, G ) (O H (F, G ) {0~ @ H 7 (k(2), Qe/Ze)— ...

zeX M)

where k(x) is the residue field of the point x € X.
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(ii) If for each closed point x € X the residue field k(x) is perfect, then there
18 an infinite exact sequence

0—Br(X)—Br(F)— @ H'(k(z),Q/Z)»H(X,G,n)H(F,Gp)— ...
reXxX @)
. =H(X,Gp)—H(F,G)—» D H 7' (k(2),Q/2)— ...
xEX(l)
For each x € XU the map Br(F)—H"(k(x),Q/Z) is the composition of the

restriction Br(F)—Br(FY), where F? is the field of fractions of the henselisation
of the local ring Ox ., and the Witt residue rw : Br(FM)—H! (k(x),Q/Z).

Proof. The exact sequence of sheaves (3.6)

0—>Gm,x _>j*Gm,F—> @ iD*Zk(D) —0
Dex (™)

gives rise to the long exact sequence of étale cohomology groups

o H(X, G )2 H (X, oG p) 2 H (X, @D i) —H T (X, Gp) .
zeX @)

Since dim(X) = 1, each inclusion i, : —X is a closed immersion, hence a
finite morphism. Thus for any sheaf F on x we have R%,,(F) = 0 for i > 1.
Therefore, we can re-write the above sequence as follows:

o SH(X, G) 2 H(X, .G )= @D H(k(x),Z)—H T (X, Gp)— ...
zeX @)

In particular, we have a long exact sequence

0—H*(X,Gp)=H*(X, j.Gm.p)— € H'(k(z),Q/Z)—H*(X,Gp)— ...
zeXx @)

By Lemma 2.4.1 we have R'j,G,, r = 0. For ¢ > 2 the stalk of R%},G,, r
at the generic point of X is the Galois cohomology group H?(Fy, G,, ), where Fy
is a separable closure of F', hence this stalk is zero. The stalk at a geometric
point & above a closed point € X is HI(F:" G,,). By Proposition 1.4.3 (ii)
this group is p,-primary, where p, is the characteristic exponent of the residue
field k(x). If k() is perfect, then HI(FS" G,,) = 0 for all ¢ > 1, by Proposition
1.4.3 (iv). If this holds for all z, then R95,G,, r =0 all ¢ > 1.

From the spectral sequence (3.9)

H?(X, R%5.Gy, r) = HY(F, G,y r)
we then deduce the following statements.

e For ¢ > 2 the natural map H(X, j.G,, r)—H(F,G,,) induces an isomor-
phism of the ¢-primary subgroups, for each prime ¢ invertible on X.
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e The natural map HY(X, j.G,, r)—HI(F,G,,) is an isomorphism for all
g > 2 if for each closed point z € X the residue field k(z) is perfect.

This gives the exact sequences in the proposition.

To identify the map Br(F)—H!(k(z),Q/Z) with the Witt residue we can
assume that X = Spec(O% ). Let K = F}! be the field of functions of O% ,.
We follow the arguments from the proof of Lemma 2.3.3 using similar notation.
Let K be a separable closure of K. Then F:' coincides with the maximal
unramified extension K, of K in K. Define

G = Gal(K,/K), I = Gal(K,/K,,), T = Gal(k(z)s/k(z)) = Gal(Ky/K) = G/I.

As discussed in Section 2.3.3, the category of étale sheaves on Spec(OE‘(JC) is
equivalent to the category of triples (M, N,¢), where M is a I-module, N
is a G-module, and ¢ : M—N! is a homomorphism of I'-modules. Under
the correspondence of sheaves on Spec((’)})‘(’r) and triples, the sheaf j.G,, x
corresponds to the triple (K, K7, id), the sheaf i,Zj,,) corresponds to (Z,0,0),
and the map j.Gm x—i+Zy(y) is given by the valuation K} —7Z, see [Mil80,
Example I1.3.15]. According to (2.16) there is a canonical isomorphism

H2(O§(,x’ J*Gm,K) = H2(F7 K:‘:I‘)
Under this isomorphism, the map
Hz(og(,xvj*Gm,K) — Hz(k(gj)a Z) = Hl(k(x)7 Q/Z)

becomes the Witt residue H*(T, K,)—H?(T',Z) = HY(I',Q/Z). O

The following theorem gives a description of the Brauer group of a henselian
discrete valuation field K in the case when the residue field k is perfect. It
can be compared to a similar description (1.14), where n is coprime to the
characteristic of k but k is not necessarily perfect.

Theorem 3.6.2 (Witt) [Wit37] Let R be a henselian discrete valuation ring
with fraction field K and perfect residue field k. Then there is a split exact

sequence
0 — Br(k) — Br(K) — H'(k,Q/Z) — 0. (3.10)

Proof. By the functoriality of étale cohomology the embedding of the closed
point Spec(k)—Spec(R) gives rise to the specialisation map Br(R)—Br(k). This
map is an isomorphism by Theorem 3.4.2. Now (3.10) follows from Proposition
3.6.1 in view of the surjectivity of the Witt residue, see Section 1.4.3. [J

Corollary 3.6.3 Let R be a henselian discrete valuation ring with fraction field
K and finite residue field k. Then Br(K)—Q/Z.

Proof. By Theorem 1.2.11 (Wedderburn) we have Br(k) = 0. In this case the
Galois group I is the profinite completion Z of Z generated by the Frobenius
automorphism. Hence Homont (T, Q/Z) = Q/Z. O
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In particular, when K = F,, is the completion of a global field F' at a non-
archimedean place v we obtain an isomorphism

inv, : Br(F,)—Q/Z,

called the local invariant. For example, if F,, is the field of p-adic numbers Q,,
p # 2, and a € Z3, by formula (1.16), inv,(a,p) = 0 if and only if the Legendre

symbol (g) — 1.

There are other cases when the exact sequence of Proposition 3.6.1 can be
completed by 0 on the right.

Theorem 3.6.4 Let A be a semi-local Dedekind domain with field of fractions
K. Let £ be a prime invertible in A. Then there is an exact sequence

0 — Br(A){¢} — Br(K){¢} — EDH'(A/p,Qu/Zs) — 0,
p

where p ranges over the maximal ideals of A.

Proof. By Proposition 3.6.1 it remains to prove the surjectivity of the third map
in the sequence. Choose a maximal ideal p C A and let € H(A/p, Q¢/Zy).
The group H*(A/p,Q;/Zy) is the union of subgroups H(A/p, Z/€™), so z is in
H'(A/p,Z/n) for some n = ¢™. It is enough to find an element o € Br(K)[n]
such that 0, («) = « and 9, (o) = 0 for all maximal ideals p’ # p of A.

Let A, be the localisation of A at p and let A}p1 be the henselisation of the

local ring Aj,. Since Ag is a henselian local ring, the specialisation map
H'(A}, Z/n)——H"(A/p,Z/n)

is an isomorphism. Let € Hl(AS,Z/n) be the inverse image of x under this
isomorphism.

Consider a finite separable field extension K C L with the following two
properties: if B is the integral closure of A, in L, then the embedding of the
closed point Spec(A/p)—Spec(4,) factors as

Spec(A/p) — Spec(B) — Spec(A4,)

and the morphism Spec(B)—Spec(A,) is étale at the image of Spec(A/p) in
Spec(B). Let q C B be the prime ideal such that Spec(B/q) is this image of
Spec(A/p), and let By be the localisation of B at q. Then, as was recalled in
Section 2.1.3,

Ay = lim By
We have an isomorphism of residue fields A/p = A, /p = By/q = B/q. Since L
is separable over K, the A-algebra B is a finitely generated A-module. By the

Krull-Akizuki theorem, B is a semi-local Dedekind domain, so B has finitely
many maximal ideals. (See [SerCL, Ch. I, §4].)
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Since Hl(AE,Z/n) is the inductive limit of H*(By,Z/n) (see Section 2.2.4),
our element & € H' (A}, Z/n) comes from an element p € H'(By, Z/n) for some
ring B as above. The injective map H'(Bgy,Z/n)—H'(L,Z/n) allows us to
consider p as an element of H'(L,Z/n).

By the independence of valuations we can choose ¢t € B such that the
valuation of ¢t at ¢ is 1 and ¢ = 1 mod ¢’ for each maximal ideal ¢’ C B,
q # q. Let 8 € H3(L,u,) = Br(L)[n] be the cup-product of the class of ¢
in L*/L*™ = HY(L, uy,) and the class p € HY(L,Z/n). By Proposition 1.4.6,
corestriction gives rise to a commutative diagram

Br(L)[n]| — @ HY(B/J,Z/n)

JCB
coresL/KJ/ icores(B/J)/(A/I)
Br(K)[n] — @ H'(A/I,Z/n)
ICA

where the horizontal maps are residues, I ranges over the maximal ideals of A,
and J ranges over the maximal ideals of B. We have 04(8) = « and 94/ (8) =0
when ¢’ C B is a maximal ideal q" # q. Now let a = cores k(). From the
diagram we obtain Jy(«) = = and Oy (o) = 0 when p’ C A is a maximal ideal

p #p. O

Remark 3.6.5 The same proof gives exact sequences

pCA

where n is invertible in A, for any 4,j € Z, i > 1, see [CTKH97, Cor. B.3.3].
It works also for various other theories such as Milnor’s K-theory with torsion
coefficients (H. Gillet).

3.7 Purity for the Brauer group

The results in this section were proved by Grothendieck in the case of smooth va-
rieties over a field for the torsion prime to the characteristic of the field. Thanks
to Gabber’s absolute purity (Theorem 2.3.1) we can state Grothendieck’s purity
theorem for the Brauer group in a more general form.

Theorem 3.7.1 Let X be a reqular integral scheme, let U C X be a dense open
subscheme and let ¢ be a prime different from the residual characteristics of X.
Let Dy,...,D,, be the irreducible components of the regular locus ' of X U
that have codimension 1 in X. Then we have an exact sequence

0 — Br(X){¢} — Br(U){¢} — €P H'(Di,Qu/Zs). (3.11)
i=1
In [Gro68, Chap. III, §6 formula (6.4) and Thm. 6.1] this regularity condition should
have been added.
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We denote the image of o € Br(U){¢} in HY(D;, Q,/Z¢) C H(k(D;), Q¢/Zs)
by aDi (a)
This theorem immediately implies the following

Theorem 3.7.2 Let X be a regular integral scheme, let U C X be a dense open
subscheme and let £ be a prime different from the residual characteristics of X.
Then we have an exact sequence

0 — Br(X){¢} — Br(U){¢} — € H'(k(D), Qi/Z), (3.12)
D

where D ranges over the irreducible divisors of X with support in X ~ U and
k(D) denotes the residue field at the generic point of D.

The residue of o € Br(U){¢} at the generic point of D; is defined as the
image

dp, (a) € H'(k(D;), Qe /Z).

Passing to the inductive limit over U one deduces the following corollary.

Corollary 3.7.3 Let X be a regular integral scheme with generic point Spec(F')
and let £ be a prime different from the residual characteristics of X. Then we
have an exact sequence

0 — Br(X){{} — Br(F){{} — @ HY(k(D), Q¢ /Zy), (3.13)
Dex®

where k(D) denotes the residue field at the generic point of D.

Proof of Theorem 3.7.1. Let Z = X \ U. Applying the functor Extx (-, G,,) to
the exact sequence (2.10) we obtain a long exact sequence of cohomology with
support:

. — H%(X,G,,) — HY(X,Gy,) — H(U,Gy,) — HETY(X,Gy) — ...

Let us first consider the case when Z is regular of codimension ¢ in X at each
point of Z. By the Kummer sequence the sheaf H%(X,G,,)[¢™] is a quotient
of the sheaf H% (X, ptym). The latter sheaf is 0 when n < 2¢ — 1 by Gabber’s
absolute purity (Theorem 2.3.1). Thus for ¢ > 2 the spectral sequence (2.9)
with F = G, x, namely,

HP(Z,HL(X,Gpm.x)) = B (X, Gy x) (3.14)

gives HZ (X, G,){¢} = H3(X,G,){¢} = 0. Hence in this case the above long
exact sequence gives an isomorphism

Br(X){(}—Br(U){(}, (3.15)

which gives the desired statement.
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Now let ¢ = 1. The exact sequence (3.2) based on the Kummer sequence
gives rise to the commutative diagram

0 — Pic(X)/" — HZL(X,puem) — Br(X)["] — 0
1 1 1
0 — PicU)/" — HZU,uem) — BrU)["] — 0

Since X is regular, the left hand vertical map is surjective, and the right hand
vertical map Br(X)[¢"]—Br(U)[¢"] is injective by Proposition 3.5.4. We have
¢ =1, s0 Z is a divisor in X. Since Z is regular, it is a disjoint union of its
irreducible components D1,...,D,,. The snake lemma applied to the above
commutative diagram combined with the Gysin exact sequence (2.15) gives the
exact sequence

0-Br(X) ("] >Br(U) "] @ H! (D, Z/0")—H3 (X, i)~ H (U, 1),
i=1
(3.16)
Taking the limit as n—oco we obtain (3.11).
For an arbitrary proper closed reduced subscheme Z C X we define a de-
scending chain of closed subschemes

Z=7ZyDZ1DZyD...

as follows. For n > 1 define Z,, as the union of the singular locus of Z,,_; and
the union of irreducible components of Z,_; which have codimension at least
n+1in X. Then Z is the disjoint union of locally closed regular subschemes
Zp_1 \ Zy for n > 1. We note that Z,,_1 \ Z,, is either empty or of pure
codimension n in X \ Z,.

Unless Zj is regular and of pure codimension 1, the last non-empty comple-
ment Z,_ 1 \ Z,, where n > 2, is a closed regular subscheme of X of constant
codimension n, thus removing it from X does not affect the ¢-primary torsion
of the Brauer group, as we have seen in the beginning of the proof. Repeating
the operation we end up with an isomorphism Br(X){¢} = Br(X ~ Z1){¢(}. If
Z = Zy, we are done. Otherwise, we can apply (3.16) to the regular subscheme
7Z ~\ Zy of X N\ Z; to obtain (3.11). O

The embedding ip : Spec(k(D))—X of the generic point of D factors as
Spec(k(D))—Spec(Ox, p)—Spec(O% p)—+Spec(Ox,p)—X,

where 6;(7\[) is the completion and OE‘(’ p is the henselisation of the discrete valu-
ation ring Ox,p (the henselisation and the completion of a noetherian local ring
do not affect the residue field). Each residue map Br(F){¢}—H! (k(D),Q./Z)
can be computed at the level of the local ring Ox, p which is a discrete valua-
tion ring with residue field k(D) and field of fractions k(X). By Lemma 2.3.3
it equals —r, where r is the residue map with finite coefficients pg» in the exact
sequence (1.9), see Section 1.4.1.
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By Proposition 3.6.1 the residue map of Section 3.6 is the Witt residue
with coefficients in G,,. By Theorem 1.4.10 it coincides with the residue map
discussed in this section (when both maps are defined); indeed, each of these
maps is equal to —r.

It is important to understand the functorial behaviour of residues.

Theorem 3.7.4 Let X be a reqular scheme and let Y C X be a reqular irre-
ducible divisor. Let X' be a reqular integral scheme and let f : X'—X be a
morphism such that f(X') is not contained in'Y . The divisor f~1(Y) C X’ can
be written as a finite sum ZtGT r¢Zs, where Zy C X' is an irreducible divisor
and Ty is a positive integer, fort € T.

Let ¢ be a prime invertible on X. For any o € Br(X \Y){¢} and anyt € T
the residue Oz, (f*(a)) is the image of r0y (o) under the composite map

HY(Y,Q¢/Z¢) — HY(Zy,Q¢/Z¢) — H (k(Z}), Q¢/Zy).

Proof. Let U = X\Y and let U’ = f~Y(U) = X' f~1(Y). Let Z’ be a regular
dense open subset of Z;. By removing a closed subset from X’ we can assume
that X'\ U' = Z'.

Let m > 1 be such that /™« = 0. Then « comes from some & € H2(U, pigm ).
We have f*a € H2(U', uem). As (X,Y) and (X', Z') are regular pairs of codi-
mension 1, we have the associated Gysin sequences. The commutative diagram
from Lemma 2.3.4 implies that 0z (f*&) = rf*0y (&). The proof is finished by
taking the restriction to the generic point Spec(k(Z;)) = Spec(k(Z')). O

The following general result, many special cases of which had been earlier
established, was recently proved by Cesnavicius [Ces].

Theorem 3.7.5 Let X be a reqular integral scheme and let U C X be an open
set whose complement is of codimension at least 2. Then the restriction map

Br(X) — Br(U)
18 an isomorphism.

For the /-primary subgroup of the Brauer group, where /¢ is a prime invertible
on X, this is a special case of Theorem 3.7.2, itself a consequence of Gabber’s
purity theorem. Cesnavicius’ proof uses the result in dimension < 2 (Auslander—
Goldman, Grothendieck [Gro68, II, Thm. 2.1]), the result in dimension 3 (Gab-
ber [Ga81, Thm. 2’, p. 131]), Theorem 3.7.2 and other results by Gabber, as
well as Scholze’s recent theory of perfectoid spaces and tilting equivalence to
handle p-torsion in the local unequal characteristic case.
As an easy consequence, we have

Theorem 3.7.6 Let X be a noetherian, regular, integral scheme with function
field F. Then Br(X) C Br(F) is the subgroup

(] Br(Ox.).

zeX (1)
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Proof. The inclusion Br(X) C (,cxa Br(Ox,.) C Br(F) is clear. Let o €
Br(F) be in (,cxa) Br(Ox,.). Using the fact that the Brauer group commutes
with limits (Section 2.2.4), one finds a non-empty open set U C X and an
element 8 € Br(U) such that 8 maps to a € Br(F). Let U be a maximal
open subset of X with this property. Suppose that there exists a codimension 1
point x € X which is not in U. Since « is in the image of Br(Ox ), there
exists an open set V' C X containing x and an element v € Br(V') that maps to
a € Br(F). Consider the Mayer—Vietoris exact sequence (Theorem 3.2.2)

Br(UUV) — Br(U) @ Br(V) — Br(UnNV).

Since X is regular, by Theorem 3.5.4 the map Br(U N V)—Br(F) is injective.
Thus there exists 6 € Br(U U V) that goes to a. Since ¢ U, we have a
contradiction. Thus the complement to U in X has codimension at least 2. By
the purity theorem (Theorem 3.7.5) the inclusion Br(X) C Br(U) is an equality.
This completes the proof. O

This immediately implies

Proposition 3.7.7 Let X be a regular integral scheme with function field F'.
Let A; C F, fori € I, be the discrete valuation rings A C F with fraction field
F which lie over X, that is, such that the map Spec(F)—X factors through
Spec(F)—Spec(A). Then Br(X) C Br(F) is the subgroup (;c; Br(A;) C Br(F).
O

Proposition 3.7.8 Let S be a scheme, let X be a reqular integral scheme with
function field F' and let X—S be a proper morphism. Let A; C F, i € I, be the
discrete valuation rings A C F with fraction field F which lie over S, that is,
such that the composition Spec(F)—X—S factors through Spec(F)—Spec(A).
Then Br(X) C Br(F) is the subgroup (,c; Br(A;) C Br(F). O
Proof. The morphism X — S is proper, in particular, it is separated and of finite
type. By the valuative criterion of properness [Stacks, Lemma 0BX5] there exists
a unique morphism Spec(A)—X such that the composition Spec(F)—X—S
factors as

Spec(F') — Spec(A) — X — S.
It remains to apply Proposition 3.7.7. O

This proposition can be applied to a smooth, proper, integral variety X over
a field k to deduce the birational invariance of Br(X), see Proposition 5.2.2.

Proposition 3.7.9 Let S be a scheme. Let X andY be integral, reqular, proper
S-schemes, with function fields Fx and Fy, respectively. Suppose there exists an
isomorphism g : Fx —Fy such that Spec(Fy )——Spec(Fx) is an isomorphism
of S-schemes. Then the induced isomorphism Br(Fx)——=Br(Fy) restricted to
the subgroup Br(X) is an isomorphism Br(X)——Br(Y) compatible with natural
maps Br(S)—Br(X) and Br(S)—Br(Y).

Proof. Note that in Proposition 3.7.8 the collection of A;, i € I, is defined solely
in terms of the morphism Spec(F)—S. Therefore, an isomorphism of S-schemes
Spec(Fy) = Spec(Fx) gives rise to the desired isomorphisms. [J
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3.8 The Brauer group and finite morphisms

Let X be a connected scheme. Let f : Y—X be a finite locally free morphism of
schemes. This means that locally for the Zariski topology on X the morphism
is of the form Spec(B)—Spec(A), where B a free A-module of finite rank. Since
X is connected, the rank is constant; let us denote it by d. If X is locally
noetherian, the hypothesis on f is equivalent to f being flat and finite.

The norm of b € B is the determinant of the matrix that gives the multi-
plication by b on B with respect to some basis of B. It does not depend on
the basis. The norm is multiplicative; the norm of a € A is a®. We obtain a
map of coherent sheaves f,Oy—Ox. The composition of the canonical map
Ox— f.Oy with f,Oy—Ox sends u to u?, cf. [Mum66, Lecture 10]. The étale
sheaf G, x is defined by setting G,,, x (U) = I'(U, Oy)* for any étale morphism
U—X, and similarly for G,, . We thus obtain natural morphisms of sheaves

Gm,X — f*Gm,Y — G’m,X7

whose composition sends u to u?. By the finiteness of f, the functor f, from
the category of étale sheaves on Y to the category of étale sheaves on X is
exact [Mil80, Cor. I1.3.6]. Thus the Leray spectral sequence (2.4) gives an iso-
morphism HZ (X, fiGy,,v)—HZ (Y, G, y) which identifies the canonical map
(3.1) with HZ (X, Gy, x)—=HZ (X, f«Gy,y). We thus obtain the restriction and
corestriction maps

I‘eSy/X COI‘eSy/X

Hgt (Xv Gm,X) Hgt (Y, Gm,Y) Hgt (X, Gm,X)

whose composition is the multiplication by d. Here the restriction resy,x is
the canonical map f* : HZ (X, Gy, x)—HZ (Y, G, v). For n =2 we obtain the
restriction and corestriction maps of Brauer groups

resy,x : Br(X) — Br(Y), coresy,x : Br(Y)—=Br(X).

The following proposition, which will be used in Section 5.3, is a standard
formalism that applies to various functors.

Proposition 3.8.1 Let Y and X be schemes and let f : Y—=X be a finite
locally free morphism of constant rank. Let i : V—X be a morphism and let
W =VxxY. Letj: W—=Y and g : W—V be the natural projections; here g is a
finite locally free morphism of constant rank. The following diagram commutes:

Br(Y) — Br(W)
cores;//xl lcoresw/v

Br(X) ——= Br(V)
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Proof. We have fj =ig, hence f.j.Gm w = 1+9+Gp w. There is a commutative
diagram of étale sheaves on X

f*(Gm,Y Hi*g*Gm,W (317)

L

Gm,X —_— Z'*vav
where the left vertical arrow is the norm map associated to f and the right ver-

tical arrow is induced by the norm map ¢.G, w—G,, . Applying cohomology
to (3.17), we see that the bottom left square of the following diagram commutes:

H2 (Y, GM,Y) — H2 (Ya j*Gm,W) — HQ(VV, Gm,W)

|

HQ(Xa f*Gm,Y) _— H2(X, 7;*g*(Gm,VV) — H2(V, g*Gm,W)

| | |

HQ(Xv Gm,X) HQ(X; i*Gm,V) HQ(VY, Gm,V)

The right hand horizontal and the top vertical arrows are natural maps E% 0, p2
in the spectral sequence attached to a morphism. In the case of top vertical maps
these are finite morphisms f and g, hence the functor f. from the category of
étale sheaves on Y to the category of étale sheaves on X is exact [Mil80, Cor.
11.3.6], and the same applies to g.. Thus the top vertical maps are isomorphisms.
The bottom vertical maps are induced by the norm maps f.G,, y—G,, x and
9+Gr w—Gyy, v. All this ensures that the whole diagram is commutative.

Retaining the four corners of the last diagram we obtain the commutative
diagram of the proposition. [

The definitions of restriction and corestriction given above can be applied to
the case when X is a scheme over a field k. A finite (not necessarily separable)
extension k C L gives rise a finite locally free morphism X = X x; L—X of
rank [L : k], so we obtain the restriction and corestriction maps

reSL/k coresL/k

Br(X) Br(Xp) Br(X)
whose composition is multiplication by [L : k]. E.g., if X = Spec(k), we get the
corestiction map coresy,;, : Br(L)—Br(k).
The composition coresy, /i, o resy,y, is the multiplication by [L : k] on Br(k).
One application is the following proposition.

Proposition 3.8.2 Let K be a field of transcendence degree 1 over a separably
closed field k of characteristic p > 0. Then Br(K) is a p-primary torsion group.
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Proof. There is a geometrically integral curve C' over k such that K = k(C).
Let k be an algebraic closure of k. Take any a € Br(k(C)). By Tsen’s Theorem
1.2.12, the image of o in Br(k(C)) is zero. Using Theorem 1.3.5, one sees that
there is a finite extension k¥ C E C k such that resg(c)/k(c) (@) = 0. The degree
[E: k] =[E(C) : k(C)] is a power of p. By the corestriction-restriction formula,

we see that a € Br(k(C)) is annihilated by a power of p. O

Proposition 3.8.3 Let X and Y be regular integral schemes and let f : Y —X
be a dominant, generically finite morphism of degree d. Then the kernel of the
natural map f* : Br(X)—=Br(Y) is killed by d. In particular, for any integer
n > 1 coprime to d the map f* : Br(X)[n|=Br(Y)[n] is injective.

Proof. By Proposition 3.5.4 the embedding of the generic point Spec(k(X)) in
X induces an injective map Br(X) < Br(k(X)), and similarly for Y. Since the
composition of restriction and corestriction

COTESk(v) /k(X) © TeSk(y)/k(x) : Br(k(X)) — Br(k(Y)) — Br(k(X))

is the multiplication by d, the kernel of the natural map f* : Br(X)—Br(Y) is
killed by d, so our statement follows. [

Theorem 3.8.4 Let X and Y be reqular integral schemes and let f:Y—X be
a finite flat morphism of degree d such that k(Y') is a Galois extension of k(X)
with Galois group G. Then dBr(Y)% C f*Br(X) C Br(Y).

In particular, for any integer n > 1 coprime to d = |G| the natural map
f* : Br(X)[n]—=Br(Y)[n]¢ is an isomorphism.

Proof. For Spec(A) C X an affine open set in X, the inverse image in Y is an
affine scheme Spec(B). The ring B is regular hence normal, is finite over A, and
its fraction field is k£(Y). Hence B is the integral closure of A in k(Y). Thus the
action of G on L induces an action of G on B. Covering X by affine open sets,
we get that the action of G on k(YY) induces an action of G on Y. This induces
an action of G on Br(Y).

We claim that the composition

resy/x o coresy,x : Br(Y) — Br(X) — Br(Y)

is given by the formula

o Z o*(a).
ceG
Since X and Y are regular, the embedding of the generic point into X induces
an injective map Br(X) — Br(k(X)), and there is a similar map for Y. The
claim is thus reduced to a similar claim for a finite Galois extension of fields,
which is well known, see [GS17, Ch. 3, Exercice 3].
Thus for @ € Br(Y)¢ we obtain

resyx o coresy,x () = Y 0*(a) = da € Br(Y).
ceG
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Thus da = f*(coresy, x (a)) belongs to f*(Br(X)) C Br(Y).
For the last statement of the theorem, the surjectivity is clear since we have
Br(Y)%[n] C dBr(Y)®. The injectivity follows from Proposition 3.8.3. O

The following lemma will be used in Section 5.3.

Lemma 3.8.5 Let k be a field and let A be a finite-dimensional commutative k-
algebra. Let A =T[[i~, A;, where each A; is a local k-algebra. Fori=1,...,m,
let k; be the residue field of A;, and let n; = dimg(A;)/[k; : k]. For a € Br(A)
write a; € Br(k;) for the image of a under the evaluation map Br(A)—Br(k;).
Then we have

cores 4 /i, () = Zni(coresk.i/k(ozi)) € Br(k).
i=1

Proof. For any z € A, one has the formula [BouVIII, §12, no. 2, Prop. 6]

Najp(@) = [ Ny u (i)™,
=1

where x; € k; is the image of = in k;, for each ¢ = 1,...,m. One needs to
prove an analogue of this formula for the Brauer group. It is clearly enough to
consider the case when A is a local k-algebra. Here some work is needed when
A is not a field. Details can be found in [ABBB, §3]. O
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Chapter 4

Smooth varieties

In this chapter we describe a general technique for computing the Brauer group
Br(X) of a smooth projective variety X over a field k. Let ks be a separable
closure of k and let X® = X X ks. The Galois group I' = Gal(ks/k) acts on
the geometric Picard group Pic(X®) and on the geometric Brauer group Br(X?®).
One would like to understand the kernel and the cokernel of the natural map
Br(X)—Br(X®)'". This can be done (with some success) using a Leray spectral
sequence which involves Galois cohomology groups with coefficients in Pic(X*®)
and Br(X®). The structure of Pic(X®) is discussed in the first section, and the
structure of Br(X?®) is the subject of the second section. The spectral sequence
and its differentials, with applications to the computation of Br(X), are dis-
cussed in the third section. In Section 4.4, under general geometric hypotheses
on X, one obtains more precise results about Br(X). In Section 4.5 we discuss
the Brauer groups of curves. The last section of this chapter concerns the com-
putation of the Picard and Brauer groups of a product of two smooth projective
varieties.

4.1 The Picard group of a variety over a field

In this section we recall a number of important results on the Picard group.
Basic references are the books [BLR90] by Bosch, Liitkebohmert and Raynaud,
and Kleiman’s contribution [Kle05] to [FGIT05].

Let k be a field and let X be a variety over k. Assume that X is geometrically
integral and proper. Then for any k-scheme T the canonical map Or— fr.Ox,.
is an isomorphism, thus Proposition 2.5.2 tells us that the natural map between
the relative Picard functors

Pic(x/s)¢t—Pic(x/s) tppf

is an isomorphism. By a fundamental result of Grothendieck (Theorem 2.5.7),
this functor is representable by a commutative group scheme Picx /. which is a
disjoint union of open quasi-projective schemes.

103
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Let Picg(/k C Picy/j, be the connected component of identity [SGA3, Vg,
2]. This is the smallest connected open subgroup of Picx . It is a k-group of
finite type. For any field extension K/k we have Picg(/k X K = Picg(K/K. The
Néron—Severi group is defined as the quotient NSx,;, = PicX/k/Picg(/k. It is
étale over k [SGA3, VI, 5.5]. In particular, we have NSy (ks) = NSy /5 (k).
This is a finitely generated abelian group (Néron—Severi, [SGAG, XIII)). If K
is any field containing kg, then the natural map NSy (ks)—NSx/(K) is an
isomorphism.

An invertible sheaf on X is algebraically equivalent to 0 if and only if the
corresponding point in PicX/k(l;:) belongs to Picg(/k [Kle05, Prop. 9.5.10].

The tangent space to Picy ;. at 0 is the coherent cohomology group HY(X,Ox)
[Kle05, Thm. 9.5.11]. It follows that dim Picy/, < dimHY(X, Ox), and the
equality holds if and only if Picx/, is smooth. If the characteristic of £ is 0,
then Picy/;, is smooth by Cartier’s theorem, so Picx/; has the same dimen-
sion dim H' (X, Ox) at every point. As recalled in [Kle05, Rem. 9.5.15, Prop.
9.5.19], Mumford proved in [Mum66, Ch. 27] that for any field k the tangent
space to Picy/j req at 0 is the intersection of kernels of the Bockstein homo-
morphisms H' (X, Ox)—H?(X,Ox). It follows that Picx/, is smooth if either
Hl(X, Ox) =0or H2(X, Ox) = 0.

If X is projective, geometrically integral and geometrically normal, then
Picg(/k is projective [Kle05, Thm. 9.5.4]. Using properness of Picg(/k, Grothendieck
proved that the reduced subscheme Picg(/k7red is an abelian variety [FGAG,
Prop. 3.1, Cor. 3.2, p. 236]. It is called the Picard variety of X. If Picy/;, is
smooth, then Pic% /i, coincides with the Picard variety of X.

We summarise the basic properties of the Picard scheme of a normal projec-
tive variety over a field in the following theorem.

Theorem 4.1.1 Let X be a projective, geometrically integral and geometrically
normal variety over a field k.
(i) There is an exact sequence of I'-modules

0 — Pic%y (ks) — Pic(X®) — NS(X*) — 0,

where Picg(/k 18 a projective connected algebraic group, whose tangent space at
0 is the coherent cohomology group H'(X,Ox).

(i) If HY(X,O0x) = 0 or if H*(X,Ox) = 0, or if char(k) = 0, then Pic%
is smooth, hence an abelian variety of dimension dim H! (X, Ox).

(iii) We have NS(X®) = NS(X) and this group is finitely generated.

(iv) For £ # char(k), we have NS(X){¢} = H3(X, Z,(1)){¢}.

Example 4.1.2 There are smooth, projective, geometrically integral surfaces
X over an algebraically closed field k£ such that the group k-scheme Picg( /K 18
not reduced, hence not smooth. Such are the so called non-classical Enriques
surfaces that exist when char(k) = 2. These are minimal surfaces of Kodaira di-
mension 0 such that H, (X, Q,) = 0 and dim H%, (X, Q,) = 10 (where ¢ # 2) and
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dimH!(X,Ox) = 1. For these surfaces Picg(/k is as = Spec(k[t]/(t?)) or pg =
Spec(k[t]/(t* —1)), depending on whether the action of Frobenius on H!(X, Ox)
is trivial or not. (The classical Enriques surfaces have dim H' (X, Ox) = 0, and
hence their Picard scheme is smooth.) See [Doll6] for a detailed treatment and
explicit examples.

Corollary 4.1.3 Let X be a projective, geometrically integral and geometrically
normal variety over a field k.

(i) If HY(X,Ox) = 0, then the groups Pic(X®), Pic(X), NS(X*®) and NS(X)
are all equal. In this case this is a finitely generated abelian group.

(i) Assume char(k) = 0. Then X has no non-trivial finite, connected,
abelian étale cover if and only if H'(X,Ox) = 0 and NS(X) is torsion-free.

Proof. We only need to prove (ii). By the Kummer sequence, the variety X

has a non-trivial finite, connected, abelian étale cover if and only if Pic(X) has
non-trivial torsion, cf. [Mil80, Cor. I11.4.19]. OO

Albanese variety and Albanese torsor

We continue to assume that X is a projective, geometrically integral and ge-
ometrically normal variety over a field k, so that the Picard scheme Picx/y
exists (see §2.5). If, in addition, Picx/; represents the relative Picard functor
Picx/y, then it is a formal consequence of Yoneda’s lemma that X xj; Picx
has a universal invertible sheaf P. This is a sheaf with the following property:
for any k-scheme T and any invertible sheaf £ on X xj T there exists a unique
morphism of k-schemes h : T—Picy/;, such that £ = (id, h)*P ®psN, where N
is an invertible sheaf on T and ps : X xj; T—T is the natural projection. (See
[Kle05, Ex. 9.4.3].) The sheaf P is unique up to tensoring with a pullback of
an invertible sheaf on Picy/,. By Corollary 2.5.8, the condition that Picx
represents Picx/y is satisfied when X has a k-point. In this case the univer-
sal sheaf can be made unique by normalising at this point. If X is an abelian
variety, then P normalised at 0 is the usual Poincaré sheaf.

Let A = Pick /krea D€ the Picard variety of X it is an abelian variety defined

over k. The dual abelian variety AY = Pic% /i 18 called the Albanese variety of
X and is denoted by Albx /. If X has a k-point o, then the sheaf P normalised
at zo gives rise to a morphism X —Alby ;, which sends zo to 0. If X does not
necessarily have a k-point, we can find a K-point on X for a finite separable
extension K /k. By Galois descent, the K-morphism X xp K—Albx/, x K
descends to a k-morphism X —Alb% /k» Where Alby /1 18 a k-torsor of Albx/y,

called the Albanese torsor. This morphism X —AlbY /i 1s universal among the
morphisms from X to torsors of abelian varieties over k. See [FGAG] (the
statement of Thm. 3.3 (iii), p. 237) and [Lan83]; for a more recent reference
see [Witt08].
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4.2 The geometric Brauer group

Proposition 4.2.1 Let X be a variety over a separably closed field k of char-
acteristic exponent p. Let S be a k-scheme. The kernel of the map

Br(X) — Br(X x; 5)

is a p-primary group. If k is algebraically closed or if S is smooth over k, then
this map 1is injective.

Proof. Suppose « € Br(X) is in the kernel of the map. We may replace S by
an affine open set, say S = Spec(R). The k-algebra R is a direct filtering limit
of k-algebras A; of finite type. By Section 2.2.4, Br(Xg) is the direct limit of
the Brauer groups Br(X4,). Thus there exists a k-algebra of finite type A such
that a goes to zero in Br(X4). Let m be a maximal ideal of A. By Zariski’s
lemma, the quotient field K = A/m, which is a finitely generated k-algebra,
is a finite extension of k. Since k is separably closed, the degree [K : k] is
a power of p. The homomorphism A—A/m = K induces a homomorphism
Br(X4)—Br(Xg). Thus « is in the kernel of the map Br(X)—Br(Xg). A
corestriction argument (§3.8) gives that « is annihilated by [K : k] which is a
power of p and is 1 if k£ is algebraically closed.

If S is smooth over a separably closed field k, then S has a k-point, so
Br(X)—Br(X xj S) is injective in this case. O

We shall soon see that if £ is a field of characteristic p which is separably
closed, but not algebraically closed, then the kernel of the map Br(A;)—Br(A})
contains a non-trivial p-torsion subgroup.

Proposition 4.2.2 Let X be a variety over a separably closed field k. Let £ be
a prime different from char(k). Then for any separably closed field K containing
k and any n > 1 the map Br(X)[("]—=Br(Xk)[€"] is an isomorphism.

Proof. The smooth base change theorem in étale cohomology [Mil80, VI, Cor.
4.3] gives isomorphisms

Hét(X7 :u’f")%Hét(XKhu’Z”)ﬂ i 2> 0.

Comparing the Kummer sequences (3.2) for X and Xk, we deduce the sur-
jectivity of Br(X)[¢"]—=Br(Xg)[¢"]. The injectivity of this map follows from
Proposition 4.2.1. [

Theorem 4.2.3 Let X be a proper and geometrically integral variety over a
separably closed field k.
(i) There is an embedding

Ker[Br(X)—Br(X)] < Hp, ¢ (k, Picx/;).

ii) If either H'(X,0x) = 0 or H3(X,0x) = 0, then the natural map

Br(X)—Br(X) is injective.
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Proof. Let p: X—Spec(k) be the structure map. The hypothesis on X implies
that for any k-scheme 7' the map Or—p.Ox, is an isomorphism, see Remark
2.5.3. It follows that the natural map

Gm,k‘ %p* Gm,X

is an isomorphism of sheaves for the fppf topology on Spec(k).

Since the group scheme G, ;, is smooth and k is separably closed, we have
Hi, ¢ (k,Gp) = Hi, (K, Gy) = 0 for any i > 0, see (2.8). By the same result we
also have an isomorphism

Br(X) = H2,(X,G,, x) = prpf(x, G x)- (4.1)

Since H%ppf(k7p*G7R>X) = Hj

topt (K, Gm) = 0 for 7 > 0, the Leray spectral se-
quence

H?ppf(k7 qu*GmX) = H?[;‘;%(Xv Gm,X)

gives rise to the exact sequence
0 — H 1 (k, R f.Go x) — HE, 1(X, G x) — H(k, R? .Gy, x).

Since X is proper over a field k, the fppf sheaf R! f.G,, x is representable by a
k-group scheme Picx/y, see Theorem 2.5.7. Thus, using (4.1), we can rewrite
the above exact sequence as follows:

0 — Hg, ¢ (k, Picx ) — Br(X) — HO(k, R* f.Gyy x).

Since 1_132 J+«Gu, x is a sheaf for the fppf topology, the last group is a subgroup
of HO(k, R? .G, x), so we get a natural map Br(X)—H°(k, R?f.G,, x), which
coincides with the composition

Br(X) — Br(X) — H(k, R*f.G,,.x).

This formally implies statement (i).
The k-group scheme Picx/, is an extension of the constant group of finite

type NSx (k) by the connected component Picg(/k, see Theorem 4.1.1 (i). If
either H'(X,0x) = 0 or H*(X,0x) = 0, then Picg(/k is alsmooth k-group
scheme by Theorem 4.1.1 (ii). Using (2.8) again, we obtain H}ppf(k,PicX/k) =
H'(k, Picy ;) = 0 for all i > 0. 0.

Let X be a variety over a field k of characteristic exponent p. Recall that
X% = X Xy, ks, where kg is a separable closure of k.

Definition 4.2.4 The group Br(X®) is called the geometric Brauer group of
X. We denote by Br’(X?) the divisible subgroup of Br(X®).

Proposition 4.2.5 Let X be a variety over a field k and let n be a positive
integer coprime to char(k). Then the group Br(X®)[n] is finite.
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Proof. The Kummer exact sequence (3.2) shows that Br(X®)[n] is a quotient of
HZ,(X*, 1), which is finite by [SGA4%, Finitude, Thm. 1.1]. O

Let ¢ be a prime, ¢ # p. In this section we describe the £-primary subgroups
Br(X®){¢} and Br’(X®){¢}. Let us define the Tate module of Br(X®) as
T,Br(X?®) = Hom(Qy/Z., Br(X®)) = LiLnBr(XS)[E"],

when n—oo. It is clear that T,Br(X®) is a torsion-free Z,-module. There are
natural injective maps T;Br(X®)/¢" — Br(X®)[¢"]. By Nakayama’s lemma,
T;Br(X?®) is finitely generated, so is isomorphic to Zj for some non-negative
integer r < dimp, Br(X®)[¢]. We have an isomorphism

T,Br(X®) ®z, Q¢ /Z—Br’(X*){¢}. (4.2)
Let X be a smooth, proper, geometrically integral variety over k. Let b,, =
dim HZ, (X*®,Qy) be the n-th (-adic Betti number of X®. It is independent of ¢

and is equal to dim H"(Xc, Q) when k° C C. The Picard number p of X* is the
rank of the Néron—Severi group NS(X?®) = NS(X).

Proposition 4.2.6 Let X be a smooth, proper, geometrically integral variety
over a field k of characteristic exponent p. Then the following statements hold.
(i) For a prime ¢ # p there is an exact sequence of T'-modules

0 — Br(X*){¢} — Br(X®){¢} — H2,(X*,Z¢(1))ors — 0, (4.3)
where
Br(X*){¢} = (HZ (X, Ze(1))/(NS(X®) @ Ze)) © Qu/Z = (Qu/Z)"* "
(ii) If char(k) = 0, there is an ezact sequence of T-modules

0 — Br'(X) — Br(X) — P HL (X, Zo(1))tors — 0, (4.4)
4

where Br’(X) = (Q/Z)%2=7; the direct sum is a finite abelian group.

(iii) When k C C, the finite group @, H2, (X, Z¢(1))tors is isomorphic to the
torsion subgroup of H3(X(C),Z).

Proof. (i) Replacing X by X°® in the exact sequence (3.2) obtained from the
Kummer sequence, gives the exact sequence

0 — Pic(X®) /0" — HZ, (X5, jugn) — Br(X®)[("] — 0.

By Theorem 4.1.1, the group Picg( /1 1s a connected projective algebraic group
over k, hence A = Pic% Jkred 1S an abelian variety. Since ¢ # p, the multipli-
cation by ¢ map A—A is finite étale, hence it is surjective on ks-points. Thus
Pic(X®) = Pic% /i (ks) is divisible by £, so we can rewrite the previous exact
sequence as follows:

0 — NS(X®) /0" — H2, (X5, jugn) — Br(X®)[("] — 0. (4.5)
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By the finiteness of étale cohomology with finite coefficients [SGA4%, Finitude,
Thm. 1.1], (4.5) is an exact sequence of finite abelian groups. Thus passing to
the limit for n—o00 the sequence we obtain is still exact:

0 — NS(X®) ® Zy 2% H2,(X*, Zo(1)) — T;Br(X®) — 0,  (4.6)

where the second arrow is the definition of the f-adic cycle class map cl;. Since
TyBr(X®) is a free Zs-module, the ¢-primary torsion subgroup NS(X*®){¢} is
canonically isomorphic to HZ (X®,Z¢(1))tors- We obtain an isomorphism of
abelian groups 7;Br(X®) = ZZT’), which, in view of the isomorphism (4.2),
implies Bro(X®){¢} = (Q¢/Z)>>~".

If we repeat the same arguments at the level of H?, we see that the Kummer
sequence identifies Br(X®){¢}/Br’(X®){¢} with the kernel of the map

Hgt(XSaZZ(l)) — TEHgt(XS7Gm>-

Since the Tate module is torsion-free and the Brauer group is torsion, we get an
isomorphism

Br(X®){0}/Br® (X*){}—HE (X, Z ) tons-

(i) For an arbitrary separably closed field ks a theorem of Gabber [Ga83]
says that for almost all ¢ the group H3 (X®, Z(1)) is torsion-free. If k has
characteristic 0, this is also a consequence of the comparison theorem between
étale cohomology and classical Betti cohomology, see [Mil80, Thm. III.3.12].

(iii) Since the étale cohomology groups of a scheme over k* with coefficients
in a torsion sheaf of order coprime to char(k) do not change under extension of
kS to a bigger separably closed field [Mil80, Cor. VI.4.3], in the case k* C C
we have HZ, (X®,Z,(1)) = HZ, (X x; C,Z(1)). The comparison theorem [Mil80,
Thm. I11.3.12] says that the latter group is isomorphic to the Betti cohomology
group H3(X x; C,7Z) ®z Ze(1). O

Proposition 4.2.7 Let X be a smooth, proper, geometrically integral surface
over a field k. Then for every prime ¢ # char(k) there is a natural isomorphism
of finite I'-modules

Br(X*){¢}/Br(X*){¢} = Hom(NS(X*){¢}, Qs/Z¢).

Proof. In the previous proof we pointed out a natural isomorphism of finite
I-modules
NS(X®){£} 2 HE (X, Ze(1))tors-

In view of the exact sequence (4.3), the result follows from the perfect duality
pairing for the surface X*

Hét (Xsa Zé(l))tors X Hié))t (st Zf(l))tors — QE/Z€7
coming from the Poincaré duality. [

After classical work of Godeaux and of Campedelli, surfaces X over C with
HY(X,0x) =0, H*(X,0x) = 0 and NS(X)tors # 0 have been much discussed
in the literature, see [BPV84, Ch. VII, §11] and [BCGP12].
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Remark 4.2.8 Proposition 4.2.6 gives a precise formula for the size of the
Brauer group of a smooth projective variety X over C. In practice, it is very
hard to make these elements explicit, either as classes of Azumaya algebras over
X or even to make explicit their image in Br(C(X)) as classes of central simple
algebras, or as a sum of symbols — which they are according to the Merkurjev—
Suslin theorem.

4.3 Algebraic and transcendental Brauer groups
For a variety X over a field k there is a natural filtration on the Brauer group
Bro(X) C Bri(X) C Br(X),

which is defined as follows.
Definition 4.3.1 Let
Bro(X) = Im[Br(k)—Br(X)], Bri(X) = Ker[Br(X)—Br(X®)].

The subgroup Bri(X) C Br(X) s called the algebraic Brauer group of X, and
the quotient Br(X)/Bry(X) is called the transcendental Brauer group of X.

A particular case of the Leray spectral sequence (2.5) for the structure mor-
phism X —Spec(k) is the spectral sequence

E}Y = HP(k, HY, (X®,Gp)) = HEI(X, Gyp). (4.7)
It gives rise to the functorial exact sequence of terms of low degree

0 — H(k, ks[X]*) — Pic(X) — Pic(X®)F — H2(k, ks[X]*)
(4.8)
— Bry(X) — HY(k, Pic(X®)) — Ker[H3(k, k| X]*)—H2, (X, Gy )]

Proposition 4.3.2 Let X be a variety over a field k such that k[ X]* = k7.
Then there is an exact sequence

0 — Pic(X) — Pic(X*)I' — Br(k) — Bry(X)
(4.9)
— H'(k, Pic(X®)) — Ker[H3 (k, k%) —H2, (X, G,n)].

This sequence is contravariant functorial in X.

Proof. This follows from (4.8), since by Hilbert’s theorem 90 we have H! (k, k%) =
0. O

The assumption of Proposition 4.3.2 is satisfied when X is proper and geo-
metrically integral over k. It also holds for X = AJ.
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Remark 4.3.3 1. If X has a k-point or, more generally, if X has a 0-cycle of
degree 1, then each of the maps Br(k)—Br;(X) and H3(k, k)—HZ, (X, G,,) in
(4.9) has a retraction, hence is injective. (Then Pic(X)—Pic(X,)! is an iso-
morphism.) Indeed, a k-point on X defines a section of the structure morphism
X—Spec(k). A standard restriction-corestriction argument (see Section 3.8)
reduces the case when X has a 0O-cycle of degree 1 to the case when X has a
k-point.

2. The map Bry(X)—H!(k, Pic(X?®)) is surjective when there exists a vari-
ety Y over k such that ki[Y]* = kX and H!(k,Pic(Y®)) = 0 equipped with a
morphism Y —X. This follows by comparing (4.9) for X and Y. These condi-
tions on Y are satisfied for proper and geometrically connected varieties Y such
that Pic(Y®) is a permutation I'-module. This holds, for example, when Y is a
smooth projective quadric of dimension at least 1 or a Brauer—Severi variety.

Proposition 4.3.4 For each n > 0 the differential
H™ (K, Pic(X®)) — H""2(k, k[ X]*) (4.10)

from the spectral sequence (4.7) coincides, up to sign, with the connecting map
defined by the 2-extension of I'-modules

0 — k[ X]" — ks(X)* — Div(X?®) — Pic(X®) — 0. (4.11)

Proof. This follows from the general description of connecting maps given in
[Sko07, Prop. 1.1], combined with [Sko01, Thm. 2.3.4 (a)]. O

Remark 4.3.5 The differential (4.10) can be seen as the map attached to the
exact triangle

P+Gm x — T[o,l]RP*Gm,X — (Rlp*)Gm,X[_l]

in the bounded below derived category D(k) of I'-modules. Here p : X —Spec(k)
is the structure morphism, Rp. : D(X)—D(k) is the derived functor from the
bounded below derived category D(X) of étale sheaves on X to D(k), and
T[o,1) is the truncation functor. Proposition 4.3.4 then follows from the fact
that 719, 1)Rp«Gm,x is represented by the 2-term complex ky(X)*—Div(X®), as
proved in [BvH09, Lemma 2.3].

Example 4.3.6 Let k be a field of characteristic 0 which contains a primitive
cubic root of 1. Let a, b, ¢ be independent variables and let K = k(a, b, c). Let
X C P3% be the diagonal cubic surface

3 4+ ay® + 022 + et = 0.
By rather involved cocycle calculations, T. Uematsu [Uem14] shows that Br(X) =

Bro(X) by proving that the map H'(K, Pic(X®))—H3(K, K7) is injective. In
this case we have H! (K, Pic(X*®)) ~ Z/3.
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The spectral sequence (4.7) gives rise to a complex
Br(X) -2 Br(X*)' -2 H2(k, Pic(X®)).

Assume k! = ks[X]*. From the general structure of spectral sequences we see
that if H3(k, k) = 0 or if X has a k-point (or a O-cycle of degree 1), then, in
view of Remark 4.3.3 (1), the above complex becomes an exact sequence

0 — Bry (X) — Br(X) -2 Br(X®)" -2 H2(k, Pic(X*®)). (4.12)

Thus Br(X)/Bri(X) = Ker(8). For concrete calculations of the Brauer group
one would like to be able to compute the map 5. As an approximation to this,
we now describe the following composition:

Brl(X*)" < Br(X®)" -5 H2(k, Pic(X®)) — H2(k, N(X%)), (4.13)

where N(X?) is the quotient of the Néron—-Severi group NS(X®) by its torsion
subgroup. By the results of Section 4.2, this map coincides with 8 when k has
characteristic 0, H!' (X, O) = 0, and the groups HZ (X®,Z;) and H3 (X®, Z,) are
torsion-free for all primes ¢, so our description covers many important cases.
For the sake of simplicity we state the result in the case when X is a surface,
referring to [CTS13b, Prop. 4.1] for the general case.

Let X be a smooth, projective, geometrically integral surface over a field
k of characteristic 0. Assume that k is a finitely generated subfield of C.
We have seen that the Néron—Severi group does not change when a separa-
bly closed ground field is extended to a larger separably closed field, hence we
have an isomorphism N(X%)—N(Xc). Let us write H?(X¢) for the quotient
of H?(X¢,Z(1)) by its torsion subgroup. For a surface X the Poincaré duality
gives rise to a perfect (unimodular) pairing

H?(Xc) x H*(X¢) — Z

given by the cup-product. By the Hodge index theorem, the restriction of this
pairing to N(X¢) has a non-zero discriminant. A classical argument based on
the exponential exact sequence shows that N(X¢) is a saturated subgroup of
H?(X¢), in the sense that the quotient is torsion-free.

Let T'(X¢) be the lattice of transcendental cycles of X¢ defined as the orthog-
onal complement to N (X¢) in H2(X¢) with respect to the cup-product pairing.
Thus T'(X¢) is a saturated subgroup of H?(X¢), and N(X¢)NT(Xc) = 0. Write

N(X¢)* = Hom(N(Xc¢), Z), T(X¢c)* = Hom(T(X¢),Z).
The cup-product gives rise to the injective maps
N(Xc) — N(X(C)*7 T(Xc) — T(Xc)*

By the unimodularity of the pairing on H?(X¢) we have canonical isomorphisms
of finite abelian groups

N(X¢)*/N(Xc) = H*(Xc)/(N(Xe) ® T(Xc)) = T(Xe)*/T(Xc).
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We deduce a natural exact sequence
0 — N(X®) — N(X®*)" — T(Xc) ®Q/Z — Hom(T'(Xc),Q/Z) — 0.

By the comparison theorem between classical and étale cohomology we have an
isomorphism H?(X¢, Z(1)) ®Z, = H?(X, Z(1)), compatible with the cycle class
map and the cup-product, for any prime ¢. Thus T'(X¢) ® Z, is the orthogonal
complement to NS(X®) ® Z, in H?(X,Z(1)). In particular, T(X¢c) ® Z; is
naturally a I'-module, so that the previous 4-term exact sequence is an exact
sequence of I'-modules.

Since N(X¢) is the orthogonal complement to T'(X¢) in H*(X¢), we obtain
T(Xc)* = H3(X¢)/N(Xc). Tensoring with Qy/Z, we get

HE (X5, Z(1))

Hom(T (Xc), Qu/Ze) = (B (Xc) /N (Xe)) 9 Qe/ 2t = 55y 0 7,

®z, Qe/Zy.
From the description of Br’(X®) given in Proposition 4.2.6 (i) we now obtain a
canonical isomorphism of I'-modules
Bi®(X*) = Hom(T(Xc), Q/Z)
and an exact sequence of I'-modules
0 — N(X®) — N(X®)* — T(Xc) ®Q/Z — Br’(X) — 0. (4.14)
The following proposition formally resembles Proposition 4.3.4.

Proposition 4.3.7 Let X be a smooth, projective, geometrically integral sur-
face over a field k of characteristic 0. The composed map (4.13) coincides, up
to sign, with the connecting map

Br’(X)" — H2(k, N(X®))
defined by the 2-extension of I'-modules (4.14).
Proof. See [CTS13b, Prop. 4.1]. O

Remark 4.3.8 This remark is a continuation of Remark 4.3.5 and uses the
same notation. Let X be a smooth, projective, geometrically integral surface
over a subfield of C such that Pic(X®) is torsion-free. Then the 2-term complex

N(X?)" — T(Xc) ® Q/Z,

which is the middle part of (4.14), represents 77 o) Rp+Gm, x[1] in the bounded
below derived category of I'-modules. This explains the previous proposition,
because the relevant differential in the spectral sequence coincides with the map
attached to the exact triangle

(R'p)Gm x[—1] — 71 2 RPuGrn x — (R?ps)Gr x[—2]-
See [GS, Prop. 1.2] for details.
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In the rest of this section we prove that the transcendental Brauer group
Br(X)/Bry(X) has finite index in Br(X®)!', at least when the characteristic of
the ground field & is 0.

Lemma 4.3.9 Let L C kg be a finite, separable extension of a field k of degree
n. Write Ty = Gal(ks/k) and T = Gal(ks/L). Let X be a k-scheme and let
X1 =X xy L. The following diagram commutes:

resy, /. coresy, /x

Br(X) Br(Xr) Br(X)

N

Br(X®)Ts > Br(X®)Tt —Z s Br(X®)

Here o(x) = Y oi(x), where o; € Ty, are coset representatives of T'y/T'r. The
composition of maps in each row of the diagram is the multiplication by n.

Proof. We have an isomorphism L ®j, ks—k$™ whose components correspond
to the n distinct embeddings of L into k. By changing the base from X to X*®
we obtain the commutative diagram

resr coresy, /x

Hfé)t(X’ Gm) Hgt(XLvGM) Hgt(Xv GM)

| | |

HY, (X5,G,,) —— HE (X5,G,,)®" —— HL(X5,G,,)

where the maps in the bottom row are the diagonal embedding and the sum.
The representation of the Galois group I'y, in H?, (X*®, G,,,)®"™ is induced from the
natural representation of I'y, in H?, (X®, G,,,). Passing to I'y-invariant subgroups,
and taking p = 2, we obtain the statement of the lemma. [J

Theorem 4.3.10 [CTS13b] Let X be a smooth, projective and geometrically
integral variety over a field k of characteristic 0. Then the cokernel of the
natural map o : Br(X)—Br(X)' is finite. In particular, the image of Br(X) in
Br(X) is finite if and only if the group Br(X)'* is finite.
Proof. By Proposition 4.2.6 (ii) the group Br(X)[n] is finite for any positive
integer n. Hence it is enough to show that Coker(«) has finite exponent.
Suppose that k C L C k is a finite extension of k such that [L : k] = n. By
Lemma 4.3.9 restriction and corestriction induce the maps

Coker(a) — Coker(ay,) — Coker(a)

whose composition is the multiplication by n. Thus the kernel of the map
Coker(a)—Coker(ay,) is annihilated by n, and to show that Coker(c) has finite
exponent it is enough to show that Coker(ay,) has finite exponent.
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Therefore without loss of generality we can replace k by any finite extension.
In particular, we can assume that X (k) # 0 and Ty, acts trivially on the Néron—
Severi group NS(X). Since X (k) # (), we have the exact sequence (4.12)

0 — Bry(X) — Br(X) -2 Br(X)" -5 H2(k, Pic(X)).

Thus it is enough to show that Im(f3) has finite exponent. We do this by
considering finitely many curves on X and restricting our maps to each of these
curves. This is a meaningful strategy because Br(C) = 0 by Tsen’s theorem
(Theorem 1.2.12).

More precisely, NS(X)/tors is a finitely generated free abelian group, so
we can choose finitely many, say m, curves in X such that the intersection
pairing with the classes of these curves defines an injective group homomorphism
t 2 NS(X)/tors = Z™. By taking normalisation we obtain m morphisms from
smooth projective curves defined over k to X. We replace k by a finite extension
over which all of these curves are defined.

By successively applying the Bertini theorem for hyperplane sections of
smooth projective varieties [Jou84] we find a smooth and connected curve in
X. By replacing the field k by a finite extension we can assume that we have a
smooth and geometrically connected curve Cy C X defined over k. We assume
that Cj is one of the curves from our finite family of curves equipped with finite
morphisms to X.

A morphism f : C—X, where C' is a smooth, projective and geometrically

integral curve over k gives rise to the commutative diagram

Br(X)" — 2~ H2(k, Pic(X))

f*l lf*

0 = Br(C)" 2~ H2(k, Pic(T))

We have thus established

Claim 1. For any morphism f : C—X the group Im(Bx) is contained in the
kernel of the right vertical map in the diagram.

We have the exact sequence of I'y-modules (4.16):
0 — Pic’(C) — Pic(C) — NS(C) — 0.
Hence we obtain a commutative diagram with exact rows

H?(k,Pic’ (X)) — H?*(k,Pic(X)) — H?*(k,NS(X))
L L _ (4.15)
0 — H2(kPic®(C)) — H2(k,Pic(C)) — H2(k,NS(CO))

The zero in the bottom row is due to the fact that H(k,Z) = 0.
A combination of the Bertini theorem and Zariski’s connectedness theorem
(see [SGAL, Cor. 2.11, p. 210]) implies that a connected finite étale cover of
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X restricts to a connected cover of Cj. In particular, the map of abelian vari-
eties Pic% /k—>Pic%0 /i has trivial kernel. By the Poincaré reducibility theorem

[Mum74, §19, Thm. 1] there exists an abelian subvariety A C PicOC0 /1 such that
the natural map

Picg(/k X A— Pic%g/k

is an isogeny of abelian varieties over k, that is, a surjective morphism with
finite kernel. It follows that the kernel of H?(k, Pic’(X))—H?(k, Pic’(C)) has
finite exponent. From diagram (4.15) we now obtain the following statement.

Claim 2. The kernel of the composite map
H2(k, Pic’ (X)) — H%(k, Pic(X)) — H?(k, Pic(Cy))

has finite exponent.

In view of (4.15), Claims 1 and 2, to complete the proof it is enough to show
that the map of I'y-modules

NS(X) —» é NS(C;) = Z™
=1

induces a map ¢ : H2(k,NS(X))—H?(k,Z™) whose kernel has finite exponent.
The map £ is the composition of two maps:

H2(k, NS(X)) =5 H2(k, NS(X) /1ors) —2 H2(k, Z™).

It is enough to show that the kernel of each of these has finite exponent.
From the cohomology sequence attached to the exact sequence of I'p-modules

O — Ns(y>tors — NS(Y) — NS(Y)/WTS — O

we deduce that Ker(¢;) is annihilated by the exponent of the finite group
NS(X)tors-

There exists a homomorphism of abelian groups o : Z™—NS(X)/tors such
that the composition o is the multiplication by a positive integer on NS(X) /tors-
This integer annihilates Ker(&3). O

Remark 4.3.11 This proof can be used to produce an explicit upper bound
for the size of the cokernel of a : Br(X)—Br(X)!, see [CTS13b, Thm. 2.2].
When H! (X, Ox) = 0 or k is a number field, Proposition 4.3.7 can also be used
to give upper bounds for this cokernel, see [CTS13b, Thm. 4.2, 4.3]. In some
cases, for example in the case of diagonal quartic surfaces over QQ, Proposition
4.3.7 allows one to completely determine the image of Br(X) in Br(X)!, see

[GS].
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4.4 Projective varieties with H/(X, Ox) = 0

Theorem 4.4.1 Let X be a smooth, projective and geometrically integral va-
riety over a field k. Assume that H'(X,0x) = 0 and NS(X) is torsion-free.
Then HY(k, Pic(X)) and Bri(X)/Bro(X) are finite groups.

Proof. From the exact sequence (4.9) we see that the quotient Bry (X)/Bro(X)
is a subgroup of H!(k,Pic(X)). The result then follows from Proposition 4.1.3
and the finiteness of H!(k, M) for any finitely generated torsion-free abelian
group M. [J

Theorem 4.4.2 Let X be a smooth, projective and geometrically integral vari-
ety over a field k of characteristic 0. Assume that HY(X,Ox) =0, H?(X,0x) =
0 and the Néron-Severi group NS(X) is torsion-free. Then we have the following
properties.

(i) The groups Br(X) and Br(X)/Bro(X) are finite.

(ii) Br(X) = 0 if and only if H3,(X, Z¢(1))tors = O for every prime €. In this
case Br(X) = Bri(X).

(iii) If dim X = 2, then Br(X) = 0 and Br;(X) = Br(X).

Proof. By Hodge theory the condition H?(X,Ox) = 0 implies p = by. Now
Proposition 4.2.6 (ii) and the comparison theorems for étale and classical coho-
mology show that Br(X) is finite and isomorphic to @,HZ, (X, Z¢(1))tors. State-
ments (i) and (ii) now follow from Theorem 4.4.1. Statement (iii) follows from
(ii) and Proposition 4.2.7. O

Corollary 4.4.3 Let X be a smooth, projective, geometrically integral variety
over a field k of characteristic 0 which s either a complete intersection of di-
mension at least 2, or a K3 surface. Then H'(k,Pic(X)) and Bri(X)/Bro(X)
are finite groups.

Proof. In both cases Pic(X) is torsion free. OJ

A similar statement is true for rationally connected varieties (see Defini-
tion 13.1.1).

Corollary 4.4.4 Let X be a rationally connected variety over a field k of char-
acteristic 0. Then H!(k,Pic(X)) and Br(X)/Bro(X) are finite groups.

Proof. In this case Pic(X) is torsion free and Br(X) is finite. O

Corollary 4.4.5 Let X C P} be a smooth complete intersection of dimension
at least 3 over a field k of characteristic 0. Then the natural map Br(k)—Br(X)
18 an 1somorphism.

Proof. For such a variety X, by a theorem of Max Noether, the restriction map

Z = Pic(P}) = Pic(P}) — Pic(X)
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is an isomorphism. The map Pic(X)—Pic(X)' is surjective, since the anal-
ogous statement holds for P}. From exact sequence (4.9) we conclude that
Br(k)—Br(X) is injective. On the other hand, H(X,Ox) = 0, H*(X,0x) =0,
and there is no torsion in H3(X, Z,) for any prime number ¢. By Theorem 4.4.2,
the map Br(k)—Br(X) is surjective. O

Corollary 4.4.5 also holds over a field of characteristic p > 0, provided one
restricts attention to the prime-to-p torsion subgroup, see [PV04, Prop. A.1].

4.5 Curves

If C' be a smooth, projective, geometrically integral curve over a field &, then
NS(C®) = Z and the natural morphism Pic¢,,—Z is given by the degree map
on divisors. For an integer n let Pic¢,/, be the component of degree n. Then
the abelian variety Picy, /i 18 the Jacobian J of the curve C so that there is an
exact sequence

0 — J(ks) — Pic(C®) — Z — 0. (4.16)

The variety Pic¢, is a k-torsor for Pic%/k. For g = dimH'(C,O¢) > 1 there
is a natural embedding C' — Piclc/k, SO Piclc/k is the Albanese torsor of C.
(Recall that the Jacobian is principally polarised, hence isomorphic to its dual
abelian variety.) The cohomological exact sequence attached to (4.16) gives an
exact sequence

0 — J(k) — Pic(C®)' — Z — H'(k, J) — H'(k, Pic(C®)) — 0.

The group H!(k, J) classifies k-torsors for J. The homomorphism Z—H?(k, J)
sends n € Z to the class of the torsor Pic¢, .

Theorem 4.5.1 Let C be a quasi-projective curve over a field k. Then the
following statements hold.

(i) If & € Br(C) vanishes at each schematic point of C, then o = 0.

(i) If k is algebraically closed, then Br(C') = 0.

(iii) If k is separably closed of characteristic p > 0, then Br(C) is a p-primary
torsion group.

(iv) If k is separably closed and C' is proper over k, then Br(C) = 0.

(v) If k is finite and C is proper over k, then Br(C) = 0.

(vi) If k is not perfect, then Br(A}) # 0. If k is separably closed, then
Br(A}) = 0 if and only if k is algebraically closed.

(vii) The natural map Br(k)—Br(P}) is an isomorphism.

(viil) If k is perfect, then the natural map Br(k)—Br(A}) is an isomorphism.

(ix) If the prime € is distinct from the characteristic exponent of k, then the
map Br(k){¢}—Br(AL){¢} is an isomorphism.

Proof. (i) The normalisation C of C'is a finite union of regular curves. Statement
(i) follows from Theorem 3.5.4, Propositions 7.2.4 and 7.2.1.
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(ii) By Tsen’s theorem (Theorem 1.2.12) the Brauer group of a function field
in one variable over an algebraically closed field is zero. The result then follows
from (i).

(iii) By a version of Tssen’s theorem over a separably closed field (Proposition
3.8.2), the Brauer group of a function field in one variable over a separably closed
field of characteristic p > 0 is p-primary. The Brauer group of a separably closed
field is zero. The result now follows from (i).

(iv) This follows from (ii) and Theorem 4.2.3 since we have H?(C, O¢) = 0
because C' is curve.

(v) By (i) and the triviality of the Brauer group of a finite field Br(k) = 0, it
is enough to prove that Br(C) = 0, where C is a regular, proper, geometrically
integral curve over a finite field. The exact sequence (4.9) gives an isomorphism

Ker[Br(C) — Br(C®)]-—H'(k, Pic(C®)).
By (ii), we have Br(C®) = 0. Now consider the exact sequence (4.16):
0 — J(ks) — Pic(C®) — Z — 0,

where the Galois module J(ks) is the group of ks-points of the jacobian J of C.
By Lang’s theorem on the first cohomology group of a finite field with values
in a connected algebraic group, we have H!(k, .J) = 0. But H(k,Z) = 0, so we
deduce H! (k, Pic(C*®)) = 0. Hence Br(C) = 0.

(vi) If k is algebraically closed, then (vi) is a particular case of (ii). Suppose
k has characteristic p > 0 and is not perfect. Then there is an element ¢ € k~ kP.
It gives rise to a non-zero class in Hy, (K, p,) and hence in Hy (A, pp). The
étale Artin—Schreier covering of Al = Spec(k[z])—A} = Spec(k[t]) given by
aP —x =t gives a non-zero element of Hj (A}, Z/p) = Hy, (A}, Z/p). This
finite étale cover extends to a finite cover P}—P} which is totally ramified of
degree p above the point at infinity of PL. We claim that the cup-product of
these two classes is a non-zero element of HE, (A}, y1,) = Br(Ag)[p]. For this it
is enough to prove that the class of the corresponding cyclic algebra is non-zero
in Br(k(t)), for which we need to show that ¢ € k C k(¢) is not a norm of an
element from k(x). For this, one looks at the completion at the point at infinity.
If ¢ were a norm, then its image in the residue field, which is just k, would be
a p-th power. [SerCL, Ch. V, §3, Prop. 5 (i)].

(vii) For C = P}, we have an isomorphism of Pic(C®) with the trivial I'-
module Z given by the degree map. The map Pic(C)—Pic(C®) = Z is an
isomorphism. By (iv), Br(C®) = 0. Since H!(k,Z) = 0, the exact sequence (4.9)
gives an isomorphism Br(k)——Br(P}).

(viii) Since the affine line has a k-point, we obtain from (4.9) that the natural
map Br(k)—Br;(A}) is an isomorphism. Since k is perfect, ks is algebraically
closed, hence Br(Aj_ ) = 0 by (ii). Thus Br(A}) = Bry(A}).

(ix) This follows from (iii) and (4.9). O

Remark 4.5.2 If a smooth, projective, geometrically integral curve C has a
k-point or, more generally, a zero-cycle of degree 1, then (4.16) splits. In this
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case (4.9) gives an isomorphism Pic(C) = Pic(C*®)' and, in view of Theorem
4.5.1 (iv), a split exact sequence

0 — Br(k) — Br(C) — H'(k,J) — 0.

4.6 The Picard and Brauer groups of a product

In this section we discuss the Picard group and the Brauer group of the product
of two varieties over a field.

Theorem 4.6.1 Let X and Y be proper and geometrically integral varieties
over a separably closed field k. Write px : X X Y—=X and py : X X Y=Y
for the natural projections. Let n be a positive integer coprime to char(k). Then
the pullback maps

P HY (X, Z/n) — He (X %Y, Z/n), py: Hy (Y, Z/n) — HL (X %Y, Z/n)
give rise to canonical isomorphism

H} (X, Z/n) © He (Y, Z/n)——Hg (X x4 Y, Z/n). (4.17)
The maps p% and p5,, together with the map

H (X, Z/n) @ Hy (Y, Z/n) — HZ (X x4 Y, Z/n) (4.18)
that sends a @ b to p’ (a) Up3- (b), give rise to a canonical isomorphism

Hgt (X,Z/n)® Hgt (Y,Z/n)® (Hét(X, Z/n)® Hét(K Z/n)) %HgﬂX Xk Y, Z/n).
(4.19)

It is clear that if k£ is a separable closure of a subfield kg C k, then p%,
py and pk (x) U p3 (y) respect the action of the Galois group Gal(k/kg). Thus
(4.17) and (4.19) are isomorphisms of Gal(k/kg)-modules.

Proof. We have an obvious commutative diagram

Y < X%, Y

Spec(k) <—>— X

The field k is separably closed, hence H'(k, M) = 0 for any abelian group M
and any ¢ > 1.

Let us choose base points zo : Spec(k)—X and yo : Spec(k)—Y. The
composition of (id,yo) : X—=X x5 Y with px is the identity on X, hence p%
sends HY, (X, Z/n) isomorphically onto a direct summand of H (X xj Y,Z/n),
for any ¢ > 0.
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Since X is connected, the map 7% : H, (k,Z/n) = Z/n—H, (X, Z/n) is
an isomorphism with section xf. The k-variety Y is geometrically connected,
hence px has connected fibres, thus we have an isomorphism of étale X -sheaves
Z/n—px+(Z/n). We also obtain that p% : H (X,Z/n)—H%(X x; Y,Z/n) is
an isomorphism with section (id, yo)*.

The proper base change theorem [Mil80, Cor. VI.2.3] implies that the con-
stant étale X-sheaf w5 H. (Y,Z/n) is canonically isomorphic to Ripx.(Z/n).
Thus we have the Leray spectral sequence

DY — HY,(X, HY, (Y, Z/n)) = HEFU(X %, Y, Z,/n). (4.20)
The standard properties of spectral sequences imply that the composition
H, (X, Z/n)——Hg (X, Hg (Y, Z/n)) = EY — Hi (X %1 Y, Z/n)

coincides with p%. The functoriality of the spectral sequence (4.20) in X gives
rise to a commutative diagram

Hi (X x, Y, Z/n) — E% = HY, (X, Hi (Y, Z/n))

(mg,id)*l xél'ﬁ

Hét (K Z/n) —E = Hgt (kja Hét (Ya Z/n))
Hence the composition
HY (X % Y, Z/n) — E*" = Hg (X, Hg, (Y, Z/n)) = Hg (Y, Z/n)

coincides with the pullback (zg,id)*.
For ¢ = 1 we deduce from the spectral sequence the split exact sequence

0 — HL (X, Z/n) 25 HY (X x4 Y, Z/n) Y HYL (Y, 2/n) — 0

with section p}.. This gives (4.17).
Let us denote by

H2,(X % Y,Z/n) C H3(X x, Y,Z/n)

the intersection of kernels of (zg,id)* and (id, yo)*. By the same argument as
above we have a direct sum decomposition

HE(X x4 Y, Z/n) = HE(X x Y, Z/n) @ HE, (X, Z/n) @ HE (Y, Z/n),

where the two last summands are the images of the injective maps p% and p5,,
respectively. Moreover, the spectral sequence (4.20) also gives an exact sequence

0—HZ, (X x,,Y, Z/n)—HL (X, HL, (Y, Z/n))—H3, (X, Z/n) Px, HE (X %Y, Z/n).

The last map here is injective, hence H2 (X xj Y, Z/n) = HL (X, HL (Y, Z/n)).
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Using that H!(k,Z/n) = 0 we see that the image of the map (4.18) belongs
to the kernels of (x,id)* and (id, yo)*, so (4.18) factors through a map

He (X, Z/n) @ Hyy (Y, Z/n) — Hg (X, He (Y, Z/n)). (4.21)

For the proof that this is an isomorphism, see [SZ14, Thm. 2.6]. O

Remark 4.6.2 To show that the two groups in (4.21) are isomorphic one argues
as follows. (We continue to assume that k is separably closed and X is proper
and geometrically integral.) Let G be a finite commutative group k-scheme
of order coprime to char(k). Let G be the Cartier dual of G. By definition,

G = Hom(G,G, 1) in the category of commutative group k-schemes. The
natural pairing

H} (X, G) x G — HL (X, G, x) = Pic(X),
gives rise to a canonical isomorphism
H}, (X, G)——Hom(G, Pic(X)). (4.22)

The map in (4.22) associates to a class of a G-torsor T—X its ‘type’. This
map is defined when char(k) is coprime to |G| without assuming k separably
closed (see [Sko01, Theorem 2.3.6]), but if k is separably closed, then it is an
isomorphism. (In this case, without loss of generality, we can assume G = u,
and G = Z/n. Since HY, (X, G,,,) = k*, an isomorphism HY, (X, p1,) —=Pic(X)[n]
is provided by the Kummer sequence.) Applying (4.22) to G = H,(Y,Z/n) and
taking into account that Hom(é, i) is canonically isomorphic to G, we get a
canonical isomorphism

Hét(X, H};t(Y’ Z/n))%Hét (X,Z/n) @ H}:t (Y, Z/n).

For the proof of Theorem 4.6.1 one needs to show, in addition, that this isomor-
phism is the inverse of the map defined in terms of the cup-product.

Proposition 4.6.3 Let X and Y be smooth, projective, geometrically integral
varieties over a separably closed field k. The projection maps px and py induce
an isomorphism
« 0 « 0 ~ + 0
Picy , @ Picy ), —Picx ., y/i- (4.23)

Proof. Since X and Y are smooth and k is separably closed, both X and Y have
k-points. By Corollary 2.5.8, the relative Picard functor Picy ;, is represented
by a commutative group k-scheme Picx/,. By Theorem 4.1.1 the connected
component of 0 in Picx/; is a projective and connected (but not necessarily
reduced) group k-scheme Picg( /k- The same holds for Y and for X x; Y, which
satisfies the same assumptions as X and Y. The natural morphism

PiCX/k D PiCY/k — PiCXXkY/k (424)
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given by (a, b) — p% (a) +p} (b) has a retraction which sends a line bundle L on
X % Y to (id,y0)*L @ (x0,id)*L. In particular, it identifies Picx,, ® Picy
with a direct summand of Picxy,y . Restricting (4.24) to the connected
components of 0 gives an isomorphism of Pick R Pic) /i with a direct sum-
mand of Picg(xky/k. Let us denote by C' the kernel of the restriction of

((id, y0)*, (z0,1d)*) to PicOXXky/,c. Then we have
Pic% ., y/x = C @ Pick ;, @ Picy. ;..

As a surjective image of a connected group k-scheme, C' is connected. By the
Kiinneth formula [Stacks, Lemma 0BED]

HY(X x; Y,0) 2 H'(X,0) s H(Y,0)

we see that (4.24) induces an isomorphism of tangent spaces at 0. Thus the
tangent space to C at 0 is trivial, hence C = 0. O

Let A = Pick ;, ;cq and B = Pic}; .4 be the Picard varieties of X and Y,
respectively. A line bundle L on X x; Y gives rise to a morphism Y —Picy .
If L restricts trivially to X X yo and zg X Y, then, since Y is reduced and
connected, this morphism factors through a morphism Y — A sending ¥ to 0.
By the seesaw principle [Mum?74, Ch. II, §5, Cor. 6], this last morphism is zero
if and only if L = 0.

The dual abelian variety BY is the Albanese variety of Y; there is a canonical
Albanese morphism Alby,, : Y—B" such that Alby,,,(yo) = 0, see Section
4.1. By the universal property of the Albanese variety, the morphism Y —A is
uniquely written as the composition ¢ o Alby,,, : Y—BY, where ¢ : BY—A is
a map of abelian varieties. We have ¢ = 0 if and only if L = 0. Conversely,
any ¢ : BY—A gives rise to a line bundle on X xj Y that restricts trivially to
zo X Y and X X yp, namely, to the pullback via the morphism

(Ale7m0,¢OA1by7y0) : X Xk Y — AV Xk A

of the Poincaré line bundle P on AV xj A, see Section 4.1. Thus we obtain a
split exact sequence of abelian groups

0 — Pic(X) @ Pic(Y) — Pic(X x Y) — Hom(BY,A) — 0,  (4.25)

where the second map is (p%, py ). The third map does not depend on the choice
of zg and yo. This implies that if & is a separable closure of a subfield kg, then
(4.25) is an exact sequence of Gal(k/ko)-modules. Note that this exact sequence
is split when xy and yg are kg-points, but in general it is not necessarily split.

Proposition 4.6.4 Let X and Y be smooth, projective and geometrically inte-
gral varieties over a field k such that H3(k,kX) = 0, for ezample, a number field.
Then the cokernel of the natural map

BI‘l(X) D BI‘l(Y) — BI‘1 (X X Y)

1s finite.
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Proof. This is an immediate consequence of exact sequences (4.25) and (4.9),
and the fact that for A and B as above, the group Hom(BY, A) is a finitely
generated free abelian group. [J

Proposition 4.6.5 Let X and Y be smooth, projective and geometrically in-
tegral varieties over a field k with separable closure ks and Galois group I' =
Gal(ks/k). Let A= Picg(/kyred and B = Picoy/kyred be the Picard varieties of X
and Y, respectively. We have a commutative diagram of I'-modules with exact
rows and columns, where the exact sequence in the bottom row is split:

0 0

1 1

A(ks) & B(ks) = A(ks) ® B(ks)

3 1

0 — Pic(X®) @Pic(Y®) — Pic(X®x,Y®) — Hom((BY)5, 4% — 0
I ||

0 — NS(X®)@®NS(Y®) — NS(X®x,Y®) — Hom((BY)5A4%) — 0
i
0

o+ J«

If (X x Y)(k) # 0, then the exact sequence in the middle row is also split.

Proof. The upper row of the diagram comes from (4.23) and the middle row
comes from (4.25). It remains to prove that the bottom row is split as a se-
quence of I'-modules. This follows from the fact that the class of the line bundle
(Albx ,, ¢ © Alby 4 )*P in NS(X® x Y®) does not depend on the choice of zg
and yo. The last statement of the proposition is clear: it is enough to choose
(Io,yo) S (X Xk Y)(k) O

Remark 4.6.6 If A; and A, are abelian varieties, then Hom(AS$, A3) is a free
abelian group of finite rank. Thus the bottom row of the diagram shows that

NS(X® X Y*)tors =2 NS(X®)tors D NS(Y®)tors-
The bottom row of the diagram gives an isomorphism of I'-modules
NS(X*® x Y®)/n = NS(X®)/n ® NS(Y*®)/n ® Hom((B")®, A%) /n.

Let n be coprime to char(k). From the isomorphism (4.19) and the Kummer
exact sequences for X®, Y® and X*® x Y® we deduce a canonical isomorphism of
I'-modules

Br(X® x Y?®)[n] 2 Br(X®)[n] ® Br(Y®)[n] ® B(X,Y)n,

where B(X,Y),, is the quotient of H} (X*®,Z/n) @ H, (Y, Z/n)(1) by the image
of Hom((BY)®, A%). Indeed, Hom((BY)®, A%) is the kernel of the pullback of
NS(X® x Y*®) to g x Y® and X*® X yo, and so is sent by the class map to
He (X®,Z/n) @ Hg, (YV*, Z/n)(1).
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Corollary 4.6.7 Let X and Y be smooth, projective and geometrically integral
varieties over a field k of characteristic zero. Then the natural map of I'-modules

Br(X®) @ Br(Y®) — Br(X® x Y®)
1s split injective.

To obtain a closed formula for Br(X® x Y*) we impose a condition on the
torsion in the Néron—Severi groups of X?® and Y*.

Corollary 4.6.8 Let X and Y be smooth, projective and geometrically integral
varieties over a field k. Let A = Picg(/k’red and B = Picg//k,red be the Picard
varieties of X andY, respectively. Letn be a positive integer coprime to char(k).
If Pic(X*®)[n] # 0 and Pic(Y®)[n] # 0, then assume also that n is coprime to
INS(X®)tors| - INS(Y®)tors|. Then we have a canonical isomorphism of I'-modules

Br(X®xY?®)[n] & Br(X®)[n]@Br(Y®)[n]&Hom(B" [n], A[n])/ (Hom((BY)*, A%) /n).

Proof. From the isomorphism H}, (X®, y1,,) = Pic(X*®)[n] we see that this group is
an extension of NS(X*®)[n] by A[n]. In our assumptions H}, (X®, p,,)@HZ, (Y, p,) =
A[n]® Bln|. Using the non-degeneracy of the Weil pairing B[n]| x BY [n]—u,, we
identify B[n] with Hom(B" [n], u»,), and obtain an isomorphism of H, (X®,Z /n)®
HL (YV*,Z/n)(1) with Hom(B"[n], A[n]). O

Remark 4.6.9 The map Hom((BY)*, A%)—Hom(B"[n], A[n]) in Corollary 4.6.8
comes from the first Chern class map. Assume char(k) = 0. Then this map is
the negative of the natural map defined by the action of homomorphisms on
n-torsion points. It is enough to consider the case when X and Y coincide
with their respective Albanese varieties AY and BY. For the verification in this
case we refer the reader to [OSZ, Lemma 2.6] (based on the Appell-Humbert
theorem), which should be applied to the abelian variety A x BY.

Corollary 4.6.8 can be used to compute the Brauer group of a product of two
elliptic curves and the attached Kummer variety. Here we restrict ourselves to
one example, referring to [SZ12] for general results and more explicit examples.

Example 4.6.10 [SZ12, Prop. 4.1, Example Al] Let E be an elliptic curve
over a number field k£ such that the representation of I in E[¢] is a surjection
I'-»GL(E[(]) for every prime ¢. Let E’ be an elliptic curve with complex mul-
tiplication over k, which has a k-point of order 6. Then for A = E X E' we
have Br(A)' = 0. For example, one can take k = Q, the elliptic curve E with
equation y? = x3 + 6z + 2 of conductor 2633, and the elliptic curve E’ with
equation y? = 23 + 1.
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Chapter 5

Birational invariance

For a scheme X and a positive integer n the structure morphism A% —X induces
an injective map Br(X)—Br(A% ). Similarly, P’ —X induces an injective map
Br(X)—Br(P%). In Section 5.1 we give conditions on X under which these
maps are isomorphisms.

In Section 5.2 we discuss the unramified Brauer group Bry,(K/k) C Br(K)
of a field K finitely generated over a subfield k. The definition of Br,,(K/k)
only uses the discrete valuations of K that are trivial on k, so this group de-
pends only on the extension of fields ¥ C K. When K is the function field of
an integral variety over k, the group Bry,(K/k) is a birational invariant that
can be used even when one does not have an explicit smooth projective model
X/k with function field K at one’s disposal. If we have such a model X then
there is an isomorphism Br(X) ~ Br,,(K/k). We also recall that the Galois
module Pic(X®) up to addition of a permutation module is a birational invari-
ant. Another birational invariant of smooth projective varieties X is the Chow
group CHy(X) of zero-cycles. In Section 5.3 we define a natural pairing between
CHo(X) and Br(X) with values in Br(k). This is used to give a proof of Mum-
ford’s theorem that the Chow group of degree 0 of a smooth complex surface
with H?(X, Ox) # 0 is not algebraically representable by the complex points of
an abelian variety.

5.1 Affine and projective spaces

Theorem 5.1.1 Let X be a connected regular scheme. Let K be its function
field. For any prime { distinct from the characteristic exponent of K, and any
integer n > 0, the natural map of torsion groups Br(X)—Br(A%) induces an
isomorphism on £-torsion subgroups.

Proof. If X is regular and connected, so is Ak. Induction thus reduces the
proof to the case n = 1. Using a section of AL, — X, we produce a commutative

127
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diagram
Br(AY) < Br(AL)
IR B
Br(X) < Br(K)

where the downwards pointing arrows are induced by the restriction to the
section and the upwards pointing arrows are induced by structure morphisms.
To prove the result, it is thus enough to prove that for a field K of characteristic
different from ¢, the map Br(K){¢}—Br(AL){¢} is an isomorphism: this is
Theorem 4.5.1 (ix). O

Remark 5.1.2 We have already seen in Theorem 4.5.1 (vi) that when £ is sepa-
rably closed but not algebraically closed, then Br(A}) # 0 and hence Br(A?) # 0
for all n > 1. Moreover, if k is an algebraically closed field of characteristic p > 0
and n > 2 is an integer, then Br(A}) # 0 [KOS76, Prop. 5.3], [Hir81, Thm.
4.4, Cor. 6.5]. These papers build upon earlier work of Zelinsky and Yuan (see
[KOT4D]).

The following theorem was proved by D. Saltman [Sal85] in terms of the
unramified Brauer group.

Theorem 5.1.3 For any field k the natural map Br(k)—Br(P}) is an isomor-
phism.

Proof We proceed by induction in n. In the case n = 1 this is Theorem 4.5.1
(vii). Suppose that n > 2 and we have the isomorphism Br(k)——Br(P} ).
Let ¢ : W—P} be the blowing-up of P} in a k-point P. The projection of
Py . P onto IF’Z_l extends to a morphism 7 : W%Pz_l which is a P!-bundle
over IP’Z71 with a section. To see this we choose coordinates on P} so that

P=(1:0:...:0). The restriction of 7 : W—P}"' to the open set P? \ P
sends (zo :...:@,) to (z1 :...:x,). Then the morphism o : Py~ ' —W defined
by o(xy:...:2,)=(0:x1:...:2x,) is a section of 7.

Let K = k(P}~ ") be the field of functions on P}~ *. The section o gives rise to
a K-point s of the generic fibre of , hence this generic fibre is isomorphic to the
projective line PL.. Proposition 3.5.4 implies that the restriction to the generic
fibre of 7 defines an injective map Br(W) — Br(P)). The closed embedding
of the section o(P}™') into W defines a map Br(W)—Br(Py~'). Similarly,
we have a restriction to the generic point Br(Py~') < Br(K) and the map
Br(P)—Br(K) induced by the restriction to the K-point s of PL.. We obtain
a commutative diagram

Br(W) < Br(Pk)
) 1
Br(P}™') < Br(K)

where the upwards pointing arrows are induced by 7 and the structure morphism
PL-—Spec(K). By Theorem 4.5.1 (vii) we know that the vertical arrows in the
right hand part of the diagram are isomorphisms which are inverse to each other.
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The diagram shows that the map Br(P}~')—Br(W) is an isomorphism. The
induction assumption now implies that the natural map Br(k)—Br(W) is an
isomorphism.

The contraction ¢ : W—P} is a birational morphism of smooth varieties.
The restriction of 1 to some non-empty open subset U C W is an isomorphism.
By Proposition 3.5.4 the restriction map Br(P}})—Br(U) is injective. Since it
factors through ¢* : Br(P})—Br(W), we see that ¢* is injective. It is clear that
we have a commutative diagram

We know that the right hand vertical map is an isomorphism. This implies that
the left hand vertical map is an isomorphism too. [J

Corollary 5.1.4 Let X be a regular, connected scheme. For any positive inte-
ger n the canonical projection m : Py —X induces an isomorphism

7 : Br(X)—=—Br(P%).
Proof Fix a section of P, —X. Let K denote the function field of X. As in the
proof of the previous theorem we have a commutative diagram
Br(P%) < Br(}P’Z(X))
" "
Br(X) < Br(k(X))

where the downwards pointing arrows are induced by the restriction to the
section and the upwards pointing arrows are induced by structure morphisms.
By Theorem 5.1.3, the vertical arrows in the right hand part of the diagram
are mutually inverse isomorphisms. The statement of the corollary now follows
from the diagram. OJ

5.2 The unramified Brauer group

The following definition goes back to D. Saltman.

Definition 5.2.1 Let k C K be an extension of fields such that K is finitely
generated over k. The unramified Brauer group of K over k is the subgroup

Bry,(K/k) C Br(K)

which is the intersection of images of the natural maps Br(A)—Br(K), where
A is a discrete valuation ring with field of fractions K such that k C A.

Proposition 5.2.2 Let k be a field. Let X be a regular, proper, integral variety
over k with function field k(X). The natural inclusion Br(X) C Br(k(X))
induces an isomorphism Br(X)——Bry, (k(X)/k).
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Proof. This is a special case of Proposition 3.7.8. [

In spite of this proposition, there are good reasons for using the unramified
Brauer group of function fields. Since its definition only involves discrete valu-
ation rings, usually one can easily check that some specific elements of Br(K)
belong to Bry,,(K/k). The group is visibly a birational invariant of algebraic
varieties over k. One may use it when no smooth projective model is available
— or even known to exist (positive characteristic).

The unramified Brauer group is functorial in the following sense.

Proposition 5.2.3 Let K C L be finitely generated fields over k. The restric-
tion map Br(K)—Br(L) induces a map Bry, (K /k)—Bry(L/k).

Proof. Let v : L—Z be a discrete valuation with valuation ring B such that k C
B. The restriction of v to K can be trivial or non-trivial. In the first case K C B,
hence Br(K)—Br(L) factors through Br(B). In the second case, A= BN K is
a discrete valuation ring with field of fractions K. The restriction to Br(L) of
an element in the image of Br(A)—Br(K) is in the image of Br(B)—Br(L). O

Proposition 5.2.4 Let k be a field and let K and L be finitely generated field
extensions of k. If L is a purely transcendental extension of K, then the natural
map Br(K)—Br(L) induces an isomorphism Bry, (K/k)—Brn (L/k).

Proof. It is enough to consider the case L = K(P%) = K(t), where t is an
independent variable. Let 3 € Bry,,(L/k). Then 8 € Bry,(L/K), but this group
is equal to Br(PL) by Proposition 5.2.2. The natural map Br(K)—Br(PL)
is an isomorphism; in positive characteristic, this is not obvious, see Theorem
4.5.1. Thus S comes from a unique « € Br(K), so it is enough to show that
a € Bry, (K/k).

Let us check that a belongs to the image of Br(A)—Br(K), where A C K
is a discrete valuation ring with fraction field K such that £ C A. Let 7 be a
uniformising parameter of A. Let B C L be the 2-dimension local ring at the
closed point of Spec(A[t]) defined be the ideal (w,t). By purity of the Brauer
group for 2-dimensional regular rings (which is a classical result), 8 € Bry,(L/k)
is the image of an element v € Br(B) C Br(L). The value of v at ¢ = 0 is an
element of Br(A) whose image in Br(K) is . Since this holds for any such A,
we conclude that « € Bry,, (K/k). O

Corollary 5.2.5 Let k be a field and let X and Y be integral varieties over k.
If X and Y are stably k-birationally equivalent over k, then

Bry, (k(X)/k) ~ Bry, (k(Y) /k).
In particular, if X is stably k-rational, then Br(k) = Bry, (k(X)/k). O
Proposition 5.2.2 then gives

Corollary 5.2.6 Let k be a field, and let X and Y be smooth, proper, integral
varieties over k. If there exist integers n and m such that X x;P} is birationally
equivalent to Y xy P}, then Br(X) ~ Br(Y). O
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A characterisation of unramified classes by evaluation at points

We start with the following useful lemma from [Duc98]. Such constructions
were previously used by Merkurjev and Suslin.

Lemma 5.2.7 (Ducros) For any field k of characteristic O there exists a field
extension L of cohomological dimension at most 1 such that k is algebraically
closed in L.

Proof. Recall that cd(k) < 1 if and only if Br(k") = 0 for every finite extension
kCk.

If cd(k) < 1, we take L = k. Otherwise there exist non-trivial Severi-Brauer
varieties W over some finite extensions k’/k. Choose one Severi—Brauer variety
W in each k’-isomorphism class and consider the Weil restriction of scalars
Ry, /is(W x4 k). The finite products of these varieties form a filtering inductive
system of geometrically integral varieties over k; their fields of functions are
extensions k C K such that k is algebraically closed in K. Passing to the
inductive limit we obtain a field extension k C k; such that k is algebraically
closed in ky. Define k,, = (ky,,—1)1 for n > 2. Let L be the inductive limit of k,
as n—o00. On the one hand, k is algebraically closed in L. On the other hand,
any variety Ry, (V xr L"), where V' is a Severi-Brauer variety over a finite
extension L’ of L, is defined already over some k,. Any integral variety has a
rational point over its field of functions, so Ry, (V xr L) has a k,1-point
which is also an L-point. Then V has an L’-point, and so is trivial over L’. This
proves that cd(L) < 1. O

The following lemma and theorem are due to O. Wittenberg (private com-
munication). A partial earlier result in this direction is [Mer02, Prop. 3.4].

Lemma 5.2.8 Let X be a smooth geometrically integral variety over a field k.
For any a € Br(X) and any point P : Spec(k((t)))—X there exists a point
P’ : Spec(k((t)))—X such that the last map is dominant and a(P) = a(P’).

Proof. A k-morphism P’ : Spec(k((t)))—X is dominant if it induces an inclusion
of the fields of functions k(X) C k((t)).

Let x € X be the image of the k-morphism P : Spec(k((t)))—X. Since
X is smooth over k, there exist an open subset U C X containing z and an
étale morphism f : U—AY. Let Q = f(P) € A}(k((t))). The field k((t)) is
of infinite transcendence degree over k. One can choose a k((t))-point Q' in
A¢ as close as we wish to @ in the topology of the field k((t)) such that the d
coordinates of ' are algebraically independent over k. Moreover, by the implicit
function theorem (Theorem 9.5.1) over the field k((¢)), we can choose Q" with the
additional property that @’ lifts to a k((t))-point P’ in U which is as close as we
wish to P. Corollary 3.4.4 applied over k((t)) (see the proof of Proposition 9.5.2)
then ensures the equality «(P’) = a(P) in Br(k((¢))). Since the coordinates of
Q' are algebraically independent over k, the morphism Q' : Spec(k((t)))—Ag
induces a k-embedding of the fields of functions k(x1,...,zq) C k((t)). But
Q' = f(P’) and f is dominant, hence this embedding factors as k(z1,...,z4) C
k(X) C k((t)), which shows that P’ : Spec(k((t)))—X is dominant. [J
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Theorem 5.2.9 (Wittenberg) Let k be a field of characteristic zero and let
X be a smooth geometrically integral variety over k. Let o € Br(X) C Br(k(X)).
The following conditions are equivalent.

(i) @ € Bry, (k(X)/k).

(ii) For any field extension L/k and any P € X (L((t))), the value a(P) is
in the image of Br(L)—Br(L((t))).

(iii) For any field extension L/k with cd(L) <1 and any P € X(L((t))) we
have a(P) = 0 in Br(L((¢))).

Proof. Tt is clear that (ii) implies (iii). Let us prove that (iii) implies (ii). Choose
an embedding L. C L' as in Lemma 5.2.7. We have a commutattive diagram
with exact rows (3.10)

0 —— Br(L') —— Br(L/((t))) —=HY(L',Q/Z) ——=0

]

0 —— Br(L) ——= Br(L((t))) —— H! (L,Q/Z) ——0

Here the vertical arrows are restriction maps; the right hand map is injective
because L is algebraically closed in L’. This diagram implies the statement
of (ii).

Let us prove that (ii) implies (i). Let A C k(X) be a discrete valuation
ring which contains k. Let s be the residue field of A. By Cohen’s theorem,
the completion of A is isomorphic to x[[t]]. We have k C &, hence we have a k-
embedding k(X) C k((¢)) such that A = k(X)Nk[[t]]. This gives a commutattive
diagram with exact rows

0 —— Br(x[[t]]) — Br(x((t))) —= H'(5,Q/Z) —=0

TZ

)
0 —— Br(A) ——=Br(k(X)) —— H!(x,Q/Z) —=0

Here the top row is (3.10), and the bottom row comes from Proposition 3.6.4.
The assumption of (ii) applied to L = x implies that the image of « in Br(k((t)))
goes to zero in H'(k,Q/Z). By the diagram this implies a € Br(A). Thus (ii)
implies (i).

Let us prove that (i) implies (ii). If X is projective, by the valuative criterion
of properness we have X(L((t))) = X(L[[t]]). Hence P € X(L[[t]]), and thus
a(P) € Br(L[[t]]) = Br(L), proving (ii).

Let us now drop the assumption that X is projective (and avoid the res-
olution of singularities). By Lemma 5.2.8 we may assume that the morphism
P : Spec(L((t)))—X is dominant while keeping the value of «(P) € Br((L((?))).
Then we have a k-embedding k(X) C L((t)). By the functoriality of the un-
ramified Brauer group we have a(P) € Br(L[[t]]) = Br(L). O
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Examples of unramified classes

Here are three types of unramified Brauer classes which will be used to construct
counter-examples to the Hasse principle in Section 12.5.

Example 5.2.10 Let k be a field of characteristic not equal to 2, and let a € k*.
Let P(x) € k[z] be a separable polynomial such that P(x) = Q(z)R(x), where
Q(z) is a polynomial of even degree. Let X be a smooth projective variety
birationally equivalent to the smooth, affine, geometrically integral surface with
equation

y* —az? = P(x).

Let us show that the class of the quaternion algebra o = (a,Q(z)) € Br(k(X))
is unramified. Proposition 5.2.2 then implies that a € Br(X).

Let R C k(X) be a discrete valuation ring such that £ C R. Let x be the
residue field of R and let v : k(X )*—Z be the valuation. By formula (1.16), the
residue 0, () € x*/k*? is the class of a*(@@) in x*/k*2,

If a is a square in &, then 0,(o) = 1. If v(x) < 0, then v(Q(x)) is even,
hence 0,(a) = 1. If a is a not a square in x and v(x) > 0, then the equality
y? —az? = Q(x)R(z) € k(X)* implies that v(y? — az?) is even, thus v(Q(x)) +
v(R(x)) is even. The polynomials Q(x) and R(z) are coprime, hence there
exist polynomials a(z) and b(z) such that a(z)Q(x) + b(z)R(z) = 1. Since
v(z) > 0, if v(Q(x)) was odd hence positive we would have v(R(z)) = 0, but
then v(Q(z)) + v(R(x)) would be odd. This proves that « is unramified.

Suppose that a is not a square in k and that neither Q(z) nor R(x) is of the
form ¢(S(z)? — aT'(z)?) with ¢ € k* and S(z),T(z) € k[z]. Then « is not in the
image of the map Br(k)—Br(k(X)).

Indeed, the assumption is equivalent to: neither (a, @Q(z)) nor (a, R(z)) be-
longs to Br(k) C Br(k(x)). By Proposition 6.2.1, the kernel of the restriction
map Br(k(z))—Br(k(X)) is generated by the quaternion algebra (a, P(x)). This
implies that if @ = (a,Q(x)) € Br(k(X)) is in the image of Br(k), then in
Br(k(x)) either (a,Q(z)) or (a, R(z)) is in Br(k) C Br(k(z)).

Note that the assumption that a separable polynomial M (z) € k[z] is not of
the form ¢(S(z)? — aT'(x)?) is equivalent to the existence of a root zg of M (z)
such that a is not a square in the field k(zo).

Example 5.2.11 (Reichardt—Lind) Let k be a field, char(k) # 2, let a,b €
k*. Let X be a smooth projective curve birationally equivalent to the affine
curve

ay? =zt —b.

The class of the quaternion algebra (y,b) € Br(k(X)) is unramified, hence by
Proposition 5.2.2 belongs to Br(X).

Let R C k(X) be a discrete valuation ring such that k¥ C R. Let x be the
residue field of R and let v : k(X)*—Z be the valuation. By (1.16), the residue
Dy () is the class of b*®) in x*/k*2. If b is a square in & or of v(y) is even, the
residue is 1. Assume b is not a square in k. If v(x) < 0 then v(z? —b) is a
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multiple of 4, hence so is v(ay?), hence v(y) is even. Assume v(z) > 0. Since b
is not a square in #, we have v(z* — b) = 0. Thus v(ay?) = 0 hence v(y) = 0.

When b is not a square in k, there does not seem to exist a simple criterion
for (y,b) to be in the image of Br(k).

Exercise 5.2.12 [CT14] Let k be a field, char(k) # 2, let a,b,c € k*. Let X
be a smooth projective variety birationally equivalent to the affine variety with
equation

(2 — ay?)(2? — bt*)(u? — abw?) = c.

Computing residues for any valuation of K (X) trivial on k, one checks that the
quaternion algebra (22 — ay?,b) is unramified, hence is an element of Br(X).

Projecting to affine space A} with coordinates (z, ¢, u, w), we represent k(X)
as the function field of a conic over k(A?). Using this and Witt’s theorem, one
shows that if none of a, b, ab is a square in k, then o = (2? — ay?,b) € Br(k(X))
is not in the image of Br(k). See [CT14, Thm. 4.1] for details.

Explicit examples of unramified classes in the Brauer group of the function
field of a variety over the complex field will be given in Section 10.6 (the Artin—
Mumford example). See also Sections 11.1.2 and 11.2.1.

Galois action on the Picard group

Proposition 5.2.13 Let X and Y be smooth, projective, geometrically integral
varieties over a field k. If X and Y are stably k-birationally equivalent, then
there exist finitely generated permutation I'-modules Py, and Py and an isomor-
phism of T'-modules

Pic(X®) ® P, 2 Pic(Y®) @ Ps.

This gives an isomorphism H!(k, Pic(X®)) = H!(k, Pic(Y®)).

If X is stably k-rational, then the T'-module Pic(X®) is stably a permutation
I'-module: there are finitely generated permutation I'-modules Py and Py such
that PIC(XB) D P1 = Pg.

If there exists a smooth, projective, geometrically integral variety Z over k
such that X Xy, Z is k-rational, then the T'-module Pic(X®) is a direct summand
of a permutation module.

For an elegant proof due to Moret-Bailly, see [CTS87a, Prop. 2.A.1].

Suppose X (k) # (). In this case, in view of Bry(X)/Br(k) = H!(k, Pic(X®)),
this proposition gives another proof of the birational invariance of Bry (X). But
in special cases the birational invariant given by the I-module Pic(X*®) up to
addition of a permutation module is finer than Br;(X), see [CTS77, §8].

Proposition 5.2.14 Let k be a field. Let C be a class of smooth, projective,
geometrically integral varieties X over K, where K wvaries over arbitrary field
extensions of k. Suppose that C is stable under field extensions, and that for
each variety X in C one has HY(X,Ox) = 0. If one of the following statements
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holds for all varieties X /K in C which have the additional property X (K) # 0,
then it holds for all X/K in C:

(i) the Gal(Ks/K)-module Pic(Xk.) is a permutation module;

(ii) the Gal(Ks/K)-module Pic(Xg,) is a direct summand of a permutation
module;

(iii) H'(K, Pic(Xx.)) = 0.

Proof. (Sketch) Let F = K(X). The F-variety Xp = X X F has an F-point.
The hypothesis H! (X, Ox) = 0 implies that Picg(/k =0, so Picy/;, is a twisted
constant group k-scheme split by a separable closure kg of k, see Theorem 4.1.1.
This implies that the natural maps

Pic(Xy, ) —Pic(Xy, (x)) —Pic(XF,)

are isomorphisms. For more details, see [CTS87a, Thm. 2.B.1]. O

5.3 Zero-cycles and the Brauer group

In this section we collect some results about the relations between the Brauer
group Br(X) of a variety X over a field k and another birational invariant of
smooth and proper varieties, the Chow group of zero-cycles CHy(X). The basic
reference for the Chow group is the first chapter of Fulton’s book [Ful98].

Let Zy(X) be the free abelian group whose generators are the closed points
of X. The elements of Zy(X) are called 0-cycles. In other words, a O-cycle is a
finite sum ), npP, where P is a closed point and np € Z. A 0-cycle is called
effective if np > 0 for all P. The degree map

degy : Zo(X) — Z

sends a 0-cycle ), n;P; to Y, ni[k(F;) : k.
A morphism of varieties f : X—Y gives rise to a natural homomorphism

fe i Zo(X) — Zo(Y)

sending the closed point P € X to [k(P) : k(f(P))]f(P). The degree map is
compatible with morphisms of varieties over k.

A 0O-cycle on a normal integral curve C is called rationally equivalent to
zero if it is the divisor dive(g) of a non-zero rational function g € k(C)*. The
Chow group of O-cycles on X is defined as the quotient of Z(X) by the group
generated by the elements ¢.(dive(g)), for all proper morphisms ¢ : C—X
where C is a normal integral curve over k and all g € k(C)*.

Let k be a field, let X a variety over k and let Y C X be a finite subscheme.
Then Y = Spec(A), where A = [[;", A;, each A; being a local k-algebra. For
i=1,...,m, let k; be the residue field of A; and let n; = dimg(A;)/[k; : k].
For each 4, the composition Spec(k;)—Spec(A;)—Spec(A)—X defines a closed
point P; € Y with residue field k;. The zero-cycle associated to Y C X is by
definition the formal sum " n; P;.
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If f: X—=Y is a proper morphism, then f, : Zo(X)—Zy(Y) induces a map

In particular, if X is a proper variety over k, then the structure morphism
X —Spec(k) induces a degree map deg, : CHo(X)—Z. Define

Ap(X) = Ker[deg,, : CHyo(X) — Z].

By the functoriality of the Brauer group, an element o € Br(X) can be
evaluated at a closed point P : Spec(k(P))—X. We denote this value by «(P) €
Br(k(P)). Define

(o, P) = coresy(py /i (a(P)) € Br(k).
By linearity this extends to a pairing
Br(X) x Zy(X) — Br(k). (5.1)

This pairing is functorial in X. Namely, let f : X—Y be a morphism of
varieties over k, let « € Br(Y) and let z € Zy(X). Using that the compo-
sition of restriction resy(p)/k(f(py) @ Br(k(f(P))—Br(k(P)) with corestriction
coresy(p)/k(f(p)) : Br(k(P))—Br(k(f(P))) is multiplication by [k(P) : k(f(P))],
we obtain

(f(a); z) = (a, fu ().

Lemma 5.3.1 Let k be a field, X a k-variety and Y = Spec(A) C X a finite
subscheme. Let [Y] € Zy(X) be the associated zero-cycle. For any o € Br(X),
one has

(o, [Y]) = cores g/ (ay) € Br(k).

Proof. For the identity map Y = X, this is Lemma 3.8.5. The general case
follows from the functoriality of the pairing. O

Proposition 5.3.2 Let X be a proper variety over a field k. Then the pairing
(5.1) induces a bilinear pairing

Br(X) x CHo(X) — Br(k). (5.2)
This pairing is functorial with respect to proper morphisms.

Proof. Let C—X be a morphism from a proper normal integral curve C over k.
Let f : C—P} be a dominant morphism. This is a finite locally free morphism
of constant rank. Let zg € Zy(C), respectively z1 € Zy(C'), be the 0-cycle on C
associated to the finite scheme Spec(A4g) = f~(po), respectively to Spec(A;) =
f~Y(p1), where py and p; are distinct k-points in Pi. Let o € Br(X). By
Lemma 5.3.1 we have

(v, z;) = cores4, /i, (ary) € Br(k)
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for i = 0,1. By Proposition 3.8.1, cores 4, /i (ay’) = (coresc/p1 (), p;). The map
Br(k)—Br(P}) is an isomorphism (Theorem 5.1.3). Thus coresc/pi () € Br(P})
is a constant class, hence (a, zg) = (o, z1). O

The following definition was given in [ACTP17].

Definition 5.3.3 A projective variety X over a field k is called universally
CHy-trivial if for any field extension k C K the degree map degy : CHo(Xg)—Z
18 an 1somorphism.

For example, if X is smooth, projective and rational over k, then X is
universally CHg-trivial.

Theorem 5.3.4 Let X be a smooth, projective, geometrically integral variety
over a field k.

(i) Assume that X is universally CHg-trivial. Then for every field extension
K of k the natural map Br(K)—Br(Xg) is an isomorphism.

(ii) Assume that for every field extension k C K, the group Ao(Xk) is a
torsion group. Then there exists a positive integer N such that for every field
extension k C K the quotient Br(Xg)/Br(K) is annihilated by N.

(iii) Let k = C. Suppose that there exist a smooth, projective, integral curve
Y over C and a morphism f : Y—X such that f. : CHo(Y)—CHo(X) is sur-
jective. Then Br(X) is a finite group.

Proof. (i) It is enough to prove the statement over k. Since X is universally
CHy-trivial, it has a zero-cycle z of degree 1. The map Br(k)—Br(X) is injective
because evaluating at z gives a section. Now let o € Br(X). Take F' = k(X) to
be the function field of X. The pairing (5.2)

BI(XF) X CHO(XF) — BI‘(F)
gives rise to the pairing
Br(X) x CHo(Xp) — Br(F).

Let n be the generic point of X. It is clear that («, n)r is the image of o under
the natural map Br(X)—Br(F). Since X is smooth, this map is injective. By
hypothesis zp—n = 0 in CHo(Xr), hence (o, 2) p = (o, ) € Br(F). Therefore,
(a, M) is the image of («, z) € Br(k) under the restriction map Br(k)—Br(F),
hence a € Br(X) is the image of («, z) € Br(k) under the map Br(k)—Br(X).

(ii) Let P be a closed point of X. Let n be the generic point of X and let
F = k(X) be the field of fractions. By assumption there is a positive integer N
such that N(deg,(P)n—Pr) =0 € CHy(Xr). Arguing as above, we see that for
any « € Br(X) we have N(degy(P)a—{(«a, P)) =0 € Br(X), hence Br(X)/Br(k)
is annihilated by Ndeg,(P). The proof shows that the same statement, with
the same factor Ndeg (P), holds for X over any field extension K of k.

(i) As C is an algebraically closed field of infinite transcendance degree
over QQ, there exists an algebraically closed field F' C C of finite transcendence



138 CHAPTER 5. BIRATIONAL INVARIANCE

degree over QQ such that Y and X descend to varieties Yy and X over F', that
is, X 2 Xg®rpCand Y 2Yy®rC, and f: Y—X descends to an F-morphism
fO : Yo— X

We first claim that for any such field F, the map CHg(Yy)—CHg(Xp) is
surjective. Let zg be a zero-cycle on Xy. By assumption, over C there ex-
ists a zero-cycle ) . n;w; on Y, finitely many smooth projective integral curves
C;, morphisms 6; : C;—X, and rational functions g; € C(C;)* such that the
equality

zoc = (O miwi) + > 60;.(dive, (g5))
i i

holds in the group of zero-cycles Zy(X). This equality involves only finitely
many terms. One may thus realise all its constituents over a field L C C which
is of finite type over F'. This field L itself is the field of fractions of a regular
F-algebra A of finite type. After suitable localisation, the displayed equality
holds over such an A. Since F is algebraically closed, the F-rational points
are Zariski dense on Spec(A), thus we can specialise the above equality to an
equality over F. We obtain an equality of cycles on Xy. In this specialisation
process, the zero-cycle z € Zy(Xy) specialises to itself. This proves the claim.

Let us now consider K = F(Xj), which we may embed into C, and let 5 be
the generic point of X, over F. By the previous claim applied to the algebraic
closure of K in C, there exists a finite extension L/K such that 7y is in the
image of CHo (Yo, ) —CHo(Xo,). A restriction-corestriction argument implies
that there exists a positive integer N such that Nn € CHy(Xy k) is in the image
of CHy (Y0, k), that is, we have an equality

Nn = fo.(2)

for some z € CHy (Y, k). By functoriality of the pairing between Chow groups
of 0-cycles and Brauer groups (Proposition 5.3.2), for any a € Br(Xy) we get

(o, Ny = (@, fo,«(2)) = (f5 (), 2) € Br(K).

But f§(a) € Br(Yp) and Br(Yp) = 0 since Yy is a curve over the algebraically
closed field F' (Theorem 4.5.1). Thus N{a,n) =0 € Br(K). But

{a,m) € Br(K) = Br(F(X))

is the image of a € Br(Xy) under the injective map Br(Xy)—Br(F(Xp)). We
thus have N Br(Xy) = 0.

The map Br(Xy)—Br(Xy x C) is an isomorphism by Proposition 4.2.2. We
thus conclude that N Br(X) = 0 for the original X over C. Proposition 4.2.6
now gives that Br(X) is the finite group H?(X, Z)tors. [

Remark 5.3.5 Under the assumptions of Theorem 5.3.4 (iii), using Theorem
4.2.6, one gets by = p, which by Hodge theory is equivalent to H*(X,Ox) = 0.
Under the same hypotheses, one can actually show that H (X, Ox) = 0 for all
i > 2. The proof of Theorem 5.3.4 (iii) given above is due to Salberger. It is a
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Brauer theoretic version of a theorem of Bloch, itself inspired by a theorem of
Mumford: the Chow group of 0-cycles of a smooth, complex, projective surface
X with py(X) # 0 is not representable. Bloch’s argument was much developed
by Bloch and Srinivas, and then by many other authors.
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Chapter 6

Severi—Brauer varieties and
hypersurfaces

Isomorphism classes of Severi-Brauer varieties are in bijection with isomorphism
classes of central simple algebras. This leads to many intricate relations. In Sec-
tion 6.1 we briefly recall the basic properties of Severi—Brauer varieties. Any
such variety is birationally equivalent to a principal homogeneous space of a
torus. We give a precise version of this statement. We then discuss morphisms
from an arbitrary variety to a Severi-Brauer variety. In Section 6.2 we deal with
another simple class of projective homogenous varieties, namely smooth projec-
tive quadrics. For a variety X of either type, the restriction map Br(k)—Br(X)
is surjective and the kernel is a finite cyclic group with a natural generator. The
knowledge of this kernel will be used to establish the non-vanishing of specific
Brauer classes of the function field of certain conic bundles over P2 (see Section
10.5). Recently, in connection with arithmetic investigations of integral points,
the computation of the Brauer group of open algebraic varieties has become of
interest. In Section 6.3 we give a few examples of such computations.

6.1 Severi—Brauer varieties

Definition and basic properties

The following definition is due to F. Chételet.

Definition 6.1.1 Let n be a positive integer. A Severi—Brauer variety of di-
mension n—1 over k is a twisted form of the projective space IE”Z*l. FEquivalently,
this is a k-variety X such that there exist a field extension k C K and an iso-
morphism of K -varieties X xj, K ~ Pt

The automorphism group of the projective space }P’271 is the algebraic group
PGL, ;. By the Skolem—Noether theorem, it coincides with the automorphism
group of the matrix algebra M, ;. Galois descent (see Section 1.3.2) then gives

141
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a bijection between the isomorphism classes of twisted forms of IP’271 and the
isomorphism classes of twisted forms of M, ;, which are precisely the central
simple algebras of degree n over k. Thus we obtain canonical bijections of
pointed sets

SBn—l,k = l(k,PGLmk) = Azmk

and a map of pointed sets H!(k, PGL,, x)—Br(k). For a Severi-Brauer variety
X of dimension n — 1 we denote by [X] € Br(k) the image of the isomorphism
class of X under the composite map

SB,_1. = H'(k,PGL,, ;) — Br(k).

Recall that the map Az, = H'(k, PGL,, ;)—Br(k) associates to a central sim-
ple algebra A of degree n its class [A] € Br(k), as discussed in Section 1.3.3.
For a central simple k-algebra A of degree n define X (A) to be the k-scheme
of right ideals of A of rank n. More precisely, for any commutative k-algebra
R, the set X(A)(R) is the set of right ideals of the matrix algebra A ®; R
which are projective R-modules of rank n and are direct summands of the R-
module A ® R, see [KMRT, Ch. I, §1.C]. This is a closed subscheme of the
Grassmannian variety of n-dimensional subspaces of the k-vector space A.

Theorem 6.1.2 Let X be a variety over k. The following properties are equiv-
alent.

(i) X is a Severi-Brauer variety of dimension n — 1.

(ii) There is an isomorphism X ~ IPg_l.

(iii) There is an isomorphism X® ~ st_l.

(iv) There is a central simple k-algebra A of degree n such that X ~ X (A).

The central simple algebra A in (iv) is well defined up to isomorphism. If
X = X(A), then [X] = [A] € Br(k).

For the proof of this theorem see [Lic68], [Art82], [KMRT, Ch. I, §1.C],
[GS17, Ch. 5], [Kol], [Pol8, §4.5.1].

Given a variety X as in (i), one recovers the central simple k-algebra A in
(iv) in the following direct manner (Quillen, Szabd, Kolldr, see [Kol]). Let Tx
be the tangent bundle of X and let Q% be the cotangent bundle. It is known
that the coherent cohomology group H! (X, QL) is a 1-dimensional vector space
over k. (This can be computed over k, where X ~ Pg) We have

HY(X, Q%) = HY(X,Hom(Tx,Ox)) = Ext (Tx,Ox).

Up to multiplying the maps by non-zero scalars in k*, this defines a unique
non-split extension of vector bundles

0— Ox — F(X) —Tx —0.
This is a twisted version of the classical exact sequence on IP’271

0 — Opn-s — O()E", — Tpa1 — 0.
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Then A = Endx (F(X)) is a central simple k-algebra such that X = X(A).
Let X be a Severi—Brauer variety. The Picard group

Pic(X®) ~ Pic(P} ') = Z

is generated by the class Lx of an ample line bundle of degree 1. The class of the
canonical bundle wx € Pic(X) is —nLx. The action of " on Pic(X?) is trivial,
so Ly € Pic(X®)" and H!(k,Pic(X®)) = 0. Next, Br(X®) = Br(]P’Z:l) = 0.
Thus the exact sequence (4.9) \

0 — Pic(X) — Pic(X®)" — Br(k) — Bry(X) — H'(k, Pic(X?®))
takes the following form:
0 — Pic(X) — Pic(X*)" 2% Br(k) — Br(X) — 0, (6.1)

where Pic(X®) = Z. The kernel of Br(k)—Br(X), which coincides with the
kernel of Br(k)—Br(k(X)), is a finite cyclic group annihilated by n. Let ax =
Ox(Lx) be the image of Lx in Br(k).

If X = X(A), then ax equals the class [A] € Br(k) of the central simple
algebra A. For a proof, see [Lic68, p. 1217] and [GS17, Thm. 5.4.11]. This is
a refinement of an earlier result of Amitsur that the kernel of Br(k)—Br(k(X))
is the finite cyclic group generated by [X].

Proposition 6.1.3 (F. Chatelet) Let X = X(A) be a Severi-Brauer variety.
The following properties are equivalent:

(i) X(k) # 0;

(i) X ~ PPt

(iv) there is a k-algebra isomorphism A ~ M, (k).
Proof. Condition (i) implies that the map Br(k)—Br(X) is injective, thus the
map Pic(X)—Pic(X®) is surjective. This implies (ii), which itself implies that
there is a well-defined line bundle L € Pic(X) which over kg is isomorphic to
Lx. The line bundle L on X defines a k-morphism to the projective space P}
which becomes an isomorphism over kg, hence is an isomorphism over k. This
gives (iil), which trivially gives (i). The equivalence of (ii) and (iv) follows from
the equality ax = [A] mentioned above. [J

This proposition is a particular case of the following more general statement.

Proposition 6.1.4 Severi—-Brauer varieties X1 and Xo over k of the same di-
mension are isomorphic over k if and only if ax, = ax, € Br(k).

Proof. For an even more general result of M. Artin see [GS17, Prop. 5.3.2]. O

Proposition 6.1.5 Let X; and Xy be Severi—Brauer varieties over k. The
following properties are equivalent.

(i) ax, and ax, generate the same cyclic subgroup of Br(k);

(ii) X1 and X5 are stably birationally equivalent, i.e., there exist projective
spaces P}, and P} such that X1 xj, P} is birationally equivalent to Xo xy Py.
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Proof. See [GS17, Cor. 5.4.2, Remark 5.4.3]. O

It is an open question whether stably birationally equivalent Severi-Brauer
varieties of the same dimension are birationally equivalent.

Torsors under tori as birational models of Severi—Brauer varieties

The following statement does not seem to be in the literature.

Proposition 6.1.6 Let A be a central simple algebra of degree n over a field k
and let X = X (A) be the associated (n — 1)-dimensional Severi-Brauer variety.
Let K be a maximal commutative étale k-subalgebra of A. The action of K on
A by left multiplication defines a mazimal k-torus T C PGL 4 which is (n —1)-
dimensional and fits into the exact sequence

1 — Gur — Rx/k(Gmgx) — T — 1. (6.2)

The natural action of PGL4 on X restricts to an action of T on X, which has
a dense open orbit E C X consisting of the points of X with trivial stabilisers
inT. Then E is a k-torsor for T. Moreover, the connecting map defined by the
ezact sequence (6.2) sends the class [E] € H'(k,T) to the class [A] € Br(k).

Proof. Let ¢ : T-PGL,, x(ks) be a 1-cocycle such that A is the twisted form of
the matrix algebra M, (k) by c. Twisting by ¢ we obtain X = (P}). and the
inner form PGL4 = (PGL,, ).. After twisting, the left action of PGL,, ; on
]P’;C“1 becomes a left action of PGL 4 on X.

For a maximal commutative étale k-subalgebra K C A and the associated
maximal k-torus T C PGLj4, the open subset E C X consists of kg-points
with trivial stabilisers in T'(ks). Since K ®y ks is conjugate in M, (ks) to the
subalgebra of diagonal matrices, F® is the open subset of X® & IP’Z:I whose
complement is the union of coordinate hyperplanes. Hence E® is a torsor for
T®. This implies that E is a k-torsor for T

By a corollary of Steinberg’s theorem [PR91, Prop. 6.19], there is an em-
bedding ¢ : T' < PGL, , for which there is a 1-cocycle é : '=T'(ks) such that
¢ = ¢.(¢). This implies that (6.2) sends the class [¢] € H!(k,T) to [A] € Br(k).
On the other hand, the action of 7' C PGL4 on X is obtained by twisting the
action of ¢(T) C PGL, 1 on P}~ ' by & (Conjugation of PGLy, 4(ks) by an
element of ¢(T)(ks) induces the trivial action on ¢(T)(ks) C PGLy, (ks).) The
open orbit of ¢(T') in P}~ ! is a trivial k-torsor for ¢(T'). Hence F is the twisted
form of a trivial torsor by &, thus [E] = [¢] € H'(k,T). O

The following special case is better known, though it is sometimes stated in
the weaker form of a stable birational equivalence.

Proposition 6.1.7 Let X be the Severi—Brauer variety attached to a cyclic
algebra Dy(x,a). Let K C ks be the invariant subfield of Ker(x) C I'. Then X
contains a dense open subset isomorphic to the k-torsor for the norm 1 torus

R}qk(Gm,K) given by Ng () = a.
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Proof. Write A = Dy(x,a). We note that K C A is a maximal commutative
étale k-subalgebra and T' = Rg /(G i )/Gm,x C PGL4 is the associated maxi-
mal k-torus. By Proposition 6.1.6, the Severi—-Brauer variety X contains a dense
open subset isomorphic to a k-torsor E for T' such that the class [E] € H' (k, T')
goes to
4] = (x,a) € Br(K/k) = H3(G, K*)

under the isomorphism H!(k,T)—Br(K/k) provided by the connecting map
of (6.2).

Having fixed a generator o of Gal(K/k) ~ Z/n, we construct an isomor-
phism of k-tori T%Rk/k(Gm,K) as follows. The map K*—K* sending z to
o(x)/r commutes with Gal(K/k) and hence induces an automorphism ¢ of the
k-torus Rg /(G k). It is clear that Ker(¢) is Gy, naturally embedded in
R /i(Gpm, i ). By Hilbert’s theorem 90 for a cyclic extension, Coker(¢) = G,y x
and the surjective map Ry /i (G, k)G i is induced by the norm N/, We
obtain an exact sequence of k-tori

1 — Gk — Ric/u(Gmic) 2 Ric /(G i) — G — 1. (6.3)

Hence ¢ induces an isomorphism ¢ : T%R}( / 4 (Gm k), which thus depends on
the choice of the generator o.

Recall that every k-torsor of R}, /k(Gm k) is isomorphic to the closed sub-
set Z. C Rgp(Gm,x) given by Ng/i(z) = c for some ¢ € k*. Indeed,
Shapiro’s lemma and Hilbert’s theorem 90 imply that H'(k, Ry /(G x)) =
HY(K,G,, k) = 0. The exact sequence of tori

1— R}(/k(Gm,K) — RK/k(G’m,K) — Gm,k — 1 (64)
gives an isomorphism
k* /Ny u(K*) = H(G, K*)—H"(k, Ri¢ /1 (G, ).

Every element of this group is represented by some ¢ € k*. The exact sequence
(6.4) shows that the inverse image of ¢ in Ry /(G k), which we called Z,, is
a k-torsor for Ry /k((Gm, k) whose class is represented by c.

We want to show that the isomorphism ¢ induces an isomorphism F—7,,
which is equivalent to . [E] = [Z,]. We have (x,a) = aUd(x), see (1.5). Thus
it remains to show that the following diagram of isomorphisms commutes:

] € H(k, T) ——> H'(k, Rk (G ) > [Zd]
(v,a) € H2(G, K*) <X fi0(@, K*) Sa

It suffices to show that the connecting map attached to (6.3) is the cup-product
with the generator d(x) of H?(G,Z) ~ Z/n. For this it is enough to show that
the connecting map associated to the exact sequence

0—7Z—Z[G) 23 Z[G] — Z — 0
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sends 1 € Z to 9(x). This sequence is (and also is dual to) a truncated piece
of the standard free resolution of the trivial Z[G]-module Z, thus the induced
map Z%—H?(G,Z) is the canonical surjection Z—Z/n sending 1 to d(x). De-
composing this 2-extension into a Yoneda product of two short exact sequences,
one shows that this map coincides with the connecting map Z¢—H?(G,Z). O

Morphisms to Severi—Brauer varieties

Let k£ be a field. Let Y be a Severi-Brauer variety and let X be an arbi-
trary k-scheme. A morphism f : X—Y gives rise to a map of I'-modules
f* : Pic(Y®)—=Pic(X®) and a distinguished class f*(Ly) € Pic(X*®)'. More-
over, we have a map of I'-modules

HO(YS, Ly) — HY(X®, f*(Ly)).

The image of this map is a finite dimensional, I'-invariant, ks-vector subspace V'
of HY(X®, f*(Ly)). Since f is a morphism, the natural map V ®y_ Oxs— f*(Ly)
is surjective: the line bundle f*(Ly) € Pic(Y*®) is generated by the vector
subspace of sections V C HY(X®, f*(Ly)).

There is a converse to this observation.

Proposition 6.1.8 Let k be a field. Let X be a k-scheme and let L € Pic(X®)'.
Let V. .C H°(X®,L) be a finite dimensional, T-invariant, non-zero ks-vector
subspace such that the map V ®y, Ox=—L is surjective. Let n = dim(V).
Then there is an (n — 1)-dimensional Severi-Brauer variety Y over k and a
k-morphism [ : X—=Y such that f*(Ly) = L € Pic(X®) and the map f* :
HO(Y®, Ly )—HY(X® L) is injective with image V.

Proof. Under the assumption that X is proper over k, and V = H%(X® L), the
above proposition is established in [Liel7, Thm. 3.4]. The proof by descent
extends to the above more general statement. [J

Let X be a smooth, quasi-projective, geometrically integral variety over a
field k, such that ks[X®]* = kX. By Proposition 4.3.2, we have an exact sequence

0 — Pic(X) — Pic(X®)" — Br(k) — Bry(X),

and this exact sequence is functorial contravariant with respect to such k-
varieties. Let dx denote the map Pic(X®)'' — Br(k). If X (k) # 0, then
Br(k)—Bry(X) has a retraction, hence dx = 0. More generally, if X has index
d, i.e. has a zero-cycle of degree d, then ddx (L) = 0 for all L € Pic(X®)!.

We want to understand restrictions on the order of dx (L) in the general
case. By abuse of notation, let us use the same notation for a line bundle L on
X*® and its class in Pic(X®).

If Y is a Severi-Brauer variety of dimension n — 1, then the image in Pic(Y®)
of the canonical bundle wy € Pic(Y") is the opposite of LY". This implies

TLay(Ly) = 0.

Part (i) of the following proposition is stated in various degrees of generality by
S. Lichtenbaum [Lic68, Lic69]. Part (ii) was recently suggested by A. Kuznetsov.
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Proposition 6.1.9 Let X be a smooth, projective, geometrically integral variety
over a field k and let L € Pic(X®).

(i) If there exists a T-equivariant vector subspace V. C HY(X® L) of dimen-
sionn > 1, then ndx (L) = 0.

(ii) Let x(L) be the coherent Fuler—Poincaré characteristic of L on X5. Then

x(L) 0x (L) = 0.

Proof. Let us prove (i). Suppose first that n = 1. Then there exists a unique
effective Cartier divisor D on X® with Oxs(D) ~ L which is the zero set of a
generator of the one-dimensional vector space V. This divisor is I'-invariant.
Hence it comes from Div(X), hence L comes from Pic(X), hence dx (L) = 0.

Suppose n > 1. The linear system V C H°(X®, L) may have a fixed com-
ponent. As above, it corresponds to a fixed effective divisor D in Div(X). One
then considers M := L ® Oxs(—D) € Pic(X®). We may identify V with a I'-
invariant vector subspace of H’(X®, M). Since there is now no fixed component,
this defines a k-morphism g : U—Y, where U C X is an open set which contains
all codimension 1 points of the smooth variety X, so that ks[U®]* = kX, and Y
is a Severi—Brauer variety of dimension n — 1, equipped with its natural line
bundle Ly € Pic(Y®). We have ndy (Ly) = 0.

The inverse image ¢*(Ly) € Pic(U®) coincides with the restriction of the line
bundle M*® € Pic(U?®). By functoriality we conclude ndy (M) = 0. Since U con-
tains all the codimension 1 points of X, the restriction map Pic(X®)—Pic(U?)
is an isomorphism. By functoriality again we have ndx (M) = 0. Now we have
9(Oxs(D)) = 0 since D is defined over k. Since 9 is additive, and we have
L =M ® Oxs(D), we conclude ndx (L) = 0. This proves (i).

Let us prove (ii). Let O(1) € Pic(X) be a very ample sheaf. By the
Riemann—Roch theorem, there exists a polynomial P(t) € Q]t], depending only
on X, such that for any line bundle L € Pic(X®) we have x(L(m)) = P(m).
Let s be a positive integer such that s P(t) € Z[t].

Let L € Pic(X®)!. By a result of Serre, there exists an integer mg = mg(L)
such that for any integer m > mg, the line bundle L(m) is very ample and
satisfies H(X®, L(m)) = 0 for 4 > 0. For any such m, we have x(L(m)) =
RO(X®, L(m)). By (i), we deduce x(L(m))dx(L(m)) = 0. Since 9 is additive
and O(1) € Pic(X), this gives x(L(m)) Ox(L) = 0. We have x(L(m)) —x(L) =
R(m)/s with R(t) € Z[t] a polynomial with no constant term and depending
only on X. Let r be an integer such that rdx (L) = 0. Let n > mg be a
multiple of rs. Then x(L(n)) — x(L) is an integer and a multiple of r. Thus
(x(L(n)) — X(L)) Ox (L) = 0. We now get x(L) dx (L) = 0.

As an application of Severi-Brauer varieties we now justify the claim of
Remark 1.2.15.

Proposition 6.1.10 Let K be a henselian discretely valued field. Let K be the

~

completion of K. Then the natural map Br(K)—Br(K) is an isomorphism.
Proof. By [BLR90, III, §6, Cor. 10, p. 82], if X is a smooth variety over K,

~

then X (K) is a dense subset of X(K). Let a be an element of the kernel of
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~

Br(K)—Br(K). Choose a Severi-Brauer variety X over K such that the class

~

of X in Br(K) is a. Then X (K) # 0, hence X(K) # () and this implies o = 0.

Conversely, let g € Br(l/(\'). There is a positive integer n such that g is
the image of $; under the map Hl(I/(\',PGLn)—>H2(I/(\'7Gm). Choose a closed
embedding of algebraic K-groups PGL,, — GLy. Then X = GLy/PGL,, is
a smooth variety over K. Applying [SerCG, Ch. I, §5.4, Prop. 36] and using
Hilbert’s Theorem 90, we obtain the following commutative diagram of pointed
sets with exact rows:

GLy(K) —— X(K) — H'(K,PGL,) —= 0

i |

GLy(K) —= X(K) — HY(K,PGL,)) —>0
Choose a lifting ps € X (I/(\' ) of B1. By the implicit function theorem (Theorem
9.5.1), GLy(K)j, is an open subset of X (K) in the topology induced by the
topology of K. Since X (K) is dense in X(I/(\'), we can find an ay € X(K) and
age GLN(I/(\') such that g8y = as. Since gf3 goes to 51 € Hl(I/(\’7PGLn) (see
[SerCG, Ch. I, p. 55]), the image a; € H'(K,PGL,) of ay goes to 3. This
implies that the image o € Br(K) of o goes to 5 € Br(I?). O

6.2 Projective quadrics

Let C be a smooth, projective, geometrically integral curve of genus 0 over a
field k. Since C' is smooth, it has a ks-point and hence C® = P,lcs, cf. Remark
1.1.11 (3). The anticanonical line bundle of C' is very ample of degree 2, so it
gives an embedding of C' into ]P% as a smooth conic. From the isomorphism
C® = ]P’,lﬁ we also see that the degree map gives an isomorphism of Pic(C®)
with the trivial I-module Z, hence H!(k, Pic(C®)) = 0. Since Br(C®) = 0 by
Theorem 4.5.1 (iv), the exact sequence (4.9) can be written as

0 — Pic(C) — Pic(C®*)" — Br(k) — Br(C) — 0. (6.5)

Proposition 6.2.1 Let k be a field, char(k) # 2. Let C' be a smooth conic over
k. Let Q be the quaternion algebra over k associated to C'. Then the image of
a generator of Pic(C®)' = Z in Br(k) is the class of Q, so that the natural map
Br(k)—Br(C) is surjective with the kernel generated by the class of Q.

Proof. By Remark 1.1.11 (3) or by the Riemann-Roch theorem, a smooth
conic C' has a k-point if and only if C = P}. In this case the natural map
Pic(C)—Pic(C®) is visibly an isomorphism. The natural map Br(k)—Br(P}) is
an isomorphism by Theorem 4.5.1 (vii). On the other hand, @ is split over k
by Proposition 1.1.7, so the class of @ in Br(k) is zero.

If C has no k-point, then @ is a division algebra by Proposition 1.1.7, so the
class [Q] € Br(k) is non-zero. By Exercise 1.1.12 (4), the class [@)] lies in the
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kernel of the natural map Br(k)—Br(k(C)). This map factors through the natu-
ral map Br(C)—Br(k(C)), which is injective by Proposition 3.5.4. We conclude
that [@] is a non-zero element in the kernel of the natural map Br(k)—Br(C).
To finish the proof it remains to show that the cokernel of Pic(C)—Pic(C®)
is annihilated by 2. This follows from the fact that the degree map identifies
Pic(C?®) with Z and the canonical class of C' is an element of Pic(C) of degree
-2. 0

There is a version of this proposition over a field of characteristic 2.

Remark 6.2.2 Since Br(C®) = 0 and H!(k, Pic(C®)) = 0, the Leray spectral
sequence (4.7) shows that the homomorphism H3(k, k*)—H?(C, G,,) is injective.

Proposition 6.2.3 Let k be a field, char(k) # 2. Let X C P}, n > 2, be a
smooth projective quadric.

(a) The map Br(k)—Br(X) is surjective.

(b) For n =2, let X be given by

22 —ay? —bt? =0,

where a,b € k*. The map Br(k)—Br(X) is an isomorphism if and only if
X (k) # 0. If X(k) = 0, then Ker[Br(k)—Br(X)] = Z/2 is generated by the
class of the quaternion algebra (a,b).

(¢) For n =3, let X be given by

22 — ay? — b2 + dabt® = 0,

where a,b,d € k*. The class of d in k*/k*? is uniquely determined by X. If d
is not a square, then Br(k)—Br(X) is an isomorphism. If d is a square, then
X is birationally equivalent to IP’,l€ x C, where C is the conic 2% — ay® — bt? = 0.
In this case, the map Br(k)—Br(X) is an isomorphism if and only if X (k) # 0.
If X (k) =0, then

Ker[Br(k)—Br(X)] = Ker[Br(k)—Br(C)] = Z/2

is generated by the class of the quaternion algebra (a,b).
(d) For n >4, the map Br(k)—Br(X) is an isomorphism.

Proof. Statement (b) was proved in Proposition 6.2.1.

A smooth quadric of dimension at least 1 with a rational point is birationally
equivalent to the projective space. By Theorem 5.2.6 we have Br(X®) = 0
hence Br;(X) = Br(X). Thus statement (a) will follow once we prove that
H!(k,Pic(X®)) = 0 for all n > 2.

Let us prove (d). For n > 4 an easy direct proof shows that the restriction
map Pic(P} )—Pic(X®) is an isomorphism. Indeed, the homogeneous equation
of X® can be written as xox1 + q(x2,...,2,) = 0, where ¢ is a non-degenerate
quadratic form in n — 1 > 3 variables. The hyperpane xy = 0 cuts out the
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integral divisor D given by zo = q(z2,...,7,) = 0 in P} . The complement
X%~ D is isomorphic to the affine space Az:l. From the exact sequence

0 = ks[A}"']"/k; — Z[D] — Pic(X®) — Pic(A} ") =0

we conclude that Z = Pic(P} )—Pic(X®) is an isomorphism. Now a commuta-
tive diagram

implies that Pic(X)—Pic(X*®) is an isomorphism. In particular, in this case
we have H!(k,Pic(X®)) = 0. Now the statement of (d) follows from the exact
sequence (4.9).

Let us prove (¢). (Quadric surfaces were already discussed by F. Chéatelet
in the 1940s, see [CTS93, Thm. 2.5].) In this case X = P; x PP, , hence
Pic(X?®) = Zey @ Zes, where e; is the inverse image of a ks-point under the
projection to the i-th factor, for ¢ = 1,2. These are the two rulings on the
quadric surface X®. The Galois group I' preserves the integral basis {e1, es}.
The class of the hyperplane section is e; 4+ e3, which is thus in the image of
Pic(X). The Galois action on {e,es} is trivial if d is a square. If d is not a
square, the action of T factors through its image Gal(k(v/d)/k); the generator of
this group permutes e; and es. Using Shapiro’s lemma we see that in all cases
we have H!(k, Pic(X®)) = 0. The basic exact sequence (4.9) then becomes

0 — Pic(X) — Pic(X*)" — Br(k) — Br(X) — 0.

If d is not a square, then Pic(X®)! is generated by e; + ey, hence the map
Pic(X)—Pic(X®)! is surjective in this case and thus the map Br(k)—Br(X) is
an isomorphism. If d is a square, it is easy to see that X is isomorphic to C' x C.
The diagonal C' — C x C'is a section of the projection C'x C'—C, whose generic
fibre is thus isomorphic to ]P’,lc(c). It follows that X is birationally equivalent to
the product of P} x C. By Theorem 5.2.6 the kernel of Br(k)—Br(X) is the
same as the kernel of Br(k)—Br(C) described in (b).
Finally, statement (a) is now established for all n > 2. O

6.3 Some affine hypersurfaces

Proposition 6.3.1 Let k be a field of characteristic 0. Let X C P} be a smooth
hypersurface and let Z C X be a smooth hyperplane section. If n > 4, then the
natural map Br(k)—Br(X \ Z) is an isomorphism.

Proof. As usual we write X = X x, k and Z = Z x}, k, where k is an algebraic

closure of k. Since n > 4 the restriction map Pic(P?)—Pic(X) is an isomorphism
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by a theorem of Lefschetz, so Pic(X) = Z[Z]. Thus every divisor class on X is
a multiple of [Z], which implies that Z is integral. Let U = X \ Z. If a rational
function f € k(X)* is regular and invertible on U, then div(f) is a multiple of
an ample divisor Z, hence div(f) = 0. This shows that k[U]* = k*.

The natural restriction map Pic(X)—Pic(U) is surjective because X is smooth.
The kernel of this map is the cyclic subgroup generated by [Z], hence the exact
sequence

0 — Z[Z] — Pic(X) — Pic(U) — 0

shows that Pic(U) = 0. -
Since n > 4, we have Hl(g7 Q/zZ) =0.
Since n > 4, we have Br(X) = 0. From the exact sequence

0 — Br(X) — Br(U) — H'(Z,Q/Z)
we conclude that Br(U) = 0. Now the exact sequence (4.9) gives the required
statement. [J

The following proposition is taken from [CTX09, §5.8].

Proposition 6.3.2 Let k be a field, char(k) # 2. Let f(x,y,2z) be a non-
degenerate quadratic form and let a € k*. Let X be the affine quadric defined
by the equation f(z,y,2) = a. Assume that X (k) # 0 and —a - discr(f) ¢ k*2.
Then Br(X)/Br(k) = Z/2.

In [CTX09, §5.8] there is an explicit algorithm to compute a generator of
Br(X)/Br(k) = Z/2 from a k-point on X. There is a misprint in loc. cit.,
so we give a corrected description here. The algorithm generates a function p
whose divisor div(p) is a norm for the extension K/k and such that the class
of the quaternion algebra (p,d) € Br(k(X)) belongs to Br(X) and generates
Br(X)/Br(k). Let Y C P} be the smooth projective quadric given by the ho-
mogeneous equation

f(z,y,2) = at®.

Let M € Y(k). Let l1(x,y, z,t) be a linear form with coefficients in k defining
the tangent plane to Y at M. There then exist linear forms lo,l3,l; and a
constant ¢ € k* such that

fla,y,2) — at® = Ly + (15 — dIf).

The linear forms I; for ¢ = 1,2,3,4 are linearly independent. Conversely, if
we have such an identity, then [y = 0 is an equation for the tangent plane
at the k-point I; = lg = Iy = 0. Define p = l1(z,y, 2,t)/t € k(X) and let
a=(p,d) € Br(k(X)). We have

(li(z,y, 2, t)/t,d) = (—cla(x,y, z,t) /t,d) € Br(k(X)).

Thus « is unramified on X away from the plane at infinity ¢ = 0, and the
finitely many closed points given by l; = I = 0. By the purity theorem for
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the Brauer group of smooth varieties we see that this class is unramified on the
affine quadric X, i.e. belongs to Br(X) C Br(k(X)). The complement of X in Y’
is the smooth projective conic C given by f(z,y,z) = 0. An easy computation
shows that the residue of a at the generic point of this conic is the class of d in

K°/k2 = B! (k,2/2) € H'(k(C), Z/2) € H' (K(C), Q/Z)

(note that k is algebraically closed in k(C)). Since d is not a square in k, this
class is not trivial. Thus a € Br(X) does not lie in the image of Br(k), and hence
generates Br(X)/Br(k). Note that at any k-point of X, either I; or Iy is not
zero. The map X (k)—Br(k) associated to « can thus be computed by means
of the map X (k)—k* /N, (K*) given by either the function p = Iy (x,y, 2,t)/t
or the function —cly(z,y, 2,t)/t.

The following result was established by T. Uematsu [Uem16] via an explicit
cocycle computation.

Proposition 6.3.3 Leta,b, ¢ be independent variables over C. Let K = C(a,b, c).
Let X C A3, be the affine quadric

2?2+ ay? + b2+ ¢ =0.
Then Br(X)/Br(K) = 0.

Exercise 6.3.4 Prove Proposition 6.3.3 without cocycle computations. Hint:
Go over to the quadratic extension K(v/b)/K where the quadric acquires a
rational point. Then use [CTXO09, §5.8].

The following propositions are left as exercises for the reader. They extend
some of the computations in [Gunl3].

Proposition 6.3.5 Let k be a field. Let Q(x) € k[x] be a separable polynomial
with Q(0) # 0. Let X C A} be the affine surface yz = xQ(x). Let F C X be
the closed subset defined by y = Q(x) =0, and let V. =X \F. Then

(i) V = A, hence Pic(V) = 0.

(i) k[X]" = k[V]" =k~

(iii) Pic(X) is a finitely generated torsion-free abelian group.

(iv) Assume char(k) = 0. Then Br(k)——Br(V) and Br(k)——Br(X).

Let us give the proof of (i). The function f(z,y,2) = x/y = z/Q(x) is
defined everywhere on V. We have a morphism V—A? given by (u,v) =
(f(z,v,2),y). The image of the morphism A2—A3? given by (u,v) — (z,y, 2) =
(uwv,v,uQ(u,v)) is in V. The two morphisms are the inverses of each other.

Proposition 6.3.6 Let k be a field of characteristic 0. Let a € k* and let
P(z) € k[z] be a separable polynomial. Let X C A3 be the affine surface with
equation y* —az? = P(z). Then the quotient Br(X)/Im(Br(k)) is a finite group.
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Remark 6.3.7 Note that the finiteness of Br(X)/Im(Br(k)) for X as above is a
general algebraic result. By contrast, the finiteness of Br(Y')/Im(Br(Q)), where
Y C A?Q is given by 22 + > + 23 = a with a € Q*, uses arithmetic arguments
[CTW12]. The point here is that the ‘curve at infinity’ in this case is a curve of
genus one.

Given a k-point of X, can one compute explicit elements of Br(X) which
generate the quotient of Br(X) modulo the image of Br(k)?

Proposition 6.3.8 Let k be a field of characteristic 0. Let P(x) € k[x] be a
separable irreducible polynomial of degree d such that K = k[z]/P(z) is a cyclic
extension of k. Let X C A} be the affine surface with equation yz = P(x). Then
Br(X)/Br(k) & Z/d. The cyclic algebra over k(X) defined by A = (K/k,o0,y)
lies in Br(X) and generates Br(X)/Br(k).

Proposition 6.3.9 Let k be a field of characteristic 0. Let P(z) € k[x] be
a separable polynomial. Write P(z) = [[;_, Pi(z) as a product of irreducible
polynomuals. Let X C A% be the affine surface with equation y* — az? = P(z),
where a € k*. For each i = 1,...,n the quaternion algebra A; = (a, Pi(z)) €
Br(k(X)) lies in Br(X).

In connection with applications to the integral Brauer—Manin obstruction,
the Brauer groups of many quasi-projective varieties has been computed in
recent years. See [CTX09], [CTW12], [CTHal2], [JaScl7], [BrKo], [BrLy],
[Harpl], [Harp2], [Mit18], [Berg], [LM18], [CTWX18].
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Chapter 7

Singular schemes and
varieties

This chapter collects and in some cases rectifies a number of results in the
literature on the Brauer groups of singular schemes.

The Brauer group of a field is a torsion group, but this is not always so for
schemes. Let X be an integral variety over a field k£ of characteristic zero and
let k(X) be the function field of X. If X is geometrically locally factorial, for
example smooth, Theorem 3.5.4 says that the restriction map Br(X)—Br(k(X))
is injective, in particular Br(X) is a torsion group. If, moreover, X is smooth
over k, then, by Corollary 3.7.3, there is an exact sequence

0 — Br(X) — Br(k(X)) — ©pexnH (k(z),Q/Z).

Thus there is a purity theorem for Br(k(X)): unramified classes in Br(k(X)) lie
in the subgroup Br(X) C Br(k(X)). It is natural to ask whether and to what
extent the above results fail for a singular variety over k.

In Section 7.1 we give examples of non-reduced or reducible varieties X such
that the Brauer group Br(X) is not a torsion group. Sections 7.2 and 7.3 treat
schemes of dimension 1, and Section 7.4 integral normal schemes with isolated
singular points. Here the reader will find an example of an integral normal sur-
face X over C such that Br(X) contains an element of infinite order which lies
in the kernel of Br(X)—Br(C(X)). Brauer groups of singular complete inter-
sections and projective cones are subjects of Sections 7.5 and 7.6, respectively.
The last section contains some more examples.

These examples leave the following question open: if X is an integral normal
variety over a field k of positive characteristic, is Br(X) a torsion group?

For some singular varieties X, the exact computation of Br(X), for example
by comparison with the Brauer group of a desingularisation, turns out to be of
interest in connection with arithmetic investigations [HS14], [BrLo].
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7.1 The Brauer—Grothendieck group is not al-
ways a torsion group

In this section we give elementary examples of schemes X for which Br(X) is
not a torsion group. In some of these examples the scheme is non-reduced, and
in some others it is reduced, but not irreducible.

A non-reduced scheme

Let Y be a variety over a field k. Let X = Y xj k[e] where €2 = 0. Let
1:Y = X,eq—X be the closed immersion. Since the k-algebra homomorphism
k[e]—k has a section, there is a morphism s : X—=Y such that soi = id. In
particular, the map i* : Pic(X)—Pic(Y) is surjective.

We have an exact sequence of sheaves for the étale topology on X

0 — .0y — Gy x — 4Gy — 0,

where the first map sends x to 1+ ex. Since the functor i, is exact for the étale
topology [Mil80, Cor. II.3.6], we obtain a long exact sequence of abelian groups

Pic(X) — Pic(Y) — H*(Y, Oy) — Br(X) — Br(Y) — H3(Y, Oy)
We thus obtain an exact sequence
0 — H*(Y,Oy) — Br(X) — Br(Y) — H*(Y,Oy).

If H2(Y,Oy) # 0, then the kernel of the reduction map Br(X)—Br(Xeq) is a
non-zero finite dimensional vector space over k.

If H3(Y,Oy) # 0 and char(k) = 0, then the kernel of the reduction map
Br(X)—Br(X;ed) is a positive-dimensional vector space over a field of char-
acteristic zero, in particular Br(X) is not a torsion group. From the above
exact sequence we also deduce Br(X)iors = Br(Xed )tors- As we shall see later
(Theorem 3.3.2), this translates as an isomorphism Br(X)a, = Br(X ed)az-

In characteristic p > 0, the kernel and the cokernel of Br(X)—Br(X;.q) are
p-torsion groups.

Remark 7.1.1 The study of the kernel of Br(Y x; A)—Br(Y), where A is a
local artinian k-algebra, led Artin and Mazur to define the formal Brauer group
of the k-variety Y, see [AM77, Ch. 11, §4]. The group H?(Y, Oy) is the tangent
space to the formal Brauer group of Y (when the latter exists). This group is
of importance in studying varieties over fields of positive characteristic. It is of
particular interest in the case of K3 surfaces (e.g. smooth quartics in ]P’z) over
a finite field.

A reduced, reducible scheme

Here is another type of example of non-torsion elements in the Brauer group,
which works over fields of arbitrary characteristic.
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Lemma 7.1.2 Let k be a field. Let U be a non-empty open subset of a smooth
projective curve C of genus at least 1 over k. For any integer r there exists
a field K finitely generated over k such that the dimension of the Q-vector
space Pic(Uk) ®z Q is at least r. There exists a field extension L/k such that
Pic(UL) ®z Q is an infinite-dimensional Q-vector space.

Proof. One may assume C'(k) # 0. Tt is enough to prove that if A is an abelian
variety over k, then dimg(A(K)®zQ), where K is finitely generated over k, can
be made arbitrarily large, while dimg(A(L) ®z Q) can be made infinite for even
larger field extension L/k. Indeed, the generic point of A is a point of A(k(A))
no multiple of which belongs to A(k). Now extend the ground field from & to
k(A) and iterate the process. O

Let k be a prime field. Let S C P} be a smooth cubic surface. Up to
replacing k by a finite extension, we can find a plane H C P? which intersects S
transversally along a smooth cubic E with a rational point. Write Y = SUH C
IP’% and X = SU H. Let p: X—Y be the natural morphism and let i : £ — Y
be the natural inclusion. Both these morphisms are finite, thus i, and w, are
exact functors for the étale topology [Mil80, Cor. 11.3.6]. Hence R’p, = 0 and
RJi, = 0 for any j > 0. We have an exact sequence of sheaves for the étale
topology on Y

1— Gny —pGnx — .G p — 1.
The associated long exact cohomology sequence gives an exact sequence
Pic(S) @ Pic(H) — Pic(F) — Br(Y)

Now Pic(S) @ Pic(H) is a finitely generated free abelian group of rank at most
8. The group Pic(E) contains FE(k) as a subgroup. The same statements hold
after replacing k by any field extension K. Using Lemma 7.1.2 one finds a field
K finitely generated over its prime subfield k¥ such that Br(Yx) contains non-
torsion elements and dimg(Br(Yx) ®z Q) is arbitrarily large. One can also find
a field extension L/k such that dimg(Br(Yz) ®z Q) = oo.

One may replace H and S by any two smooth surfaces in P? transversally
intersecting in a smooth curve of genus at least 1. The same argument also
works for the Zariski topology, thus producing examples with non-torsion groups
Hgar(an Gm)

Replacing S, H, E C P} by their respective intersections with any Zariski
open set W C IP’% such that W N E # () produces examples where Y is affine
and Br(Yk) is non-torsion of rank as big as one wishes.

The above example implies the existence of an affine variety X over a finite
field such that Br(X) is not a torsion group. Indeed, let us start with a field
L of positive characteristic p and an affine variety Y over L with a non-torsion
element 8 € Br(Y). The field L is a filtered union of F,-algebras of finite type
A;, i € I. There exists an 7 € I such that Y comes from an affine A;-scheme of
finite type Y;, and 3 is the image of some f3; € Br(Y;). The element 3; in the
Brauer group of the affine IF,-variety Y; is not torsion.
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7.2 Schemes of dimension 1
The following proposition clarifies some points in [Gro68, II, §1].

Proposition 7.2.1 Let X be a reduced, noetherian, 1-dimenstonal scheme.
The Brauer group Br(X) is a torsion group. If a € Br(X) vanishes when
evaluated at each generic point of X and also at each singular point of X, then
a=0.

Proof. Let us write x = Spec(k(x)) for a closed point of X, and y = Spec(k(y))
for any of the finitely many points of X of dimension 1. Let i, : x—X and
iy : y—X be the natural morphisms. Then we have an exact sequence of étale
sheaves

0 — G x — Hz’y*Gmk(y) — @zx*Fx — 0, (7.1)

Yy x

where F), is an étale sheaf on x which is the constant sheaf Z, except possibly
when z is one of the finitely many singular points of X. Using Hilbert’s Theorem
90 for the fields k(y), we deduce from (7.1) an exact sequence

0 — P H (k(x), F) — Br(X) — [[Br(k(y)). (7.2)

Note that H!(x, F,) = 0 if z is a regular point, since H!(k(z),Z) = 0. From
this exact sequence we conclude that Br(X) is a torsion group.

Let X, = Spec(O% ) be the henselisation of X at a singular point . Then
we have a similar exact sequence

0 — H' (k(z), F,) — Br(Xs) — [ Br(k(y.)),

Yz

where the product is over the generic points y, of X,. The two sequences are
compatible via the maps induced by the natural morphism X,—X.

If o € Br(X) vanishes at each generic point of X, then « is the image of a
well-defined element {(,} € ®,H!(k(z), F}), where the sum is over the singular
points of X. By Theorem 3.4.2 the evaluation map Br(X,)—Br(k(x)) is an
isomorphism. Thus if « also vanishes when evaluated at the closed point x, then
the image of « in Br(X;) is zero, hence (,, = 0. This proves the proposition. [J.

Remark 7.2.2 If the 1-dimensional scheme X is affine, one may give a proof of
Proposition 7.2.1 in terms of Azumaya algebras, using conductors and patching
diagrams [CTOP02, Prop. 1.12]. See also [Chi74] and [KO74a]. For X arbitrary,
the result then follows from the fact that the set of singular points of X is
contained in an affine open subset and from Theorem 3.5.5.

Lemma 7.2.3 Let X be a noetherian separated scheme of dimension 1. Then
X has an ample invertible sheaf.

Proof. See [Stacks, Prop. 09NZ]. OJ
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Proposition 7.2.4 Let X be a noetherian separated scheme of dimension < 1.
The natural inclusion Bra,(X) < Br(X) is an equality.

Proof. By Theorem 7.2.1, Br(X) is a torsion group. Now Lemma 7.2.3 and
Gabber’s theorem 3.3.2 give the result. [

Remark 7.2.5 As we saw in Section 7.1, there exists 2-dimensional schemes
X such that Br(X) is not a torsion group.

Let X be as in Proposition 7.2.1, and let f(—>X be the normalisation of X.
If one lets  run through the closed points of X above the singular points z € X,
one obtains an obvious complex

Br(X) — Br(X) @ @) Br(k(z)) — @ Br(k(%)),

where = runs through the closed points of X. The proposition implies that the
first map here is injective. One may wonder whether the complex is exact. This
has been studied from the Azumaya point of view in [Chi74] and [KO74a]. In
the case of a curve over a field k of characteristic zero, this will be established
in Section 7.3. The proof there relies on a closer knowledge of the sheaves F,.

7.3 Singular curves and their desingularisation

Let k be a field of characteristic 0 with an algebraic closure k and Galois group
I' = Gal(k/k). In this section we give a complement to Proposition 7.2.1.

Let C be a reduced, separated curve over k. We define the normalisation C
as the disjoint union of normalisations of the irreducible components of C. The
normalisation morphism v : C—C' factors as

CL o,

where C’ is a maximal intermediate curve universally homeomorphic to C, see
[BLR90, Section 9.2, p. 247] or [Liul0, Section 7.5, p. 308]. The curve C’ is
obtained from C by identifying the points which have the same image in C.
In particular, there is a canonical bijection v” : C'(K)——C(K) for any field
extension K /k. The curve C’ has relatively mild singularities: for each singular
point s € C’(k) the branches of c’ through s intersect like n coordinate axes at
0€ A}

We define three reduced 0-dimensional schemes naturally arising in this sit-
uation. Let A be the k-scheme of geometric irreducible components of C' (or the
geometric connected components of é), it is the disjoint union of finite integral
k-schemes A\ = Spec(k(X)) such that k() is the algebraic closure of k in the
function field of the corresponding irreducible component k(Cy) = k(Cy). Let

I = Cng, ¥ =(IxcO) (7.3)

red’
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Thus ¥ is the union of fibres of v : C—C over the singular points of C' with their
reduced subscheme structure. The morphism v” induces an isomorphism (H X

C’)rcd—ﬂ'[ so we can identify these schemes. Let i : II—C, ¢ : II-C’ and
j: ¥—C be the natural closed immersions. We have a commutative diagram
C—Ys0 s
jT i/T /
K3
(LA |

The restriction of v to the smooth locus of C' induces isomorphisms
C~ j(0) =" i (I)—C ~ i(IT).

An algebraic group over II is a product G = []_ir«(Gx), where 7 ranges
over the irreducible components of II, i, : Spec(k(m))—II is the natural closed
immersion, and G is an algebraic group over the field k(7).

Lemma 7.3.1 (i) The canonical maps Gm,c/—)l/;((}mcw and Gp,,cr—1,Gp i
give rise to the exact sequence of étale sheaves on C’

0— Gm,C’ — V;Gm’é D i;Gm,H — ’i;l/iGm,\p — 0, (7.4)

where V.G, w s an algebraic torus over II.
(ii) The canonical map Gy, c—v) Gy o gives rise to the exact sequence of
étale sheaves on C':

0 — Gp,c — V. Gpor — .U — 0, (7.5)
where U is a commutative unipotent group over IIL.

Proof. See [BLRI0], the proofs of Propositions 9.2.9 and 9.2.10, or [Liul0,
Lemma 7.5.12]. By [Mil80, Thm. II.2.15 (b), (c)] it is enough to check the
exactness of (7.4) at each geometric point Z of C’. If Z ¢ ¢/(II), this is obvious
since locally at Z the morphism v/ is an isomorphism, and the stalks (¢, G, 1)z
and (¢,v.G,, v)z are zero. Now let € ¢/(II), and let (’)Qh be the strict

henselisation of the local ring of Z in C’. Each geometric pomt y of C belongs
to exactly one geometric connected component of C. Let Oscllg be the strict

henselisation of the local ring of § in its geometric connected éomponent. By
the construction of C’ we have an exact sequence

0— 0%, — k@ x ][] C’)Sh — H k(g

where (’)Shy—>k( g) is the reduction modulo the maximal ideal of (’)Sh and
k(Z)—k(g) is the multiplication by —1. We obtain an exact sequence of abehan

groups
—>((’)SC%1/75£) H cg) H k(g

v'(g)=a v'(y)=2
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Using [Mil80, Cor. I1.3.5 (a), (c)] one sees that this is the sequence of stalks of
(7.4) at Z, so that (i) is proved.
To prove (ii) consider the exact sequence

0—> Gm7c — V:Gm,C/ — VL,Gm,C//Gm,C — 0.

The morphism v is an isomorphism away from ¢(II), so the restriction of the
sheaf /Gy, 0 /Gm,c to C N i(Il) is zero. Hence v)Gy, ¢ /Gp,c = 1, U for some
sheaf U on II. To see that U is a unipotent group scheme it is enough to check
the stalks at geometric points. Let T be a geometric point of z( ), and let g be
the unique geometric point of C’ such that v”(y) = z. Let OF_ and O% 4 b
the correbpondlng strictly henselian local rings. The stalk (v (Gm /G, C)x is
(o )/ (OF ,m)*, and by [Liul0, Lemma 7.5.12 (c)], this is a unipotent group
over the field k(z). O

For fields ki, ..., ky, we have Br( ]!, Spec(k;)) = &7 Br(k;).

Proposition 7.3.2 Let k be a field of characteristic 0. Let C' be a reduced
curve over k, and let A, T and ¥ be the schemes defined in (7.3). Let A =
L1, Spec(k(N)) be the decomposition into the disjoint union of connected com-
ponents, so that C = IR C’A, where C is a smooth geometrically integral curve
over the field k(X). Then there is an exact sequence

0 — Br(C) — Br(Il) & @ Br(Cx) — Br(¥), (7.6)
AEA

where the maps are the composition of canonical maps
Br(Cy) — Br(Cy N ¥) — Br(¥),
and the opposite of the restriction map Br(II)—Br(T).

Proof. Let 7 range over the irreducible components of IT, so that U = [[ i« (Ux),
where U, is a commutative unipotent group over the field k(7). Since i,
is an exact functor [Mil80, Cor. II.3.6], we have H"(C,:,U) = H™(IL,U) =
[I,H*(k(7),Uz). The field k£ has characteristic 0, and it is well known that
this implies that any commutative unipotent group has zero cohomology in
degree n > 0. (Such a group has a composition series with factors G,, and
H"(k,G,) = 0 for any n > 0, see [SerCL, Ch. X, Prop. 1].) Thus the
long exact sequence of cohomology groups associated to (7.5) gives rise to
an isomorphism Br(C) = H?*(C, G, c)—H*(C, )Gy c’). Since v is finite,
the functor v is exact [Mil80, Cor. I1.3.6], so we obtain an isomorphism
Br(C)——Br(C"). We now apply similar arguments to (7.4). Hilbert’s theorem
90 gives H'(IL, v,Gpn w) = HY (¥, G, 0) = 0, so we obtain the exact sequence
(7.6). O
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7.4 Isolated singularities

This section elaborates on [Gro68, Ch. II, §1, Rem. 11 (b)] and on further
literature [D68, D72, Oja74], [Chi76, Thm. 1.1], [DF92, Ber05, Kol16].

Let X be a normal integral noetherian scheme with function field K. As-
sume that the singular locus Xgi,g is the union of finitely many closed points
Py,...,P,. Let k; denote the residue field at P;, let k; s be a separable closure
of k; and let G; = Gal(k; /k;), for i = 1,...,n. We write R; for the local ring
Ox p, and R" for the strict henselisation of R;. Let C1(X) be the class group
of X, defined as the cokernel of the divisor map

div: K* — @ Z.
zeX )

We define the étale sheaf Divx by the condition that the following sequence is
exact:
0 — Gum,x — G,k — Divy — 0. (7.7)

Taking étale cohomology of (7.7) and using Lemma 2.4.1, we get an isomorphism
H;, (X, Divx)—Ker[Br(X)—Br(K)]. (7.8)

Sending a Cartier divisor to the associated Weil divisor defines a natural injective
map Divx— B,ex) toxLy(z)- This is an isomorphism when X is regular. Let
us define Px as the cokernel of this map. This gives an exact sequence

0 — Divy — @ ix*Zk(x) — Px — 0. (79)
zeX @)

It is clear that Px is supported on Xging, hence Px = @I ; Px (R#™). Looking at
the stalks of the terms of (7.7) and (7.9) at the points P; we see that Px (RS") =
CI(Rs?) for each i. Thus

n
Px =P ip(CURM)).
i=1
Taking étale cohomology of (7.9) and using Lemma 2.4.1 together with (7.8),
we then get an exact sequence
0—H(X, Divx)— P Z—EP CUR") % —Br(X)—-Br(K).
zeX® i=1
Using the definition of C1(X), we deduce the exact sequence

0 — Pic(X) — CI(X) — é CI(R")% — Br(X) — Br(K).

i=1
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If X is the spectrum of a semi-local ring, one obtains the exact sequence

n
0 — CI(X) — @ CUR™) " — Br(X) — Br(K).
i=1
If X = Spec(R) is the spectrum of a local ring R with field of fractions K.
In this case the exact sequence takes the form

0 — CI(R) — CI(R*")Y — Br(R) — Br(K).

Let U = X \ {x} and Us" = Spec(R*") \ {Z}. Since U is regular, we have
Pic(U) = CI(R) and Pic(U®®) = CI(R*"). The last displayed sequence then
becomes the formula (7) in [Gro68, Ch. II, §1].

Remark 7.4.1 [Ber05] Grothendieck claims that for any normal scheme X with
isolated singular points {P;} the above computations give the general formula
[Gro68, §1, (7)]:
H,, (X, Divy) = @[Pic(Spec(th) ~ P /Im (Pic(Spec(R;) \ P;))]. (7.10)
i=1
This is not correct. Given the above computations, this would imply
PICIRM)C /Im(CL(R;))]—Ker[Br(X)—Br(K)).
i=1
There is a natural surjective map
[ED CUR™M) ] /T (CUX)) — EDICUR") /Tm(CI(R,))].
i=1 i=1
Formula (7.10) holds if and only if the map Cl(X)— &, CI(R;) is surjective.
Ojanguren’s Example (4) in Section 7.7 is precisely built on an example where
this map is not surjective [Oja74, §2, p. 511].

Example 7.4.2 Let R be the local ring of the vertex of the cone over a smooth
projective plane curve X C ]P’(% of degree d. This is a 2-dimensional local normal
domain. As explained in Childs [Chi76, Thm. 6.1], work of Danilov [D68, D72]
gives that C1(R")/CI(R) = CI(R)/CI(R). Moreover, this quotient is the finite
dimensional complex vector space &;>1H!(X, Ox (7)), which has positive dimen-
sion if d > 4. Hence for these values of d the kernel of the map Br(R)—Br(K) is
a non-zero vector space over C. In particular, there are non-torsion elements in
this kernel. Note that this implies that the kernel of Bra,(R)—Br(K) is zero,
because Bra,(R) is always a torsion group.

Let U; = Spec(R;) be the affine Zariski open neighbourhoods of the vertex of
the cone. We have R = lim R;, in fact, R is the union of the rings R;. By Section
2.2.4 we have Br(R) = lim Br(U;). Let o € Br(R) be a non-torsion element in
the kernel of the map Br(R)—Br(K). There exist an ¢ and «; € Br(R;) such
that the image of ; in R is a. Thus «; is a non-torsion element in the kernel
of Br(R;)—=Br(K). Now Y = Spec(R;) is an affine normal integral surface such
that Br(Y") contains an element of infinite order which goes to zero in Br(K).
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7.5 Intersections of hypersurfaces

Proposition 7.5.1 Let k be an algebraically closed field of characteristic p > 0.
Let X C PY be a closed subscheme.

(i) If X is defined by the vanishing of at most N — 3 homogeneous forms,
then Br(X) has no prime-to-p torsion. This holds for any hypersurface X C IP’kN
where N > 4.

(ii) If X is defined by the vanishing of at most N — 4 homogeneous forms,
then Br(X) is uniquely (-divisible for any prime ¢ # p. This holds for any
hypersurface X C PY where N > 5.

Proof. Let £ # p be a prime. The more general result [Kat04, Cor. B.§]
gives that the restriction map H?(PY,Z/¢)—H?(X,Z/{) is an isomorphism un-
der hypothesis (i) and that H3(PY,Z/¢)—H?(X,Z/¢) is an isomorphism under
hypothesis (iii). The Kummer sequence then gives that Br(Pf )[(]—Br(X)[{] is
surjective. Since Br(PY) = 0, this concludes the proof in case (i). In case (i)
from H3(PY,Z/¢) = 0 we deduce H?(X,Z/f) = 0, and the Kummer sequence
gives Br(X)/{ — H3(X,Z/¢) =0. O

Purity on some singular varieties

Corollary 4.4.5 can be extended to some singular complete intersections. K. Ces-
navic¢ius showed us that the following theorem is essentially a special case of
results of Michele Raynaud [MR62], a text which contains many more purity
theorems in a possibly singular context. Recent work of Cesnavi¢ius and Scholze
vastly extend these results.

Theorem 7.5.2 Let k be a separably closed field of characteristic zero. Let
X C ]P’kN be a complete intersection of dimension d > 3. Assume that the
codimension in X of the singular locus Xging is at least 4. Let U = X N\ Xging.
Then Br(U) = 0, hence Bry, (k(X)) = 0.

Proof. The assumption on X and on the codimension of the singular locus im-
plies [SGA2, XI, Cor. 3.14] that X is geometrically locally factorial. Theorem
3.5.4 then gives that the restriction map Br(X)—Br(U) is injective. The restric-
tion map Pic(X)—Pic(U) is surjective since X is locally factorial and is injective
since the codimension of X, in X is at least 2, so it is an isomorphism. Quite
generally, for any complete intersection X C }P’fcv of dimension d and any i < d,
the restriction map H*(PY, p1,,)—=H! (X, t,) is an isomorphism, see [Kat04]. In
particular, Z/n = H2(PY, u,) = H2(X, pn). Now, from the Kummer sequence,



7.5. INTERSECTIONS OF HYPERSURFACES 165

we obtain a commutative diagram with exact rows

Pic(PY)/n —— H2(PY, 11,)

C )

0 — Pic(X)/n —— H2(X, jt,) — Br(X)[n] —=0

- | |

0 — Pic(U)/n —— H*(U, u,) — Br(U)[n] —=0
To complete the proof it is enough to show that the restriction map
H2(X, Nn) — H2(U, ,Un)

is an isomorphism.

Let us describe the relevant results from [MR62]. Let X be a noetherian
scheme, let Y C X be a closed subscheme, and let U = X \Y. The étale depth
depthy (X)(Z/?) of X along Y is defined in [MR62, Déf. 1.2], which refers to
[MR62, Prop. 1.1 (iii)]. If n = depthy (X)(Z/{), then for any X’ étale over
X, the restriction map H (X', Z/{)—H (X' x x U,Z/¢) is an isomorphism for
i <n —1 and an injection for i =n — 1.

One defines a similar notion locally at any point = of X, as follows. Let
Xz = Spec(O") be the strict henselisation of X at a geometric point z above
2. Define depth, (X)(Z/f) = depth,(Xz)(Z/F), that is, the étale depth of the
local scheme X; at its closed point Z. By [MR62, Thm. 1.8], depthy (X)(Z/¢)
can be computed locally:

depthy (X)(Z/0) = 1161}f/ depth, (X)(Z/?),

where y ranges through the points of the scheme Y.

The geometric depth of an excellent local ring A is defined in [MR62, Déf.
5.3]. If A is a complete intersection, then the geometric depth of A coincides
with the dimension of A [MR62, Prop. 5.4]. For an excellent local ring A of
characteristic zero, the étale depth is greater than or equal to the geometric
depth [MR62, Thm. 5.6].

We now resume the proof of the theorem. So let X be as in the statement
of the theorem, let ¥ = Xgp,, and let U = X \ Y. Since X is a complete
intersection, so is Yg, where y is a point of Y and ¥ is a geometric point over
y. Since codimy (V) > 4, we have dim(X;) > 4. We conclude that the étale
depth at the local ring of X at y is at least 4. Thus depthy (X)(Z/¢) > 4 for
any prime number ¢, hence the restriction map H?(X,Z/¢)—H?(U,Z/¢) is an
isomorphism. Thus H?(X, u,,) = H?(U, p,) for any n > 0. O

Corollary 7.5.3 Let k be a field of characteristic zero. Let X C ]P’év be a
complete intersection of dimension at least 3. Assume that the singular locus of
X is of codimension at least 4 in X. Then the natural map Br(k)—Bry, (k(X)/k)
18 an isomorphism.
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Proof. Let k be an algebraic closure of k. Let U = X ~ Xsing. We have
k* = k[U]* = k[X]*. The assumptions on X and on codimy (Xsing) imply
[SGA2, XI, Cor. 3.14] that X is geometrically locally factorial. It follows that
the restriction map Pic(X)—Pic(U) is an isomorphism. By a generalisation of
the Lefschetz theorem, for a complete intersection X of dimension at least 3 in
PY, the restriction map Z = Pic(PPy)—Pic(X) is an isomorphism [SGA2, XII,
Cor. 3.7], and both groups are generated by the hyperplane section class, which

is defined over k. By the above theorem Br(X) = Br(U) = 0. From the exact
sequence (4.9) we then get isomorphisms

Br(k) = Br(X) = Br(U).

Let f: Z—X be a proper desingularisation of X which induces an isomorphism
V = f~Y(U) 2 U. The composition Br(k)—Br(Z)—Br(U) is an isomorphism,
and Br(Z)—Br(U) is injective since Z is smooth. Thus Br(k)—Br(Z) is an
isomorphism, hence Br(k)—Br,, (k(X)/k) is an isomorphism. O

7.6 Projective cones

Proposition 7.6.1 Let k be a field of characteristic zero. Let Y C P}, n > 2,
be an integral closed subvariety. Let X C ]P’Z+1 be the projective cone over Y.
Write U = Xgmooth-

(i) The restriction map Br(X)—Br(U) is the composition of the by evaluation
at P map Br(X)—Br(k) and the map Br(k)—Br(U) induced by the structure
morphism U—Spec(k).

(ii) If Y is smooth, then U is the complement to the vertex of the cone X
and Br(U) = Br,, (k(X)/k).

Proof. Let oo € Br(X). Let K = k(X) be the function field of X. The K-
variety Xg = X X K has two obvious K-points: the point Px given by the
vertex P € X (k) and the point given by the generic point n € X. Any point
M € Xk(K) distinct from Pk lies on the projective line P}, C Xx through
M and Pg. Since Br(K)—Br(PL) is an isomorphism (Theorem 4.5.1 (vii)) we
have

a(n) = a(Pg) = resg i (a(P)) € Br(K).

But a(n) is just the image of a under the restriction map Br(X)—Br(k(X)).
The latter map is the composition Br(X)—Br(U)—Br(k(X)), where the map
Br(U)—Br(k(X)) is injective since U is smooth over k (Theorem 3.5.4). Hence
Br(X)—Br(U) factors as

Br(X) — Br(k) — Br(U),

where the first arrow is evaluation at P and the second arrow is induced by the
structure map U—Spec(k).

Assume that Y is smooth. Then U = X ~\ {P} is a smooth integral variety.
The projection map p : U—=Y makes U an A'-bundle over Y, thus the induced
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map p* : Br(Y)—Br(U) is an isomorphism. Note that X is birationally equiv-
alent to Y xj, Pi, hence Bry,(k(X)/k) = Bry,(k(Y)/k). Since Y is smooth,
Br(Y) = Bry,(k(Y)/k) C Br(k(Y)) (Proposition 5.2.2). O

Let us discuss the case where Y C ]P’gfl, N > 3, is a smooth projective
hypersurface. Let X C Pg be the projective cone over Y. The vertex is the only
singularity of X; it has codimension N —1in X. Let U C X be the complement
to the vertex of X. By Proposition 7.6.1, the restriction map Br(X)—Br(U) is
zero. On the other hand, Proposition 7.5.1 says that Br(X) is torsion-free for
N > 4 and Br(X) is uniquely divisible for N > 5.

For N > 5, we actually have Br(X) = Br(U) = 0. Indeed, X is geometrically
locally factorial, hence Br(X)—Br(U) is injective. As U is an A'-bundle over
a smooth hypersurface Y € PV~! with N — 1 > 4, we have Br(Y) = 0 and
Br(U) = 0.

It remains to investigate the case where Y is a smooth curve in ]P’% or a
smooth surface in PZ. In the first case Br(U) = Br(Y) = 0. In the second case
we know that Br(X) is torsion-free. We also know that if the surface is of degree
at least 4 then Br(U) = Br(Y) # 0.

Example 7.6.2 Let us show that the condition on the codimension of the sin-
gular locus in Theorem 7.5.2 and Corollary 7.5.3 is necessary. Let & = C and
let Y C P2 be a smooth surface of degree d > 4. Then NS(Y) is torsion-
free and we have by > p since H2(Y,Oy) # 0, by Hodge theory. Proposition
4.2.6 implies that Br(Y) = (Q/Z)*>=? # 0. Thus in the above notation we
have Br(U) = Br(Y') # 0, while the map Br(X)—Br(U) is zero. This gives an
example of a hypersurface of dimension 3 with an isolated singularity of codi-
mension 3 for which the map Br(X)—Br(U) is not an isomorphism. Note that
Bry,, (C(X)) = Bry,(Y) = Bry,,(U) # 0 in this case.

7.7 Some examples

(1) Let k be a field of characteristic different from 2 with a,b € k* such that the
quaternion algebra class (a,b) € Br(k) is non-zero. (For example, k¥ = R and
a =b= —1.) Counsider the singular affine curve over k defined by the equation

y* = 2%(z +b).
Let X be the open set given by x # —b. Consider the quaternion algebra
A = (a,z +b) € Bra,(X).
Over the function field k(X) of X, we have
(a,2+b) = (a, (y/2)?) = 0 € Br(k(X)).

But the evaluation of A at the singular point (z,y) = (0,0) is the non-zero
element (a,b) € Br(k), thus A # 0 lies in the kernel of Bra,(X)—Br(k(X)).
Compare with Proposition 7.2.1.
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(2) Let k and a, b € k* be the same as in (1). Consider the normal affine surface
over k defined by the equation

y? —az? = 2%(x +b).
Let X be the open set given by = # —b. Consider the quaternion algebra
A= (a,x+b) € Bra,(X).
Over the function field k(X) of X, we have
(a,z +b) = (a, (y* — az?)/z?) = 0 € Br(k(X)).
The evaluation of A at the singular point (x,y,z) = (0,0,0) is the non-zero

element (a,b) € Br(k). Thus A # 0 lies in the kernel of Br(X)—Br(k(X)).

(3) Let k and a,b € k* be the same as in (1). Consider the quadratic cone
X C A} defined by
2 —ay® — bz® 4+ abt? = 0.

Its singular locus is the point P = (0,0,0,0), which has codimension 3 in X.
The class (a,b) € Br(k) gives rise to o = (a,b)x € Bra,(X). This class is
non-zero, because its evaluation at P is (a,b) € Br(k). But the image of « in
Br(k(X)) is zero, since

(a,0)k(x) = (a, (2% — ay?)/(2* — at?)) = 0 € Br(k(X)).

This example shows that in Theorem 3.5.4 of Auslander and Buchsbaum one
cannot remove the assumption that the codimension of the singular locus is at
least 4.

(4) If X is a noetherian integral scheme with an isolated singularity P € X, and
Rp is the local ring of X at P, then the restriction map

Br(X) — Br(Rp)

is injective. Indeed one may write X = UUV where U is regular and V contains
P. By Theorem 3.5.5 this implies that the restriction map Br(X)—Br(V) is
injective. Passing over to the limit over all V' containing P gives the result.

The affine surface X over C given by z* = (1 — x — y)zy is normal with
exactly three singular points P;, i = 1,2,3. Let R; be the local ring of X at P;.
Ojanguren shows in [Oja74] that the natural map

3
BI"AZ(X) — HBrAz(Rz‘)

i=1

has a non-trivial kernel.



Chapter 8

Varieties with a group
action

One often needs to study the Brauer group of a variety equipped with an action
of an algebraic group. The Brauer groups of connected algebraic groups them-
selves as well as the Brauer groups of their homogeneous spaces can be explicitly
computed in many cases. In Section 8.1 we deal with tori and in Section 8.2
with simply connected semisimple groups. We then turn our attention to the un-
ramified Brauer group of homogeneous spaces; the challenge here is to compute
these groups without having to construct an explicit smooth projective model.
In Section 8.3 we discuss Bogomolov’s theorems which compute the unramified
Brauer group of the invariant field of a linear action of a finite group over an
algebraically closed field, and a related theorem of Saltman. Finally, in Section
8.4 we give an overview of the unramified Brauer groups of homogeneous spaces
over an arbitrary field (mostly without proofs).

8.1 Tori

The étale cohomology of split tori has been studied by many authors, e.g.
[Mag78, GiPi08, GiSel4].

Lemma 8.1.1 Let X be a smooth, geometrically integral variety over a field k
of characteristic 0. Let T' = Gal(ks/k). There are split exact sequences

0 — Hg (X, Q/Z) — HY (G, x, Q/Z) — (Q/Z(-1))" — 0,
where Q/Z(—1) is the direct limit of Z/n(—1) for n—oo, and
0 — Br(X) — Br(G,, x) — Hi(X,Q/Z) — 0.

Proof. Let Y be the closed subset of A% which is the zero section of the structure
morphism Al —X. Then X =Y. The open subset Al \ Y is isomorphic to

169



170 CHAPTER 8. VARIETIES WITH A GROUP ACTION

Gy, x. The unit section of the structure morphism G,, x—X is an embedding
X = G, x such that the composition X — G, x —>A}(—>X is an isomorphism.
For any integer n > 0 we have the Gysin exact sequence (2.15)

= HL (A, Z/n) = L (G x, Z/n)—H (X, Z/n(—1)) - HET (A, Z/n)— ..

As n > 0 is invertible in X, the natural maps H% (X,Z/n)—HL (AL, Z/n) are
isomorphisms. Specialisation at the unit section of G,, x—X shows that all
maps H% (A, Z/n)—HL (G x,Z/n) are split injective. Putting everything
together, we get split short exact sequences

0 — HL (X, Z/n) — Hy (G x, Z/n) — Hy '(X,Z/n(—1)) — 0.

For ¢ = 1, this gives the first exact sequence. For i = 2, this gives the exact
sequence

0— Hgt(Xa fn) — Hgt(Gm,Xv pin) — Hg (X, Z/n) — 0.
One then uses the compatible exact sequences
0 — Pic(X)/n — HL (X, pn) — Br(X)[n] — 0

and
0 — Pic(Gp x)/n — Hét(Gm)X,,un) — Br(G,,,x)[n] — 0

given by the Kummer sequence. The map Pic(X)—Pic(G,,, x) is the composi-
tion Pic(X)—Pic(AL)—Pic(G,,, x). The first map is an isomorphism since X
is regular and the second map is surjective since Ak is regular. Since G,, x /X
has the unit section, we conclude that the map Pic(X)—Pic(G,, x) is an iso-
morphism. We now get the exact sequence

0 — Br(X)[n] — Br(G,,.x)[n] — Hg(X,Z/n) — 0.

Since X and Gy, x are regular, both Br(X) and Br(G,, x) are torsion groups,
so we obtain the second exact sequence of the lemma. [

Let k be a field with separable closure ks. Let 1" be an algebraic torus. Then
T =TxXkks = ng,ks for some positive integer d. By an easy case of Rosenlicht’s
lemma, the group ks[T|* of invertible functions on T* is the direct sum of £} and
the character group T = Homy, —groups(T°, Gm, k. ). In particular, for any integer

n invertible in k, there is a natural isomorphism HO(T®, G,, .)/n = T/n.

Proposition 8.1.2 Let k be a field of characteristic 0. Let T' be an algebraic
torus of dimension d > 1 over k with character group T'.
(a) There is a T'-equivariant isomorphism

H} (T°,Q/Z) T ® Q/Z(-1)

and a non-canonical isomorphism H} (T, Q/Z) ~ (Q/Z)%.
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(b) There is a I'-equivariant isomorphism

N(T) ® Q/Z(—1)—Br(T®)
and a non-canonical isomorphism Br(T®) ~ (Q/Z)H4=1/2 If k is algebraically
closed, T = Spec(k[z1, ;vfl, ey X, x;l]) and € is a primitive n-th root of unity,
the composite map

NA(T) @ Z/n—=Br(T)[n] © pin. — Br(k(T))[n] @ pn

sends x;A\x; to (2, 5)c®C, where (x;,2;)¢ is defined at the end of Section 1.3.4.
(c) There is a split exact sequence of abelian groups

0 — Br(k) — Bry(T) — H2(k,T) — 0.

Proof. (a) Since Pic(T®) = 0, for any integer n, the Kummer sequence gives a
natural isomorphism

Hgt (TS, Gm)/n%Hét (Tsv un)v
hence T'/n—"+H}, (T®, ). We thus obtain an isomorphism
H}, (T%,Q/Z)—T @ Q/Z(—1).

(b) Using this isomorphism and the second (split) exact sequence of Lemma 8.1.1

for X = G-, we obtain by induction a non-canonical isomorphism Br(7*®) ~

(Q/Z)M4=1)/2 Tn particular, for each n > 1, the order of Br(T®)[n] is n®(¢-1)/2,
Consider the cup-product pairing of étale cohomology groups

Hee(T%, pn) % Hee(T%, pin) — HE (T, p7?) = Br(T")[n] & pun, (8.1)

where the last equality follows from the Kummer sequence and the vanishing
of Pic(T*®). This pairing is compatible with the cup-product pairing of Galois
cohomology groups

Hl(ks(T)rﬂn) X Hl(ks(T)7ﬂn) — HQ(ks(T)7U§2) (8.2)

via the injective map H} (7%, p,,) < H'(ks(T), 1) induced by the inclusion
of the generic point Spec(ks(T))—T%. Since char(k) = 0, the field ks is alge-
braically closed. Thus (a,a) = (a,—a) = 0 for any a € H(ks(T), i1,), so the
pairings (8.2) and (8.1), are alternating. We thus have a Galois equivariant map

£:NA(T) ®Z/n — Br(T®)[n] @ pin.

It is enough to prove that £ is an isomorphism of abelian groups. We already
know that the two groups have the same cardinality, so it remains to show that
£ is injective.

Let us fix an isomorphism of kg-tori

T° ~ ng,ks = Spec(ks[z1, 27", ..., xa,2;']) C Afn)ks = Spec(ks[z1,...,z4]).
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The free Z/n-module A%(T) ® Z/n is generated by the elements x; A x; for
1<i<j<d Leta=3_;a;;z; \z;be anonzero element of N(T)®Z/n,
where each a; ; is a non-negative integer less than n. Write 8 for the image of
o in Br(ks(T))[n] ® pin. Let r be the smallest value such that a,; # 0 for some
t. Let K, be the field ks(x1,...,2p-1,Tr4+1,...,24). The residue of 8 at the
divisor z, = 0 of Aﬁﬁhks is the class [],., «¢"" in K;/K;™. This class is not
trivial, hence 8 # 0. This shows that the composition of £ with the natural map
Br(T%)[n] ® iy, —Br(ks(T))[n] ® py, is injective, so £ is injective. This proves (b).

(c) In view of Pic(T*®) = 0, the spectral sequence
EY? =HP(k,HY, (T, Gy)) = HE (T, Gy)

gives rise to an isomorphism H?(k, ks[T]*)——Br;(T'), hence to an isomorphism
H2(k, k) @ H2(k,T)—Bry(T) which gives (c). O

Proposition 8.1.3 Let k be a perfect field, let n > 1 be an integer and let
T =Gy, ;. be a split torus. The natural map Br(T)—Br(T%)' is surjective.

Proof. For any k-variety X we have the spectral sequence
EY = HP(k,H1(X,G,,)) = HPY(X, G,).

It is functorial contravariant in the k-variety X. R
If X = T is a k-torus, then H*(X® G,,) = k¥ ® T and H'(X*,G,,) =
Pic(T?®) = 0. The spectral sequence thus gives rise to an exact sequence

0—H2(T', kX & T)—Br(T)—Br(T%)" -H3 (I, kX & T)—H*(T, Gn).
Write
Br.(T) = Ker[Br(T)—Br(k)], H3(T,G,,) = Ker[H*(T,G,,)—H3(k,G,,)]

for the kernels of the evaluation maps at the neutral element e € T(k). Then
we get an exact sequence

0 — H*(',T) — Br.(T) — Br(T*)" — H*(I',T) — H3(T,G,,).

Since the spectral sequence is functorial in X, for any k-homomorphism of tori
R—T, we get a commutative diagram of exact sequences

Br,(T) — Br(T®)" — H3(I, T)

o

Br.(R) — Br(R*)T —— H3(I', R)

If R is of dimension 1, then Br(R®) = 0 (here we use the hypothesis that k is
perfect; for k arbitrary, we would only get a result up to the characteristic of
k). This implies that the composition of maps

Br(T®)" — H*(I',T) — H*([, R)
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is zero.

If T'is split, then T' = G, ¢, T = 7", and we have H3(I, Z") = H3(I", Z)®".
Thus the map Br(T%)'—H3(I',T) is zero, hence the map Br(T)—Br(T%)' is
surjective. [

In the case when the field k is algebraically closed, Harari and Skorobogatov
[HS03, Thm. 1.6] computed the Brauer group of a torsor for a k-torus.

Theorem 8.1.4 Let k be an algebraically closed field of characteristic 0. Let
X be an integral smooth variety over k such that k* = kE[X|* and Pic(X) is a
finitely generated free abelian group. Let f : Y —X be an X-torsor for a torus
such that k* = k[Y]* and Pic(Y") is a finitely generated free abelian group. Then
the map f* : Br(X)—Br(Y) is an isomorphism.

8.2 Simply connected semisimple groups

Proposition 8.2.1 Let k be a field of characteristic 0. Let G be a simply
connected semisimple group over k. Let E be a k-torsor for G and let X be a
smooth, projective, geometrically integral variety over k birationally equivalent
to E. Then the following natural maps are isomorphisms:

(i) Br(k)—=—Br(E);

(ii) Br(k)——Br(X).

Proof. For a semisimple and simply connected group G we have k¥ = ks[E]*,
Pic(E®) = 0, and Br(k)—=Br(G), see [San81, §6], [Gi09)].

The exact sequence (4.8) then gives an isomorphism Br(k)——Br(E) in (i).
For X as in the proposition, there exists a non-empty open set U C E and a
birational morphism U—X. Since X is projective and F is smooth, we may
assume that U contains all codimension 1 points of E. By purity for the Brauer
group, the restriction map Br(E)—Br(U) is an isomorphism. Since X is smooth,
the map Br(X)—Br(U) is injective. Now we obtain (ii) from (i). O

If G is not simply connected, then Br(k)—Br(G) is not necessarily an iso-
morphism even when k is algebraically closed of characteristic zero, see [Ive76].

Let us state an important theorem of Bruhat and Tits, see [BT87].

Theorem 8.2.2 (Bruhat—Tits) Let K be a complete local field with perfect
residue field of cohomological dimension 1. Let X be a K-torsor for a simply
connected semisimple group over K. Then X has a K-point.

One application of this theorem is Theorem 10.1.10 below, which says the
following. If f : X—Y is a dominant morphism of smooth, projective, geo-
metrically integral varieties over a field k of characteristic zero such that the
generic fibre is birationally equivalent to a k(Y)-torsor for a simply connected
semisimple group over k(Y), then the induced map f* : Br(Y)—Br(X) is an
isomorphism. This result has the following corollary.
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Corollary 8.2.3 Let k be a field of characteristic 0. Let H — GL,, be an
arbitrary linear group over k. Let H — G be an embedding into a simply
connected semisimple group G. Then Bry, (k(GL,,/H)) = Bry,,(k(G/H)).

Proof. (cf. [LA15, Prop. 26]) Let P = G xj GL,,. Consider the quotient P/H
with respect to the diagonal action of H on the right. The projection of P—G
induces a morphism P/H—G/H which is a left GL,-torsor. Similarly, the mor-
phism P/H—GL, /H induced by the projection P—GL,, is a left G-torsor. Any
GL,,-torsor is locally trivial for the Zariski topology, thus P/H is birationally
equivalent to G/H xj GLy, hence P/H and G/H have isomorphic unramified
Brauer groups (Corollary 5.2.5). Since G is simply connected and semisimple,
Theorem 10.1.10 implies that the map Bry, (k(GL,/H))—Bry(k(P/H)) is an
isomorphism. [J

8.3 Theorems of Bogomolov and Saltman

In this section we discuss theorems of Bogomolov and Saltman. We refer to
[CTS07, §6] and to [GS17, Ch. 6, §6] for most proofs and for history of the
subject. An abelian group generated by at most two elements will be called
bicyclic.

Theorem 8.3.1 [CTS07, Thm. 6.1] Let L be a field finitely generated over
an algebraically closed field k of characteristic zero. Let G be a finite group of
automorphisms of L over k, and let Bg be the set of bicyclic subgroups of G.
Then

Br, (LY) = {a € Br(LY) | ap € Bro(L7) for all H € Bg},
where gy is the restriction of a € Br(LY) to Br(LT).

Proof. [CTS07, loc.cit.] Let K = LY and let a € Br(K) be such that d4(a) # 0
for some discrete valuation ring A C K with fraction field K. We must show
that there exists a subgroup H € Bg such that

ag ¢ Brm(LH).

The following facts can be found in [SerCL, I, §7]. Let p be a prime ideal
in the semi-local Dedekind ring A which is the integral closure of A in L, let
D C G be the associated decomposition group, and let I C D be the inertia
group, which is a normal subgroup of G. The localisation B = Ap C Lis a
discrete valuation ring. There is a tower of fields: K ¢ L” ¢ L' Cc L and a
corresponding tower of discrete valuation rings obtained by taking the traces
A = B% ¢ BP ¢ B! of B on the subfields. The corresponding residue field
extensions are F' = F C E = E, and we have D/I = Gal(E/F) = Gal(L! /LP).
The Galois extension L!/K is unramified, i.e. a uniformising parameter of A is
still a uniformising parameter in B'.
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Moreover, since the residue characteristic is zero, the inertia group I can be
identified with a cyclic group, namely, the group p of roots of unity in F' [SerCL,
IV, §2, Cor. 1 et 2]. Furthermore, the conjugacy action of D on the normal
subgroup I is then trivial, since this action can be identified with the action of
D/I = Gal(E/F) on pn C F, and all the roots of unity are in k¥ C F'. Thus I is
central in D.

If a; ¢ Bry, (L), we are done, since I is a cyclic subgroup of G. We may
thus assume that a; € Bry,(L?). Since BP/A is an unramified extension of
discrete valuation rings which induces an isomorphism on the residue fields,
the assumption d4(a) # 0 implies o (a) # 0 € HY(F,Q/Z). On the other
hand, dg:(a) =0 € HY(E,Q/Z). Since B! /BP is unramified, the commutative
diagram:

Br(k') —%2 HY(E,Q/Z)

T TRCSF/E
Br(KP) —222, HY(F,Q/7)

implies that Ogp () may be identified with a non-trivial character of D/I =
Gal(E/F). Let g € D be an element of D whose class g in D/I satisfies
Opp(a)(g) #0 € Q/Z, let H = (I,g) C D be the subgroup spanned by I and
g, and let F be the residue class field of BY. Inserting Br(KH)—H!(Fy,Q/Z)
in the above diagram, one immediately sees that d(a ) # 0, since d(ay) may
be identified with a character of Gal(E/Fy) = D/H which does not vanish on
g. This is enough to conclude, since H is an extension of the cyclic group (g)
by the central cyclic subgroup I (see above), hence is an abelian group spanned
by two elements. [

Let G be a finite group. Consider a faithful representation G—GL(V'), where
V is a finite dimensional complex vector space. Write C(V') for the purely
transcendental extension of C, which is the field of rational functions on V
considered as an affine space over C. Then the subfield of invariants C(V)% is
the function field of the quotient V/G. Speiser’s lemma (see, e.g. [CTS07, Thm.
3.3]) states that the stably birational equivalence class of V/G does not depend
on the choice of a faithful representation G—GL(V'). By Corollary 5.2.5, this
implies that Br,.(C(V)%) does not depend on the choice of V. In particular,
considering the left action of GL(V) on End(V) gives a faithful representation
of G in End(V), so we get an isomorphism Br,(C(V)¢) = Br,,,(GL(V)/G).

If G is a finite abelian group, it is a consequence of a theorem of Fischer that
the field of invariants C(V)¢ is purely transcendental, hence Br,, (C(V)) = 0.
Combining this with Theorem 8.3.1, one gets the following result.

Theorem 8.3.2 (Bogomolov) Let G C GL(V) be a finite group. Then the
unramified Brauer group of the field C(V)€ is given by the formula

Br,: (C(V)9) = Ker[H*(G,C*) — ] H*(4,C")),
AeB
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where B is the set of bicyclic subgroups A C G and H?(G, C*)—H?(A, C*) is the
restriction map.

See [Bog87], [CTS07, Thm. 7.1], [GS17, Thm. 6.6.12]. Fischer’s theorem
implies that the set B of bicyclic subgroups can be replaced by the larger set of
all abelian subgroups. One may also write H?(G, C*) = H3(G, Z) and similarly
for each A. The same formula gives the value of Br,,,(H/G), where G is a finite
subgroup of H = SL,, ¢ or any simply connected semisimple group over C (see
[CT12b] and [LA17] ).

This theorem has led to numerous examples of finite p-groups G such that
the quotient GL,, ¢ /G is not rational (E. Noether’s problem). D. Saltman (1984)
was the first to use the unramified Brauer group to disprove the rationality of
GL,,¢/G for some finite groups G. Bogomolov [Bog87] developed a technique for
computing Bry,(GL,, ¢/G) when G is a central extension of abelian groups. See
[CTSO07, §7] and the references therein. Since [CTS07] was written, many papers
have been devoted to the computation of the group Bry,(GL,, ¢/G) in Theorem
8.3.2, which often goes under the name of ‘Bogomolov multiplier’. (Recall that
H?(G,C*) = H3(G, Z) is the Schur multiplier of the finite group G.) Kunyavskii
[Kul0] proved that the Bomogolov multiplier vanishes for all simple groups.

Theorem 8.3.3 (Saltman) [Sal90] Let G be a finite group and let M be a
faithful G-lattice. Let C(M) be the field of fractions of the group algebra C[M].
Then

Bro (C(M)%) = Ker[H*(G,C* & M) — [] H*(4,C* @ M)],
AeB

where B is the set of bicyclic subgroups A C G.

In other words, C(M) is the field of functions C(T') of a complex torus T
equipped with an action of a group G. Then C(M)% is the field of functions
C(T/G) of the quotient T/G.

Further work along these lines has been done by D. Saltman, E. Peyre [P08],
and in joint work of B. Kahn and Nguyen Thi Kim Ngan [KN16].

There is an extension of Theorem 8.3.1 to almost free actions of reductive
groups, see [Bog89, Thm. 2.1] and [CTS07, Thm. 6.4].

Theorem 8.3.4 (Bogomolov) Let k be an algebraically closed field of char-
acteristic zero, let G be a reductive group over k, and let X be an integral affine
variety over k with an action of G such that all stabilisers are trivial. Write Bg
for the set of finite bicyclic subgroups of G(k). Then

Bry, (k(X)9) = {a € Br(k(X)%) | as € Bro, (k(X)?) for all A € Bg},
where oy is the restriction of a € Br(k(X)%) to Br(k(X)4).

The following theorem was proved in several instalments.
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Theorem 8.3.5 Let k be an algebraically closed field of characteristic 0. Let
G be a connected linear algebraic group over k and let H C G be a connected

algebraic subgroup. Let X. be a smooth compactification of X = G/H. Then
Br(X.) =0.

The case H = PGL,, C G = GLy is due to Saltman [Sal85].

For G simply connected, the result is a theorem of Bogomolov [Bog89, Thm.
2.4]. For a detailed account of his proof see [CTS07, §9]. The proof given there
builds upon Theorem 8.3.4.

The result in the general case was obtained by Borovoi, Demarche and Harari
in [BDH13]. Their proof uses a long arithmetic detour. A direct reduction to
the case G semisimple simply connected was then given by Borovoi [Borl3].

In the special case when G = GL,, and H is a connected semisimple group, a
proof in arbitrary characteristic is given by Blinstein and Merkurjev in [BM13,
Thm. 5.10].

Over a separably closed field of characteristic p > 0, assuming that the
connected groups G and H are smooth and reductive, Borovoi, Demarche and
Harari [BDH13] prove that Br(X.) is a p-primary torsion group.

Remark 8.3.6 1. Let kK = C. There exists a subgroup A C SL,,, where A is an
extension of a finite abelian group by a torus, such that Bry,,(C(SL,/A)) # 0.
Such examples can be constructed by a method suggested by C. Demarche.
Suppose that a group H' is a central extension of a finite abelian group A by
a finite abelian group Z. Let us embed Z into a torus T and define H =
(T x H')/Z. Then H is a central extension of A by T'. Suppose we are given an
embedding H — G = SL,,. Since T commutes with H, there is a right action
of T on G/H'. But H is generated by T and H’, hence the natural morphism
G/H'—G/H is a right torsor under the quotient torus T'/Z. This torus is split,
hence G/H' is stably birationally equivalent to G/H. Thus the natural map
Bry,, (G/H)—Bry,(G/H') is an isomorphism. Using Theorem 8.3.2, Bogomolov
[Bog87] has constructed examples with Br,,(G/H') # 0. (See also [CTS07].)

2. Let k = C. For a subgroup A C G, where G is semisimple and simply
connected and A is an extension of a group of multiplicative type by a semisimple
simply connected group, we have Br,,,(C(G/A)) = 0. This follows by combining
Theorem 8.3.5 with [LA15, Prop. 26] (itself an elaboration on Corollary 8.2.3).

8.4 Homogeneous spaces over an arbitrary field

For g € T' we denote by (g) the closed subgroup of T' generated by g. For a
continuous discrete Galois module M and 7 > 0 we define

I, M) = Ker[H'(T, M) — [ H'({g), M)].
gel

Using hypercohomology one extends this definition to bounded complexes of
Galois modules. The following statements are proved using standard properties
of Galois cohomology.
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(1) If K C ks is a Galois extension of k such that Gal(ks/K) acts trivially
on M, then the inflation map H'(Gal(K/k), MG2l(ks/ Ky SHY(T, M) induces an
isomorphism

Ker[H'(Gal(K/k),M) — [ H'((g), M)] = TI(T, M).
geGal(K/k)

(2) If, in addition, the abelian group M is finitely generated and free, then
the inflation map H?(Gal(K/k), MG (k/K) 3H2(T', M) induces an isomorphism

Ker[H(Gal(K/k), M) — [ H2((g),M)] = II2(T, M).
gE€Gal(K/k)

Work of many authors [Vos98, CTS77, San81, Bog89, CTK98, BK00, BKG04,
CTKO06, CTS07, CT08, Borl3, BM13] has led to the following results.

Theorem 8.4.1 Let k be a field of characteristic 0 with an algebraic closure
k and T = Gal(k/k). Let X be a homogeneous space of a connected linear
algebraic group such that the stabilisers of geometric points are connected. Let
X, be a smooth compactification of X. Then the following properties hold.

(i) Br(X.) =0, hence Br(X.) = Bry(X,).

(ii) The T-lattice Pic(X.) is a flasque T-module, that is, for every closed
subgroup C' C T we have Exty(Pic(X,),Z) = 0.

(iii) For any procyclic subgroup C C T we have H*(C, Pic(X.)) = 0.

(iv) There is an exact sequence

Br(k) — Br(X,) — HIL (T, Pic(X,)) — H*(k, k*).
(v) If X(k) # 0, then there is an exact sequence
0 — Br(k) — Br(X.) — I} (T, Pic(X.)) — 0.

Let us for simplicity assume X (k) # 0. Then X = G/H, where G and
H are connected linear algebraic groups. Once Br(X.) = 0 has been estab-
lished (Theorem 8.3.5), one has Br(X.)/Br(k) = HY(T,Pic(X.)). Statement
(ii) [CTKO06, Thm. 5.1] implies (iii) for purely algebraic reasons (the duality for
Tate cohomology of a finite group with values in a lattice and the periodicity of
cohomology of a finite cyclic group). From (iii) we immediately get (iv) which

implies (v).

Corollary 8.4.2 Let k be a field of characteristic 0. Let X be a smooth, pro-
jective, geometrically integral variety over k with a k-point. Assume that X is
stably k-birational to a homogeneous space of a connected linear algebraic group
such that the stabilisers of geometric points are connected. If there exists a finite

cyclic extension K[k such that Pic(Xx ) = Pic(X), then the map Br(k)—Br(X)

is an isomorphism and the T'-module Pic(X) is a direct summand of a permu-
tation I'-module.
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This is a consequence of Proposition 5.2.13, Theorem 8.4.1, and the following
general lemma.

Lemma 8.4.3 Let k be field of characteristic zero and let W be a smooth pro-
jective variety over k. Assume that Pic(W) is a finitely generated torsion-
free abelian group. Assume that H'(C,Pic(W)) = 0 for all procyclic sub-
groups C C T. If there exists a cyclic finite field exension K/k such that
Pic(Wg) = Pic(W), then H(k,Pic(W)) = 0 and the T'-module Pic(W) is a

direct summand of a permutation I'-module.

Proof. Let K C k be a Galois extension of k such that G = Gal(K/k) is
cyclic. Let M = Pic(W). The group Gal(k/K) acts trivially on the finitely
generated torsion-free abelian group M, hence H!(K, M) = 0. The restriction-
inflation sequence gives H'(G, M) = H(K/k, M) = H*(k, M). The map I' =
Gal(k/k)—G is surjective, so we can find a g € I whose image generates G. Let
E = k9 be the fixed field of g. The field extensions K/k and E/k are linearly
disjoint. In particular, H'(K/k, M) =< H*(KE/E,M). We have HY(KE, M) =
0, so the restriction-inflation sequence gives H'(KE/E, M) = H'(E, M), and
the latter group is trivial by assumption. We thus get H'(K/k, M) = 0 and
then H!(k, M) = 0. This remains true if k is replaced by a finite field extension.
The last part of the statement is then a consequence of a theorem of Endo and
Miyata (cf. [CTST77, Prop. 2, p. 184]): if G is a finite cyclic group acting on a
finitely generated torsion-free abelian group M such that H(H, M) = 0 for all
subgroups H C G, then M is a direct summand of a permutation G-module. [

Example 8.4.4 A Chatelet surface Y given by the affine equation
v —az? = (z —e1)(z — ex)(x — e3),

where a € k~k*? and e; # e; for i # j, admits a smooth compactification Y, such
that Pic(Ye k) = Pic(Y.), where K = k(y/a). However, Br(Y.)/Br(k) = (Z/2)?
(see Exercise 10.2.6). Corollary 8.4.2 then shows that such a Chételet surface is
not stably k-birational to any homogeneous space of a connected linear group
with connected geometric stabilisers.

One would like to have a formula for I} (T, Pic(X.)) in terms of the ho-
mogeneous space X and not in terms of a smooth compactification. Let G be
a connected linear algebraic group over a field k of characteristic 0. Let X be
a homogeneous space of G defined over k. Let H C G be the stabiliser of a
k-point of X. Assume that H is an extension of a group of multiplicative type
S by a connected linear algebraic group with trivial group of characters. Then
there is a natural group k-scheme S of multiplicative type such that S = S x k.
Let T be a torus over k which is the maximal toric quotient of G. Then there is
an induced homomorphism S—T defined over k. Let [T—>5’] be the dual map
of respective groups of characters, viewed as a complex of Galois modules in
degrees —1 and O.
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Theorem 8.4.5 [BDH13, Thm. 8.1, Cor. 8.3] With notation as above assume

Pic(G) = 0. Let X, be a smooth compactification of X. Then there is an exact
sequence

0—Br(X,)/Bro(X.) =1L (k, [T—S])—Ker[H? (k, k*)—HZ, (X, G,)].

If H is connected, then S is a torus and we have the same sequence with
Bri(X.)/Bro(X.) replaced by Br(X,.)/Bro(X.).

Let us mention some special cases, some of which are used in the proof of
the general result.

e G =T isatorus and H = 1. Here S = 1, and
L, ([T—8]) = W ([T—0]) = 1L (k, T).

Under the assumption X (k) # 0, i.e. X = T, the result in this case
appeared in [CTS87b]. The proof uses the theorem of Endo and Miyata
mentioned above: for any finite cyclic group G any H!-trivial G-lattice
is a direct summand of a permutation G-lattice (cf. [CTS77, Prop. 2 p.
184]).

e GG is a simply connected semisimple group, i C G is a finite central sub-
group and X = G/u. Here T =1, S = p, so

I, ([T—8]) = WL, ([0—4]) = LI (k, ),

where i = Homk_gmups(u, G ). The result in this case was obtained in
[CTK98]. The proof relies on a reduction to the case of a finite ground
field k together with the above mentioned theorem on tori.

e G is a simply connected semisimple group and H is connected. Here T = 1
and we have

I, ([T—8]) = I, ([0—+5]) = LI (k, 5).

Under the assumption X (k) # (), the result in this case appeared in
[CTKO06] where Theorem 8.2.2 was used.

o G =GL, and H C G is semisimple. In this case
I ([T—$]) = I ([Z—0]) = 112 (k, Z) = 0.

The proof of Bry (X,)/Bro(X.) = I (k,T), where X, is a smooth compact-
ification of a torus 7', is done directly at the level of the field k. The proofs of
most other computations of Bry(X.)/Bro(X.) = I} (T, Pic(X.)) rely on vari-
ous reductions involving change of the ground field k. Let us mention some of
them, without going into details.
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If X is a homogeneous space of a semisimple group G, it is helpful to reduce to
the case when G is quasi-split, that is, G contains a Borel subgroup B. Indeed, in
this case the maximal torus of B is a quasi-trivial torus, that is, a product of tori
of the form Ry /5 (Gpm k), where k' is finite separable extension of k. This implies
that G is a rational variety over k. To reduce to this situation one extends the
ground field & to the function field K of the variety of Borel subgroups of G. One
then uses the fact that the map Pic(X. X ks) —>Pic(X, X Ky) is an isomorphism,
see Proposition 5.2.14.

Another way to reduce to the case when G is quasi-split is first to reduce
to the case when k is the fraction field of a finitely generated Z-algebra over
which G, X, X, can be extended, and then use Chebotarev’s density theorem
to reduce the whole situation to the case of a finite field where the Galois action
is preserved. See [CTKO98] for details.

One also uses algebraic and arithmetic results from the theory of connected
linear algebraic groups: a semisimple algebraic group over a finite field is quasi-
split; a quasi-split semisimple group over a field k is birationally equivalent to
the product of an affine space and a torus. One also uses Theorem 8.2.2.

The above theorems do not cover the case of quotients GL,, /G where G is
a non-commutative finite subgroup subscheme of GL,, ;. Such an extension of
Theorem 8.3.2 to more general ground fields is given in [CT12a] for constant G
and in [LA17] for more general G. The case when G is constant and k = Q is
of interest in connection with the inverse Galois problem [Ha07a, Dem10, HW].
For further work on unramified Brauer groups of quotients, see [Dem10] and
[LA14, LA15, LA17].

Exercise 8.4.6 [CTS77, Prop. 7] Let K/k be a finite Galois extension of fields.
Let T = R}{/k(GmJ{) be the kernel of the norm map Ry /(G i) =Gy k. Show
that Bry, (k(T)/k) = H3(Gal(K/k),Z). If Gal(K/k) = (Z/p)?, where p is a
prime number, show that Bry,,(k(T)/k) = Z/p. Thus T is not k-rational. This
example of a non-k-rational linear algebraic group was first given by C. Chevalley
(with a different proof).
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Chapter 9

Schemes over local rings
and fields

The object of study in this chapter is a scheme over the spectrum of a local ring.
A separately standing Section 9.1 is devoted to the concepts of a split variety
and of a split fibre of a morphism of varieties; for arithmetic applications and for
the calculation of the Brauer group, split fibres should be considered as ‘good’
or ‘non-degenerate’. In Section 9.2 we look at the classical case of quadrics over
a discrete valuation ring.

In the ensuing sections the local ring is henselian or complete. In Section
9.3 we consider regular integral proper schemes of relative dimenson 1 over
a henselian discrete valuation ring. The study of the Brauer group of such
schemes goes back to Artin and Grothendieck [Gro68, III, §3]. We also discuss
the parallel situation of proper regular desingularisations of a 2-dimensional
henselian local ring, already considered in [Art87]. This leads to local-global
theorems for the Brauer group of the function field. It also leads to comparison
of index and exponent of a central simple algebra of the function field of such
schemes under suitable assumptions on the residue field of the local ring, as
initiated by Artin and by Saltman. In Section 9.4 we analyse the Brauer group
of the generic fibre of a smooth proper scheme over a henselian discrete valuation
ring. In Section 9.5 we discuss various properties of the Brauer group of a variety
over a local field with respect to evaluation at rational and closed points.

9.1 Split varieties and split fibres

Split varieties

Recall our standard convention that a variety over k is a separated scheme of
finite type over k. For an irreducible variety X over k we write kx for the
algebraic closure of k in the field of functions k(X), which is the residue field
k(n) at the generic point € X.

183



184 CHAPTER 9. SCHEMES OVER LOCAL RINGS AND FIELDS

Recall that we write kg for a separable closure of k and k for an algebraic
closure of k. We write X = X x; k.

Let us recall birational criteria for an integral scheme to be geometrically
reduced or geometrically irreducible. Following Bourbaki [BouV, §15, no. 2,
Déf. 1], a commutative k-algebra A is called separable if the ring A ® L is
reduced (i.e. has no nilpotents) for any field extension L/k. By [BouV, §15,
no. 2, Prop. 3] A is a separable k-algebra if and only if A ®; k is a separable
k-algebra, which is equivalent to A ®;, k being reduced [BouV, §15, no. 5, Thm.
3 (c)].

Let X be an integral scheme over k. Then X is geometrically reduced if
and only if k(X) is a separable k-algebra [EGA IVy, Prop. 4.6.1]. Next, X is
geometrically irreducible if and only if k is separably closed in k(X), that is,
the only separable algebraic field extension of k in k(X) is k itself [EGA TV,
Prop. 4.5.9]. See also [Pol8, Section 2.2].

Definition 9.1.1 Let X be an irreducible variety over a field k. The multi-
plicity of X is the length of the (artinian) local ring of X at the generic point
n of X. The geometric multiplicity of X is the length of the (artinian) local
ring of X at a point j of X over 1.

The definition of geometric multiplicity does not depend on the choice of 7
because such points are conjugate under the action of Aut(k/k).

The multiplicity of X is 1 if and only if X contains a non-empty open reduced
subscheme. The geometric multiplicity of X is 1 if and only if X contains a non-
empty open geometrically reduced subscheme. By the birational criterion, this
is equivalent to k(X) being separable over k. Equivalently, X contains a dense
open smooth subscheme, cf. [Stacks, Lemma 056V]. The multiplicity divides
the geometric multiplicity; the ratio is the geometric multiplicity of the reduced
subscheme X,eq [BLRI0, §9.1, Lemma 4 (a)]. It is a power of the characteristic
exponent of £ [BLR90, §9.1, Lemma 4 (c)].

Lemma 9.1.2 Let X—Y be a morphism of integral schemes over a field k.
Suppose that Y is normal. Then there is a natural embedding ky C kx.

Proof. Let y € Y be a point and let Oy,, be the local ring of Y at y. Since
Y is normal, Oy, is integrally closed in the function field £(Y"). Thus the in-
clusions k C ky C k(Y) induce inclusions k C ky C Oy,. It follows that
ky is contained in H(Y, Oy), so that the structure morphism Y —Spec(k) fac-
tors through Spec(ky ). Thus the structure morphism X —Spec(k) also factors
through Spec(ky ), hence ky C k(X). O

The following definition was introduced in [Sko96].

Definition 9.1.3 A wvariety over a field k is split if it contains a non-empty
open geometrically integral subscheme.

Proposition 9.1.4 Let X be a variety over a field k. The following properties
are equivalent.
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(i) X is split;

(ii) X contains a non-empty open integral subscheme U such that ky = k
which is geometrically reduced;

(ili) X contains a non-empty open integral subscheme of geometric multi-
plicity 1 which is geometrically irreducible;

(iv) X contains a non-empty open integral subscheme which is smooth and
geometrically irreducible.

Proof. Let us show that (i) implies (ii). Let U C X be a non-empty open
geometrically integral subscheme. By the birational criterion, k is separably
closed in k(U) and k(U) is separable over k, hence ky is separable over k so
that ky = k.

Conversely, ky = k implies that k is separably closed in k(X), so X is
geometrically irreducible. Thus (ii) implies (i).

A non-empty open integral subscheme U C X has geometric multiplicity 1 if
and only if it contains a dense open subscheme which is geometrically reduced,
so (i) and (iii) are equivalent. This happens precisely when U contains a dense
open smooth subscheme, so (iii) and (iv) are equivalent. [J

Lemma 9.1.5 A variety X over k which contains a smooth k-point is split.

Proof. Let P be a smooth k-point of X. Then there exists a smooth irreducible
Zariski open set U C X which contains P. In particular, U is geometrically
reduced. Lemma 9.1.2 gives ky = k, so U is geometrically irreducible. [J

Split fibres

Proposition 9.1.6 Let R be a reqular local ring with residue field k, mazximal
ideal m and field of fractions K. Let f : X—Spec(R) be an R-scheme of finite
type such that X 1is reqular and the generic fibre Xk is a smooth K-scheme.
Leti: R R’ be an extension of local rings such that m generates the mazimal
ideal m’ C R’ and the residue field k' of R’ is a separable extension of k (not
necessarily algebraic). Then any morphism o : Spec(R')—X such that fo = i*
factors through the smooth locus of f : X—Spec(R).

Proof. 1t is enough to show that P = o(Spec(k’)) is a smooth point of the closed
fibre Xj. Let A be the local ring of X at P with maximal ideal m4 C A and
residue field k(P) = A/my4. We have homomorphisms of local rings f* : R—A
and o* : A—R’ such that o* f* = i. They induce embeddings of residue fields
k C k(P) C k. The induced maps m/m?—m,/m?% —m’/m’? are linear maps
of k-vector spaces such that the composition i* : m/m?—m’/m’? is induced by
i: R < R'. We claim that the k’-vector space m’/m’? is obtained from the
k-vector space m/m? by extending scalars from k to k’. Indeed, tensoring the
exact sequence of R-modules

0—m? —m-—m/m?> —0
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with R’, using R'm = m’ which implies R'm?> = m’?, we obtain an isomor-

phism m’/m’?2—(m/m?) @, k' whose composition with i* : m/m?2—m’/m’? is
the natural map m/m?—(m/m?) @ k’. It follows that f* : m/m?—my/m? is
injective.

Thus if {s1,...,8m} C m, where m = dim(R), is a regular system of pa-
rameters of R, then f*(s1),...,f*(s;m) can be completed to a regular sys-
tem of parameters of A, that is, there exist ¢,,41,...,t, € my4 such that
F5(s1)s ooy f*(Sm), tmt1s - - - » tn is a regular system in A. Indeed, it is enough to
choose ty11,-- -, tn € ma such that the classes of f*(s1),. .., [*(Sm)stmats---»tn
form a basis of the k(P)-vector space m4/m?. Since X is regular, A is a regular
local ring, so dim(A) = n.

The quotient B = A/(m ®p A) is the local ring of X, at P; its maximal
ideal is mp = my/(m ®r A) and its residue field is B/mp = k(P). The k(P)-
vector space mp/m% has a basis consisting of the images of ¢, 41, ..., t, hence
dim(mp/m%) = n—m = dim(4) — dim(R) < dim(B), see [Liul0, Thm. 4.3.12]
for the last inequality. But dim(B) < dim(mp/m%) for any local ring B, so
dim(B) = dim(mp/m%) so that B is a regular local ring. Finally, the residue
field of B is k(P) C K/, which is separable over k since k'/k is separable, so P
is smooth in X. O

Corollary 9.1.7 Let R be a regular local ring with residue field k. Let X
be a reqular scheme which is an R-scheme of finite type. If the morphism
X —Spec(R) has a section, then this section meets the closed fibre Xj in a
smooth k-point. Hence Xy is a split k-variety.

Proof. Taking R’ = R in Proposition 9.1.6 we obtain a smooth k-point P in the
closed fibre Xj. The last statement now follows from Lemma 9.1.5. (J

A variety Z over a field k is geometrically split if the ks-scheme Z° = Z Xy, kg
is split. Equivalently, Z contains a non-empty smooth open subscheme. In
particular, a variety over k is geometrically split if and only if it contains a
smooth closed point.

Corollary 9.1.8 Let f : X—=Y be a dominant, proper and flat morphism of
reqular varieties over a field k. Let P be a point of Y. The fibre Xp is geo-
metrically split if and only if f has a section locally at P for the étale topology,
i.e. the morphism X xy Spec(R)—Spec(R) has a section, where R is the strict
henselisation of the local ring of Y at P.

Proof. Let X' = X xy R and let X{j be the closed fibre of X'/R. It is enough
to show that X is split if and only if X'/R has a section.

The Y-scheme Spec(R) is a direct limit of étale schemes V/Y, thus X' is
a limit of V xy X. But V xy X is étale over a regular scheme X, hence X'
is regular. Now R is a regular local ring and X’ is regular, so if X'/R has a
section, then X| is split by Corollary 9.1.7.

Conversely, since X is split over a separably closed field, Proposition 9.1.4
(iv) implies that X, has a smooth rational point P. By assumption the mor-
phism X —Y is flat, so X’ is a flat R-scheme. Hence the morphism X’'—Spec(R)
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is smooth in a neighbourhood of P. Since R is henselian, P can be lifted to a
section of X’/R. O

In the case of a regular integral scheme over a discrete valuation ring, the
multiplicity of an irreducible component of the closed fibre has a clear geometric
meaning.

Lemma 9.1.9 Let R be a discrete valuation ring with mazimal ideal m = (1)
and residue field k = R/m. Let X be a regular integral scheme with a faithfully
flat morphism f : X—Spec(R). Then the (non-empty) closed fibre X; is the

principal divisor
n

(7‘(’) = ZmzCl S DiV()()7

i=1

where C1,...,Cy are the (reduced) irreducible components of X, and m; is the
multiplicity of C;, fori=1,...,n.

Proof. Since f is faithfully flat, X} is non-empty, and each C; is a divisor on X.
Since X is regular, each C; is a Cartier divisor and the local ring Ox ¢, of X at
the generic point of C; is a discrete valuation ring. The local ring of X}, at the
generic point of C; is Ox ¢, /mOx ¢,, which by assumption is a local Artinian
ring of length m;. Hence the valuation of 7 is m;. Thus the Cartier divisors
X, = (m) and Y., m;C; coincide at codimension 1 points of X; this implies
that they coincide as Cartier divisors on X. [J

Proposition 9.1.10 Let R be a discrete valuation ring with field of fractions
K, mazimal ideal m and residue field k = R/m. Let Y and Y’ be regular,
integral and flat R-schemes of finite type, with smooth generic fibres Y and
Y/.. Assume that Y' is a proper R-scheme. If there is a rational map from Yi
to Y., then for any irreducible component C C Yy, of geometric multiplicity 1
there exists an irreducible component C' C Y] of geometric multiplicity 1 such
that ke C ke. In particular, if Yy, is split, then Y} is split too.

Proof. Write F = K(Yk). Let O¢ be the local ring of Y at the generic point of
C. Since Y is integral, the field of fractions of O¢ is F'; the residue field of O¢ is
kE(C). Since Y is regular, O¢ is a discrete valuation ring. Since Y/R is flat, O¢
is a flat, hence torsion-free R-module, so the natural homomorphism R—O¢ is
injective. The multiplicity of C is 1, so Lemma 9.1.9 shows that the maximal
ideal of O¢ is m®g Oc = mO¢. Moreover, the geometric multiplicity of C'is 1,
and as was noted in the discussion following Definition 9.1.1, this implies that
the smooth locus Cypootn is & dense open subscheme of C.

Let X C Y be the open subscheme obtained by removing from the closed
fibre Yy all the irreducible components other than C, and then removing the
closed subset C' N\ Cymooth- The natural morphism X —Spec(R) is smooth. In-
deed, X is flat over R, with smooth generic fibre X = Yx and smooth closed
fibre Csmooth. The local ring of the closed fibre of X/R is O¢.
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As X is smooth over R, the projection Y’ xp X—Y"’ is smooth. But Y’
is regular, so Y’/ xr X is regular too. Hence Y’ xp O¢ is regular. Since the
maximal ideal of O¢ is mOg¢, the closed fibre of Y/ xp Oc—0O¢ is Y} xj, k(C).

A rational map from Yk to Y}, can be thought of as an F-point of Y};. Recall
that F' = K(Yk) is the field of fractions of O¢. The morphism Y’ x g Oc—O¢
is proper, so by the valuative criterion of properness any F-point of its generic
fibre extends to a section of the morphism. A section of Y/ x g Oc—O¢ gives
rise to a k(C)-point P of the closed fibre Y/ x; k(C).

Since Y’ xg O¢ is regular and of finite type over O¢, any section meets
the closed fibre at a smooth point (Corollary 9.1.7), therefore P is a smooth
point of Y} X k(C). This defines a morphism Spec(k(C))—Y) whose image
is in Yy gnootne Let U be the connected component of Yy (.., containing
the image of P. The Zariski closure of U in Y} is an irreducible component
¢’ C Y] of geometric multiplicity 1. The morphism U—Spec(k) factors through
U—Spec(k¢cr). The composition Spec(k(C'))—P—U—Spec(kcr) gives rise to an
embedding ko C k(C), hence kor C ke, as required.

Finally, since Y}, is split if and only if Y, contains an irreducible component
C' of geometric multiplicity 1 such that ko = k (Proposition 9.1.4), we see that
("’ has the same properties, hence Y} is split. [

Corollary 9.1.11 Let R be a discrete valuation ring with field of fractions K
and residue field k. Let X be a regular, integral, proper and flat R-scheme of
finite type, with smooth generic fibre. Let Xx be the (possibly, empty) partially
ordered set of irreducible components of geometric multiplicity 1 of Xy, where
C dominates D if there exists an embedding of kp into ko. The set of finite
separable field extensions k C ko, where C is a minimal element of Xx, is a
birational invariant of the generic fibre Xk as a smooth, integral, proper variety
over K. In particular, the property of the closed fibre Xy, to be split is a birational
imvariant of Xg .

Proof. Suppose that X and Y are regular, integral, proper and flat R-schemes,
with smooth generic fibres, such that K(Xg) = K(Yk). Define the partially
ordered set Yy in the same way as Y x. Let C be a minimal element of X x.
By Proposition 9.1.10 there exists a C’ € ¥y such that ko can be embedded
into kc. By the same proposition, there is a C”” € Y x such that kg~ can be
embedded into k¢. By minimality of C' we have ko ~ ke, hence k¢ >~ ker.
Since C' is minimal in ¥ x, then, by Proposition 9.1.10, C’ is minimal in Xy
The last statement then follows from the fact that X, is split if and only if there
is a C' € Y x such that kg = k, see Proposition 9.1.4. O

In some concrete cases, for example when the generic fibre is a quadric and
the residue field if of characteristic different from 2, it is not difficult to determine
this set of finite separable extensions.

One can give a criterion for the closed fibre to be split in terms of the generic
fibre [Sko96, Lemma 1.1].
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Theorem 9.1.12 Let R be a discrete valuation ring with field of fractions K
and residue field k. Let X be a reqular, integral, proper and flat R-scheme of
finite type, with smooth generic fibre. Then the closed fibre Xy, is split if and only
if there exists a flat local homomorphism of discrete valuation rings i : R—R’
satisfying the following properties, where k' is the residue field of R' and K’ is
the fraction field of R’ :

(a) k' is a separable extension of k, and k is algebraically closed in k';

(b) the maximal ideal of R generates the mazximal ideal of R’;

(¢) the generic fibre Xi has a K'-point.

Following Bourbaki, an extension k’/k satisfying the conditions in (a) is
called regular [BouV, §17, no. 4, Déf. 2].

Proof of Theorem 9.1.12. Assume that X} is split, so that X contains a non-
empty open geometrically integral subscheme U. Let R’ be the local ring of X
at the generic point of U. Since X is flat over R, the Zariski closure of U has
codimension 1 in X. Then since X is regular, R’ is a discrete valuation ring. It
is clear that the residue field of R’ is k(U) and the fraction field is k(X). Since
U is geometrically integral over k, the field k(U) is a separable extension of k in
which k is algebraically closed, so (a) is satisfied. The multiplicity of U is 1, so
Lemma 9.1.9 shows that the maximal ideal of R’ is generated by the maximal
ideal of R, which is (b). Finally, the generic point of Xk is a K’-point, so (c)
holds as well.

To prove the converse, let i : R—R' be as in the statement of the theorem.
By the valuative criterion of properness, the given K’-point of X extends to
an R-morphism ¢ : Spec(R')—X. Since the field extension k C k' is separable,
by Proposition 9.1.6 the morphism ¢ factors through the smooth locus Xgmootn
of X/R. Let P = ¢(Spec(k’)) be the image of the closed point of Spec(R’) in
XemoothNXg. It follows that X, contains an open irreducible smooth subscheme
U such that P e U.

Let us show that U is geometrically integral. Since U is smooth over k, it is
geometrically reduced. By Lemma 9.1.2 applied to the morphism of k-schemes
¢ : Spec(k’)—U, the field ky is a subfield of the algebraic closure of k in &’. But
k is algebraically closed in k' by assumption, hence ky = k, so U is geometrically
irreducible. O

Under the additional assumption that R’ is finitely generated as an R-
algebra, this statement follows from Proposition 9.1.10. However, the case when
R’ is not a finitely generated R-algebra (or a localisation of such an algebra) is
of greater interest, e.g., the case when R’ contains the completion of R, because
it is usually easier to find a K’-point in X g when R’ is complete.

As an example of application of this theorem let us prove the following

Proposition 9.1.13 Let k be a field of characteristic 0. Let f : X—Y be a
proper dominant morphism of smooth and geometrically integral varieties over
k. Assume that the generic fibre X, is birationally equivalent to a k(Y')-torsor
for a simply connected semisimple group over k(Y'). Then for any pointy € Y
of codimension 1, the fibre X, is split.
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Proof. Write k = k(y). The completion of the local ring O, of Y at y is
isomorphic to s[[t]]. Let k C L be a field extension as in Lemma 5.2.7. As
cd(L) < 1, by Theorem 8.2.2 any torsor for a simply connected semisimple
group over L((t)) has an L((t))-point. The generic fibre X, of the morphism
f: X—=Y is a proper variety over k(n) = k(Y") birationally equivalent to such a
homogeneous space. By the lemma of Lang and Nishimura, X, has an L((¢))-
point. The local extension of discrete valuation rings O, C L[[t]] satisfies the
conditions of Theorem 9.1.12, so by this theorem the fibre X, is split. [J

Let us give an example (taken from [LS18]) when one can determine if the
closed fibre is split using only the information about the birational equivalence
class of the generic fibre without constructing an explicit model.

Proposition 9.1.14 Let k be a field of characteristic 0. Let kq, ..., k, be finite
field extensions of k, and let mq, ..., m, be positive integers such that

g.c.d.(m17 ... ,mn) =1.

Let m be an integer and let X be the affine k((t))-variety with equation
TN, i)™ =™, (9.1)
i=1

where x; is a k;-variable. Let X be a regular scheme equipped with a proper
morphism X—Spec(k[[t]) whose generic fibre is smooth, geometrically integral,
and contains X as an open subscheme. Then the closed fibre Xy, is split if and
only if rlm, where

r=gcd.(milky : k], ... ,mp[k, : K]).

Proof. Equation (9.1) with right hand side replaced by 1 defines a k-torus. Hence
X is a k((t))-torsor for this torus; in particular, it is geometrically integral.

If r|m we can write m = symq[ky : k| + ... + spmp[k, : k] for some s; € Z.
Then x; = t%, for i =1,...,n, is a k((t))-point of X. By the valuative criterion
of properness, it gives rise to a section of X—Spec(k[[t]]). By Corollary 9.1.7
the closed fibre X}, is split.

Conversely, assume that X}, is split, so X has a geometrically irreducible
component C' of multiplicity 1. Let O¢ be the local ring of C' in X. This a
discrete valuation ring with field of fractions k((¢))(X) and residue field k(C).
Let A= @c be the completion of O¢. This is also a discrete valuation ring with
residue field k(C). Let K be the field of fractions of A and let v : K*—Z be
the valuation. Then k[[t]] C A is an unramified extension of complete discrete
valuation rings, so v(t) = 1. In fact, A is isomorphic to k(C)[[t]]. Since C' is
geometrically irreducible, & is algebraically closed in k(C), hence also in K.

The generic fibre X has a canonical k((t))(X)-point @) defined by the generic
point of X. This point is contained in the affine open subset given by (9.1).
Since k((t))(X) C K, we can think of @ as a K-point of X. Suppose that @ has
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coordinates (z;), where x; € K ® k; for i = 1,...,n. Since k is algebraically
closed in K, the k-algebra K; = K ®j k; is a field, hence K; is a complete
local field which is an unramified extension of K of degree [k; : k]. This implies
that v(Ng,/x(2i)) = silk; : k] for some s; € Z. But then (9.1) gives that
m=symylk1 : k] + ...+ spmy[kn : k], so we are done. O

We refer to [CT11] for further discussion and applications of the type of
results discussed here.

9.2 Quadrics over a discrete valuation ring

In this section R is a discrete valuation ring with fraction field K. Let m C R
be the maximal ideal and let k¥ = R/m be the residue field. We assume that
char(k) = 0. For a € R we denote by a € k the reduction of ¢ modulo m.

Conics over a discrete valuation ring

Let X be a smooth conic over K. It has a regular model X C P% given either
by an equation
22 —ay? —bz2 =0

with a,b € R* (which we refer to as case (I)), or by an equation

z? —ay? — 722 =0,
where a € R* and 7 is a uniformizing parameter (which we refer to as case (II)).
In fact, if @ is a square in k, then the conic X also has a model of type (I).

Proposition 9.2.1 Let W—Spec(R) be a proper flat morphism such that W is
regular and connected, and the generic fibre of W—Spec(R) is a smooth conic
over K. Then the natural map Br(R)—Br(W) is surjective.

Proof. Let X be the generic fibre of W—Spec(R) and let X—Spec(R) be the
integral model of X given above. By a special case of Proposition 3.7.9 that only
involves purity for regular 2-dimensional schemes (which has been known for
some time, see [Gro68, II, Prop. 2.3]), there is an isomorphism Br(W) ~ Br(X)
compatible with the maps Br(R)—Br(W) and Br(R)—Br(X).

Thus we can assume that W = X" as above. The conic X over K is a Severi-
Brauer variety of dimension 1. The exact sequence (6.1) shows that the map
Br(K)—Br(X) is surjective. Since char(K) # 2, its kernel is spanned by the
class of the quaternion algebra (a,b)x in case (I) and (a,7) g in case (II).

Pick any § € Br(X). Let Sk be the image of 8 under the injective map
Br(X)—Br(X). Let o € Br(K) be any element mapping to Sx. Consider the
exact sequence

0 — Br(R) — Br(K) — H'(k,Q/Z)

from Proposition 3.6.1 (i). Comparing residues on Spec(R) and on X using
Theorem 3.7.4 one shows that the residue dr(«) is either 0 or is equal to the
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non-trivial class in H'(k(v/a@)/k,Z/2), and this last case may happen only in
case (II). In the first case we have o € Br(R), hence the images of « and 8
in Br(X) coincide, thus they also coincide in Br(X') since X is regular. In the
second case we have

dr(a) = dr((a,m))
hence a = (a, ) + v with v € Br(R). We then get

B = (a,m)r(x) +7r(x) € Br(K(X)).

But (a,7m)g(x) = 0. Thus 8 —~yx € Br(X) C Br(K(X)) vanishes, hence
B = yx € Br(X). The map Br(R)—Br(X) is thus surjective. This proves
the statement for X', and hence also for W. [J

Corollary 9.2.2 In the notation of Proposition 9.2.1 let Y C W be a divi-
sor which is an irreducible component of multiplicity 1 of the closed fibre of
W—Spec(R). Then the image of the restriction map Br(W)—Br(Y) is con-
tained in the image of Br(k)—Br(Y).

Quadric surfaces over a discrete valuation ring

The references for this section are [Sko90], [CTS93, §3], [CTS94, Thm. 2.3.1],
and [Pir18, Thm. 3.17].

Let X C IP’% be a smooth quadric, defined by a quadratic form ¢ of rank 4
over K. By a linear change of variables and multiplication of ¢ by an element
of K* we can reduce q to one of the following forms.

(I) ¢ = (1, —a, —b, abd), where a,b,d € R*.

(II) ¢ = (1, —a, —b,m), where a,b € R* and m € R is a uniformiser.

(IIT) ¢ = (1, —a, —m, wb), where a,b € R* and 7 € R is a uniformiser.

In case (III) the discriminant of ¢ is the class of ab in R*/R*?. Its image
a-be k*is asquare if and only if ab is a square in the completion of K with

respect to the valuation of R.
Let X C P} be the subscheme ¢ = 0. Let Y/k be the closed fibre of X'/R.

In case (I) the morphism X' —Spec(R) is smooth.

In case (II) the scheme X is regular and Y is a cone over a smooth conic.

In case (III) the closed fibre Y is given by the equation z? — ay? = 0 in
P3. If a is a square, this is the union of two planes intersecting along the line
x =y = 0. If @ is not a square, this is an integral scheme which splits up over
k(y/a) as the union of two planes. In each case the scheme X is singular at the
points x = y = 0, 22 — bt? = 0. (See [Sko90, §2].)

Proposition 9.2.3 In case (II1) let W be a projective, reqular, integral scheme
over R such that there is a birational R-morphism W—X. Then we have the
following statements.

In case (I) the map Br(R)—Br(X) is surjective. If d € R is not a square,
this map is an isomorphism. If d is a square, the kernel is spanned by the class
(a,b) € Br(R).



9.2. QUADRICS OVER A DISCRETE VALUATION RING 193

In case (II) the map Br(R)—Br(X) is an isomorphism.

In case (II1), if either @ or b is a square in k, or @-b is not a square in k,
then Br(R)—Br(W) is surjective. Any element of Br(K) whose image in Br(X)
lies in Br(W) belongs to Br(R).

In case (II1), if @ - b is a square in k, then the image of (a,7) € Br(K) in
Br(X) belongs to Br(W) and spans the cokernel of the map Br(R)—Br(W). If,
moreover, a is not a square in k, then this cokernel is non-zero.

Proof. To make our notation uniform, in cases (I) and (II) we set W = X.
By [Har77, Prop. II1.9.7], the morphism f : W—Spec(R) is flat; since f is
projective, it is also surjective. Thus each fibre of f has dimension 2 at every
point. Let Y = W Xgpecr) Spec(R) be the closed fibre of f. Each irreducible
component z of Y of multiplicity e gives rise to a commutative diagram

Br(X) —2> H'(k(z),Q/Z)

| T

0 Br(R) Br(K) —2—~H!(k,Q/Z)

Here the bottom exact sequence is given by Proposition 3.6.1 (ii) and the right
hand vertical arrow is the restriction map followed by multiplication by e (by
the functoriality of residues, see Theorem 3.7.4). Since X is a smooth quadric
over K, the middle vertical map is surjective by Proposition 6.2.3 (a). Since W
is regular, the group Br(W) is the intersection of the kernels Ker(d,), for all
irreducible components x of Y.

In cases (I) and (II), the closed fibre Y is geometrically integral over k, so
x =Y and e = 1, hence the map H'(k,Q/Z)—H! (k(x),Q/Z) is injective. This
is enough to prove the claim in these cases.

Let us consider case (III). Let o € Br(K) be such that the image of a in
Br(X) belongs to Br(W). If a is a square, then the closed fibre of X—Spec(R)
contains a geometrically integral component of multiplicity 1 which is one of
the two components of 2 — ay? = 0. It gives rise to a geometrically integral
component x of Y of multiplicity 1. The above diagram then implies that
d(a) = 0, so a € Br(R). If b is a square, we consider the quadratic form
¢ = (1,—b,—m,ma). Since X C P can be also given by ¢’ = 0, we can apply
the same argument.

Now assume that neither @ nor b is a square. The closed fibre of X—Spec(R)
is the integral subscheme of ]P’i given by 22 —ay? = 0. It gives rise to an integral
component z of Y of multiplicity 1 such that the integral closure of k in k(z) is
k(v/@). From the diagram it follows that d(«) belongs to

Ker[H' (k, Q/Z)—H' (k(z), Q/Z)] = Ker[H' (k, Q/Z)~H' (k(Va),Q/Z)],

which is the Z/2-module generated by the class of @ in k*/k*2. Applying this
argument to the model given by ¢’ = 0 we obtain that 9(a) belongs to the
7/2-module spanned by the class of b in k*/k*2. If @ - b is not a square, we
conclude that d(«) = 0, proving the statement.
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Finally, let @-b be a square, whereas neither @ nor b is a square. If 9(a) # 0,
then d(a) = a = 9((a,7)). We now show that (a, ) has trivial residues on W.
We actually prove the triviality of residues of (a, ) with respect to any rank one
discrete valuation v of the function field K(X) of X. It is enough to consider
only those v which extend the valuation of K defined by R. In K(X) we have

22 —ay? = w(2% - b),

where both sides are non-zero. Thus in Br(K (X)) we have the equality
(a,7) = (a,2® — ay®) + (a,2°> = b) = (a, 2> = b),

since (a, 22 —ay?) = 0 by Proposition 1.1.7. To compute residues, we can go over
to the field extension K C K(X), where K is the completion of K and K (X) is

%2

the completion of K (X) defined by v. We have ab € K*2, hence ab € K(X)

—

But then in Br(K (X)) we have (a, 22 —b) = (b, 22 — b) = 0. Hence the residue
of (a,m) at v is zero. O

The following statement is a stronger version of Corollary 1.4.8 in the situ-
ation considered here.

Corollary 9.2.4 In the notation of Proposition 9.2.3 let D C W be an integral
divisor contained in the closed fibre of W—Spec(R). Then the image of the re-
striction map Br(W)—Br(k(D)) is contained in the image of Br(k)—Br(k(D)).

Proof. This is clear when the map Br(R)—Br(W) is surjective. It remains to
consider case (III) when @ and b are not squares, but @-b is. To prove the result,
we may assume that R is henselian. Then ab is a square in R. By Proposition
9.2.3, the group Br(W) is generated by the image of Br(R) and the image of
the class (a, 7). The equation of the quadric X can be written as

X% —aY? —7nZ? +arxT? = 0.

Proposition 1.1.7 implies that the image of (a,7) in Br(X) is zero, hence the
image of (a,7) in Br(W) C Br(X) is zero. O

Remark 9.2.5 If R is a henselian discrete valuation ring, then the proof of
Corollary 9.2.4 also shows that the map Br(R)—Br(W) is surjective in all cases.

9.3 Two-dimensional schemes over a henselian
local ring

Let D be a central simple algebra over a field F'. Let ind(D) be the indez of D,
that is, the square root of the dimension of the division algebra representing the
class [D] € Br(F). The index ind(D) can be also characterised as the smallest
degree of a field extension of F' that splits D. Let exp(D) be the exponent of D,
that is, the order of [D] in Br(F). The following facts were established in the
1930s by Brauer, Albert and others, see [Alb31].
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e exp(D) divides ind(D); moreover, the primes which divide exp(D) are the
same as the primes which divide ind(D).

e Let F' be a number field or a p-adic field. Every central division algebra
D over F of exponent exp(D) = n is cyclic of degree n, hence is split by
a cyclic extension of F of degree n. In particular, ind(D) = exp(D).

e If F' is a number field and D splits over each completion of F', then D
splits over F' (the Albert—Brauer—-Hasse-Noether theorem).

e Every central simple algebra over the function field of a curve over C is
split (Tsen’s theorem).

Such properties have applications to quadratic forms over F': the local-to-global
principle for a quadratic form to be isotropic (i.e. to have the zero value on some
non-zero vector) and the determination of the u-invariant of F' (the maximum
dimension of an anisotropic quadratic form over F).

One may wonder whether similar properties hold for other ‘arithmetic fields’.
Among the first examples one can think of are field extensions of C of transcen-
dence degree 2. In this case the equality of index and exponent was established
relatively recently by de Jong [deJ04]. One may also consider more local sit-
uations, such as function fields in one variable over C((¢)) or the purely local
situation, that is, finite extensions of C((z,y)). Further up the cohomological
dimension there are function fields of curves over a p-adic field. As early as
1970, Lichtenbaum [Lic69], using Tate’s duality theorems for abelian varieties
over a p-adic field, established a local-to-global principle in this context. Later,
Saltman [Sal97] showed that over such a field the index divides the square of
the exponent.

We shall explain some of these results. Our starting point is the following
theorem which is a more general version of a theorem of Artin about families
of curves over a henselian discrete valuation ring (written up by Grothendieck
[Gro68, III, Thm. (3.1)]).

Theorem 9.3.1 Let R be a henselian local ring with residue field k. Let X be
a regular scheme of dimension 2 equipped with a proper morphism X —Spec(R)
whose closed fibre Xg has dimension 1. Then we have the following statements.
(i) The natural map Br(X)—Br(Xy) is an isomorphism.
(i) If k is separably closed or finite, then Br(X) = 0.

Proof. For part (i) see [CTOP02, Thm. 1.8, Remark 1.8.1]. Part (ii) then
follows from Theorem 4.5.1 (iv) and (v). O

Remark 9.3.2 (a) For ¢ invertible in k, the {-primary part of this theorem is
relatively easy to prove using the Kummer exact sequence [CTOP02, Thm. 1.3].
(b) When R is a discrete valuation ring, Theorem 9.3.1 removes the excel-
lence hypothesis in Artin’s theorem [Gro68, III, Thm. 3.1].
(¢) The following two situations are of particular interest.
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e The “semi-global” case: R is a henselian discrete valuation ring, X is
integral, and the generic fibre of X—Spec(R) is smooth and geometrically
integral. This is the case considered in [Gro68, III, §3], with the additional
hypothesis that the discrete valuation ring is excellent (used only to handle
the p-torsion part of the theorem, where p = char(k)).

e The “local” case: R is a 2-dimensional henselian local domain and the
morphism X —Spec(R) is birational. Then X is a resolution of singular-
ities of Spec(R). If R is excellent, such a desingularisation always exists
(Hironaka, Abhyankar, Lipman).

In the “semi-global” case, we have the following theorem.

Theorem 9.3.3 Let R be an excellent henselian discrete valuation ring with

residue field k and fraction field K. Let F be the function field of a smooth,

projective, connected curve over K. Let D be a central division algebra over F'.
(i) If k is algebraically closed of characteristic 0, then ind(D) = exp(D).

Moreover, D is cyclic and split by a field extension F({/f) for some f € F*.
(ii) If k is a finite field, then ind(D)|exp(D)?.

Proof. Let us prove (i). This is a very slight variation on the proof of [CTOP02,
Thm. 2.1] which is Theorem 9.3.5 below.

There exists a regular, projective, integral model X —Spec(R) of the smooth,
projective curve over K with function field F'. The purity theorem gives an exact
sequence (3.13):

0 — Br(X) — Br(F) — @©,cxoH (k(2), Q/Z).

By Theorem 9.3.1 (ii), we have Br(X) = 0. Thus the total residue map on
Br(F) is an injection

Br(F) < @,cxoyH (k(z), Q/Z).

Let n = exp(D) and let £ € Br(F)[n] be the class of D. Let R be the sum of
the closures of codimension 1 points of X where £ has a non-zero residue. By
blowing up X we can assume that R is a strict normal crossing divisor. Since
dim(X) = 2, the singular locus Rging is a union of closed points; these are the
points where any two of the components meet. Replace X by its blow up in
Rging, write C for the strict transform of R and write E for the exceptional
divisor. Thus D is unramified over X \ (C + E) and both C and E are (not
necessarily connected) regular curves in X such that C'+ E has normal crossings.
If C+ FE=0,i.e., if £ is unramified on X, then £ = 0 and the theorem is clear.
We thus assume that C'+ E # 0.

Let S be a finite set of closed points of X including all points of intersection
of C' and F and at least one point of each component of C' + E. Since X is
projective over Spec(R), there exists an affine open subset U C X containing S.
The semi-localisation of U at S is a semi-local regular domain, hence a unique
factorisation domain. Thus there exists an f € F* such that the divisor of f on
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X is of the form divx (f) = C+ E+ G, where the support of G does not contain
any point of S, hence in particular has no common component with C'+ E. Let
L/k be the splitting field of the polynomial 7™ — f. At the generic point of
each component of C'+ E, the extension L/F is totally ramified of degree n. In
particular, L/F is a field extension of degree n. Let &7, be the image of £ under
the restriction map Br(F)—Br(L). To prove (i) it suffices to show that &, = 0.
Let X’ be the normalisation of X in L and let 7 : Y—X’ be a projective
birational morphism such that Y is regular and integral. Let B be the integral
closure of R in L. The ring B is a henselian discrete valuation ring with the same
residue field k as R. By the universal property of normalisation, the composition
X’'—X—Spec(R) factors though a projective morphism X’—Spec(B), hence
induces a projective morphism Y —Spec(B). By Theorem 9.3.1 (ii), we have
Br(Y) = 0. Just as above, the total residue map on Y defines an injection

Br(L) = ©yeym H'(k(y), Q/Z).

It is thus enough to show that £y, is unramified on Y. Let y € Y be a codimension
one point. We show that 0,({1) = 0. Let z € X be the image of y under the
map Y —X'—X. L

Suppose first that codim(z) = 1. If {z} is not a component of C + FE,
then 0,(§) = 0, hence, by functoriality of residues, 9,(£1) = 0. Suppose that
D = {z} is a component of C + E. Then f is a uniformising parameter of the
discrete valuation ring Ox ,. The extension L/F' is totally ramified at «. The
restriction map Br(F)—Br(L) induces multiplication by the ramification index
on the character groups of the residue fields (Proposition 1.4.6). Hence &, is
unramified at y.

Suppose now that codim(x) = 2. Note that x is in the closed fibre, hence
the residue field x(z) = k, which is algebraically closed. If ¢ C + E, then
& € Br(Ox ), hence {1, is unramified at y. If = is a regular point of C + E,
then without loss of generality we can assume that = belongs to C' but not to
E. Let Cy be the irreducible component of C' that contains z, and let V' C Cj
be the complement to the intersection of Cy with the union of all the other
components of C. Then z € V. Let m € Ox, be a local equation of C at
x. (This is also a local equation of V' at x.) By the exact sequence (3.11) the
residue 0, (&) € k(Co)*/k(Co)*™ comes from an element of H'(V,Z/n). Since
C' is regular we can choose a § € Ox , such that (m,0) is a regular system of
parameters of Ox .. As 0,(£) comes from an element of H'(V,Z/n), it goes to
zero under the map k(Cyp)*/k(Cp)*™—Z/n induced by the valuation defined by
x on the field k(Cy), which is the fraction field of the discrete valuation ring
Ox /(). Thus 0.(€) is the class of a unit of Ox ,/(7), and such a unit lifts to
aunit p of Ox .. Now the residues of £ — (u, ) at all points of codimension one
of Ox , are trivial. Since Ox , is a regular two-dimensional ring, this implies
that & — (u, m) is the class of an element n € Br(Ox ;). Now

9y(€r) = Or((p,m)) = 7™ mod k(y)™ ,

where k(y) is the residue field of y and & is the class of u in x(y). This class
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comes from x(x) = k, which is algebraically closed, therefore [ is an n-th power
and 0y(&£r) = 0.

Suppose now that x belongs to C N E. There exists a regular system of
parameters (7, ) defining (C, E) such that f = umd, where u € O% . Since the
ramification of £ on Spec(Ox ) is only along 7 and ¢, it can be shown that

g =n+ (Tralu‘l) + (6?/"L2) +7”‘(7T,5) )

for some n € Br(Ox ), where pq, g € 0%, and r € Z. (This uses a Bloch—
Ogus argument similar to the one used in the proof of Theorem 10.5.1, see
[CTOPO02] for details.) Since f = und, we get

(m,0) = (m, fu~ln™h) = (m, f) + (7, —u) .

The symbol (7, f) vanishes over L and the other symbols become unramified
at y.

For the proof of (ii) in the case when the index is coprime to the residual char-
acteristic we refer to [Sal97] (see also the review Zentralblatt Zbl. 0902.16021).
This restriction was recently lifted by Parimala and Suresh [PS14]. O

Remark 9.3.4 The technique used in the proof is essentially that of [FS89] and
[Sal97]. For function fields of curves over the field of fractions K of a complete
discrete valuation ring R with arbitrary residue field k, Harbater, Hartmann
and Krashen introduced a new, patching technique which among other things
gives bounds [HHK09, Thm. 5.5] for the index in terms of similar bounds for
the field K and for the function fields of curves over the residue field k.

Here is a “local” analogue of Theorem 9.3.3.

Theorem 9.3.5 Let R be a 2-dimensional henselian local, normal, excellent
domain with fraction field F and residue field k. Let D be a central division
algebra over F'.

(i) If k is separably closed and exp(D) is prime to char(k), then ind(D) =
exp(D). Moreover, D is cyclic.

(i) Ifk is a finite field and exp(D) is coprime to char(k), then ind(D)|exp(D)?2.

Proof. For (i) see [FS89, Thm. 1.6], [CTOP02, Thm. 2.1]. For (i) see [Hul3,
Thm. 3.4]. O

Lemma 9.3.6 Let R be a discrete valuation ring with fraction field K. Let R
be the completion of R and let K be the_fraction field of R. If the image of
a € Br(K) in Br(K) lies in Br(R) C Br(K) then a belongs to Br(R) C Br(K).

Proof. There exists an integer n, and elements x; € H!(K,PGL,) and x5 €
Hl(l/%, PGL,), with the same image in Hl(IA(,PGLn), such that the injective
map H!(K,PGL,,)—Br(K) sends z; to a. There is an embedding of reductive
group R-schemes PGL,, g < GLy g for some N. Then E = GLy g/PGL, g is
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a smooth R-scheme. We have an exact sequence of pointed sets [SerCG, Ch. 1,
§5, Prop. 36]
E(K) — HY(K,PGL,) — H'(K,GLy),

and a similar sequence for R in place of K. By Hilbert’s Theorem 90 we have
H'(K,GLy) = 0 (Theorem 1.3.1), so we can lift z; to a point y; € E(K).
It is known that H'(R,GLy g) = 0 for any local ring R, cf. [Mil80, Ch. III,

~

Lemma 4.10], hence we can lift zo to a point y2 € E(R). There exists an
element g € GLN(IA() such that gy1 = y2. As GLy i is an open subset of an
affine space, any element g € GL N(IA{ ) can be written as a product gog; where
g1 € GLy(K) and g9 € GLN(ﬁ). Then g1y = g;lyg is an element of E(I?)

~

contained in F(K)N E(R) = E(R). This implies that o € Br(R). O

For a more general statement, see [CTPS12, Lemma 4.1].

Theorem 9.3.7 Let R be a henselian local domain with residue field k. Let X
be an integral reqular scheme of dimension 2 equipped with a proper morphism
X —Spec(R) whose closed fibre Xy is of dimension 1. Let F' be the function field
of X. Let Qx be the set of rank 1 valuations v on F associated to codimension
1 points on X. Let F, denote the completion of F with respect to v. Then the
natural restriction map Br(F)— [],cq, Br(Fy) is injective.

Proof. Since o € Br(F) is trivial in each Br(F,) for v attached to the points
of codimension 1 of the regular scheme X, by Lemma 9.3.6 (via a patching
argument) « can be represented by an Azumaya algebra over an open set U C
X which contains all codimension 1 points of X. Since X is regular and 2-
dimensional, by a theorem of Auslander, Goldman and Grothendieck [Gro68,
II, §2, Thm. 2.1] there exists an Azumaya algebra over X whose class in Br(F)
is a. We thus have a € Br(X) C Br(F).

An irreducible component C' of the curve Xy defines a valuation v € Qx.
The image of a in Br(F,) belongs to the subgroup Br(O,) C Br(F,), where O,
is the ring of integers of the complete field F,,. By assumption, this image is
zero. Thus the image of a in the Brauer group of the function field of C is zero.

Now let P be a closed point of Xj. Since X is regular, there exists a closed
integral curve D C X through P which is regular at P. Arguing as above, we
see that the value of « at the generic point of D is zero. This implies that the
restriction of «a to the local ring of P on D is zero, hence a(P) = 0. We now
apply Proposition 4.5.1 (i) to conclude that the image of « in Br(Xy) is zero.
Now Theorem 9.3.1 implies that o = 0. I

Remark 9.3.8 1. The above proof is essentially given by Y. Hu in [Hul2, §3].
It extends proofs in [CTOPO02].

2. For R complete, in the semi-global case, a different proof of Theorem 9.3.7
is given in [CTPS12, Theorem 4.3]. This proof relies on the work of Harbater,
Hartmann and Krashen [HHKO09].
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3. There exist examples of R, X and F' as above such that the map

HY(F,Q/z) — [] B'(F.,Q/2)

vEQx

has a non-trivial kernel. See [CTPS12, §6].

4. Let D be a central simple algebra over a field F. The relation between
ind(D) and exp(D) over specific fields F' has been the object of much study.
Suppose F' = C(X) is the function field of an integral algebraic variety X of
dimension d over C. It would be interesting to know if ind(D)|exp(D)?~! for
any D over F, which is the best possible bound [CT02]. The case d = 1 is Tsen’s
theorem. The case d = 2 is a theorem of de Jong [deJ04], [CT06]. For more
work on the comparison of index and exponent over various fields of geometric
or arithmetic origin, see [Lie08, Liell, Liel5], [KL08|, [HHK09] and [AATT].

The following theorem combines [CTPS16, Prop. 2.10] and work of Izquierdo
[Izq19].

Theorem 9.3.9 Let R be a 2-dimensional, local, normal, excellent, henselian
domain with algebraically closed residue field k of characteristic 0. Let K be the
fraction field of R. Let X —Spec(R) be a resolution of singularities such that the
reduced divisor associated to the closed fibre Y/k is a divisor on X with strict
normal crossings. For each place v of K, let K, be the completion of K at v.
Then we have the following statements.

(i) There is an exact sequence

0— Br(K) — @ H'(k(x),Q/Z) — € Q/Z(-1) — 0.

veEX™ z€X (2
(ii) For each v € R there are isomorphisms
Br(K,)——H'(k(v),Q/Z)—==Q/Z(—1).
(iii) The sum of these maps for all v € RWY) fits into an evact sequence
Br(K) — ®,cpmBr(K,) — Q/Z(—-1) — 0,

(iv) If R is reqular, the map Br(K)— &, cgpa Br(K,) is injective. AssumeY
1s a curve. Let T" be the graph associated to the reduced divisor Y whose vertices
correspond to the irreducible components of Yieq and the edges correspond to the
intersection points of components. This graph is connected. Let ¢ = ne —n, + 1

be Betti number of I'. Let my = ¢+ 2Zyey(l> gy, Where g, 1is the genus of the
smooth, irreducible, projective curve defined by y. Then

Ker[Br(K)— @,er0 Br(K,)] = (Q/Z)™.

(v) Br(X) = (Q/Z)™ .
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Statements (iv) and (v) are due to Izquierdo. Statement (iv) is important,
it is one of the building blocks for the Poitou—Tate duality theorems which
Izquierdo establishes for finite commutative groups and for tori over K, with
respect to just the completions at the points of codimension 1 of Spec(R). This
leads to a proof [Izq19, §5.1] that for a principal homogeneous space E of a torus
T over K, a suitable Brauer-Manin obstruction defined in [CTPS16] is the only
obstruction to the existence of a K-point on E.

9.4 Smooth proper schemes over a henselian dis-
crete valuation ring

The content of the present section was developed in [CTS13a.

Let R be a henselian discrete valuation ring with field of fractions K and
residue field k. We assume that char(K) = 0 and k is perfect. Let K be an
algebraic closure of K, and let K,, C K be the maximal unramified extension
of K. Let R, be the ring of integers of K,,. Let

g=Gal(K/K), G=Gal(K,/K), I=Gal(K/Ky).
The valuation of K gives rise to a split exact sequence of G-modules
1— R, — K, —7Z—0.

We have Br(K,,) = 0 (Theorem 1.2.13), which implies H*(G, K},) = Br(K).
Let 7 : X—Spec(R) be a faithfully flat proper morphism of integral schemes
with geometrically integral generic fibre X = X xp K. Write

an =X XKKHI‘7 an =X XR an y:X XKF-

Lemma 9.4.1 If the proper R-scheme X is smooth over R with geometrically
integral fibres, then the following natural map is surjective:

Br(K) @ Ker[Br(X)—Br(X,,)] — Ker[Br(X)—Br(Xy,)]

Proof. The map is well defined since Br(K,,) = 0, so that the composition
Br(K)—Br(X)—Br(X,,) is zero.

The restriction map Pic(X,,)—Pic(X,,) is surjective since Xy, is regular.
The kernel of this map is generated by the classes of components of the closed
fibre of X,,—Spec(R). The closed fibre is a principal divisor in A,,. Since
we assume that it is integral, the restriction map gives an isomorphism of G-
modules

Pic(Xy,) — Pic(Xyy). (9.2)

There is a Hochschild—Serre spectral sequence attached to the morphism X, — X"

E?" = HP (G, HY, (Xur, Grn)) = HEFU(X, Gy,
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and a similar sequence attached to the morphism X,,—X, see [Mil80, Thm.
II1.2.20, Remark II1.2.21 (b)]. By functoriality the maps in these sequences are
compatible with the inclusions of the generic fibres X — X and X, — X,;.
We have H, (X, Gy,) = R, because the morphism 7 : X—Spec(R) is proper
with geometrically integral fibres. The low degree terms of the two spectral
sequences give rise to the following commutative diagram of exact sequences,
where the equality is induced by (9.2):

H2(G,R:,) — Ker[Br(X)—>Br(Xwn)] — HY(G,Pic(Xyn)) — H3(G,R:)
' ! I !
HQ(G,K;L) —  Ker[Br(X)—=Br(Xy) — HI(G,Pic(Xm)) — H3(G,K§r)

The inclusion of G-modules R}, — K. has a G-module retraction, hence the
map H?(G, R,)—H3(G, K},) is injective. Since H?(G, K},) = Br(K), the state-
ment follows from the above diagram. [

Proposition 9.4.2 Assume that the proper R-scheme X is smooth over R with
geometrically integral fibres. Assume also that HY(X,0x) = 0 and the Néron—
Severi group NS(X) is torsion-free. Then

Bry(X) = Ker[Br(X)—Br(Xu)].

Proof. For any prime ¢ # char(k) the smooth base change theorem in étale
cohomology for the smooth and proper morphism 7 : X—Spec(R) implies that
the natural action of the inertia subgroup I on H% (X, Z,(1)) is trivial. In-
deed, by [Mil80, Ch. VI, Cor. 4.2] the étale sheaf R?m,jupm is locally con-
stant for every m > 1. Also, the fibre of R?m,juym at the generic geometric
point Spec(K)—Spec(R) is HZ (X, pem). Now it follows from Remark 1.2 (b)
in [Mil80, Ch. V] that the action of g on H% (X, ju¢m) factors through

71 (Spec(R), Spec(K)) = Gal(K,,/K) = G = g/I,

see [Mil80, Ch. I, Ex. 5.2(b)]. Thus I acts trivially on HZ (X, uem) for every
m, hence I acts trivially on HZ (X, Z(1)).

Since K has characteristic 0, for any prime ¢ the Kummer sequence gives a
Galois equivariant embedding

NS(X) ® Zy — H2, (X, Ze(1)).

For any ¢ # char(k) we conclude that I acts trivially on NS(X) ® Z, hence also
on Pic(X) & NS(X) € NS(X)®Z,. Thus H!(K,,, Pic(X)) = H(I,NS(X)) = 0.
From the exact sequence

Br(K,,) — Ker[Br(X,,)—=Br(X)] — H'(K,,, Pic(X))

we conclude that Br(X,,)—Br(X) is injective. This implies the result. O

We are also interested in the situation when H?(X,Ox) is not necessarily
zero, so we must take into account the transcendental Brauer group as well.
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Proposition 9.4.3 Let ¢ be a prime, { # char(k). Let m : X—Spec(R) be a
smooth proper morphism with geometrically integral fibres, such that the closed
geometric fibre has no connected unramified cyclic covering of degree £. Then
the group Br(X){¢} is generated by the images of Br(X){¢} and Br(K){¢(}.

Proof. Let Y = X xg k be the closed fibre of 7. We note that Y is a regular
subscheme of codimension 1 of the regular scheme X. Thus we can apply the
exact sequence (3.16):

0 — Br(X)[¢("] — Br(X)[(™] — HL(Y,Z/™). (9.3)

Let Y =Y xy k, where k is an algebraic closure of k. As Y is connected, the
spectral sequence

E3T = WP (k,H (Y, Z/0")) = HEH9 (X, Z/0m)
gives rise to the exact sequence
0 — HY(k, Z/0") — HY (V. Z/0") — HL,(V, Z/07).

By assumption Y has no connected unramified cyclic covering of degree £, hence
HL(Y,Z/tm) = 0.

Let A € Br(X){¢}. Take m such that A € Br(X)[¢{™]. The image of A in
H} (Y, Z/¢™) belongs to the injective image of H'(k,Z/¢™). We have the exact
sequence (3.10)

0 — Br(R)[¢(™] — Br(K)[(™] — H*(k,Z/™) — 0,

with compatible maps to sequence (9.3). Hence there exists o € Br(K)[¢™] such
that A —a € Br(X)[¢™] goes to zero in H}, (Y, Z/¢™). By the exactness of (9.3)
we have A — o € Br(X)[¢™]. O

Remark 9.4.4 1. Let char(k) = p. Already for = smooth and proper, it is an
interesting problem to decide whether a similar statement for Br(X){p} is true.
For elements split by an unramified extension of K, including those of order
divisible by p, this follows from Lemma 9.4.1 (see also [Bri07, Prop. 6]).

2. The hypotheses of Proposition 9.4.3 apply in particular when the fibres
of m : X—Spec(R) are smooth complete intersections of dimension at least 2 in
the projective space (an application of the weak Lefschetz theorem in étale co-
homology, see [Kat04]). In particular they apply to smooth surfaces of arbitrary
degree in P3.

9.5 Varieties over a local field

We start with the following statement, which is a generalisation of known results
such as the implicit function theorem for varieties over a complete local field to
the henselian case. Versions of this statement also hold for the fields of fractions
of much more general henselian valuation rings, see [C12, Prop. 5.4]. See also
[Mor12] and [GGMB14, §3.1].
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Theorem 9.5.1 Let A be a henselian discrete valuation ring with field of frac-
tions K. Let X be a variety over K.

(i) There is a unique structure of a topological space on X(K) which is
functorial and compatible with fibre products, and such that open (respectively,
closed) immersions in X give rise to open (respectively, closed) embeddings in
X (K), and étale morphisms give rise to local homeomorphisms. The topological
space X (K) is Hausdorff.

If f: X=Y is a smooth morphism of varieties over K, then the induced
map X (K)—=Y (K) is topologically open.

(ii) Assume further that K is locally compact, hence complete. Then X (K)
is locally compact. Moreover, if X is smooth, then X (K) admits a unique func-
torial K-analytic manifold structure which agrees with the scheme structure and
carries étale morphisms to K-analytic local isomorphisms.

If f: X—=Y is a proper morphism of varieties over K, then the induced map
X(K)—=Y (K) is topologically proper.

Recall that a discretely valued field is locally compact if and only if it is
complete and has finite residue field, see [ANT67, Ch. II, §7].

9.5.1 Evaluation at rational and closed points

Proposition 9.5.2 Let A be a henselian discrete valuation ring with field of
fractions K. Let X be a variety over K and let A € Br(X). The evaluation
map X (K)—Br(K) sending M € X(K) to A(M) € Br(K) is locally constant
and its image is annihilated by some positive integer.

Proof. Take any P € X(K). Then a = A — A(P) € Br(X) is such that
a(P) = 0. By Corollary 3.4.4 there exists an étale morphism f : U—X such
that f*a = 0 and P lifts to a point M € U(K). Then « vanishes on f(U(K)) C
X (K). Since P € f(U(K)), this is an open neighbourhood of P € X (K) by the
implicit function theorem (Theorem 9.5.1). The last statement is a special case
of Lemma 3.4.5. O

It is clear that the same result also holds for a variety X over the field of
real numbers R.

By a p-adic field we understand a finite extension of Q,,.

Theorem 9.5.3 Let k be a p-adic field with ring of integers R. Let X be a
reqular, proper, integral, flat R-scheme with generic fibre X/k. If a € Br(X)

vanishes at each closed point of a non-empty open set U C X, then « lies in
Br(X) C Br(X).

Proof. Here is a sketch of the proof for the prime to p-part of the statement
[CTS96, Thm. 2.1]. Let £ be a prime, £ # p. Using Chebotarev’s theorem
for varieties over a finite field, a suitable version of Hensel’s lemma, and Theo-
rem 3.7.4, one sees that the assumption implies that o € Br(X){¢} has trivial
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residues at the codimension 1 points of X. Hence, by Gabber’s purity theo-
rem, « comes from an element of Br(&X'). For the general case, combine Saito
and Sato’s result [SS14, Thm. 1.1.3], which is conditional on purity for the
Brauer group for regular schemes, with this purity theorem, proved recently by
Cesnavicius using previous work of Gabber (Theorem 3.7.5). OJ

The case when X is a curve goes back to Lichtenbaum [Lic69].

Corollary 9.5.4 (Lichtenbaum) Let X be a smooth, projective, geometrically
integral curve over a p-adic field k. If a € Br(X) vanishes at each closed point
of X, then a = 0.

Proof. Let R be the ring of integers of k. There exists a regular proper flat
model X—Spec(R) (as proved independently by Lipman and Shafarevich). By
the previous theorem, « lies in Br(X) C Br(X). By Theorem 9.3.1, we have
Br(X)—Br(Xp), where Aj is the closed fibre of X—Spec(R). But Br(Ap) =0
by Theorem 4.5.1 (v), hence « = 0. O

Remark 9.5.5 1. Evaluation on closed points of a smooth projective curve
over a p-adic field induces a pairing

Br(X) x Pic(X) — Q/Z.

That the left kernel of this pairing is trivial (and, more precisely, the pairing
induces a duality) was proved by Lichtenbaum as a consequence of the Tate
duality theorems for abelian varieties over a p-adic field.

2. Let X be a smooth and geometrically integral curve over a p-adic field k.
Let U be a non-empty open subset of X. If o € Br(U) vanishes at each closed
point of U, then « lies in Br(X) and, moreover, o = 0.

Let us explain this. Let P be a closed point in X \ U and let K = k(P) be
the residue field of P. Write X = X xj K. The morphism P : Spec(K)—X
gives rise to the morphism Spec(K ®y K)— Xk that can be precomposed with
the dual morphism of the multiplication map K ®; K—K to define a K-point
P : Spec(K)— X above P.

Suppose that o has a non-trivial residue y € HY(K,Q/Z) at P. Let N > 1
be the order of x in H'(K,Q/Z). Write af for the image of a in Br(Xf). The
multiplicity of P in the fibre Spec(K &y, K) of Xx—X above P is 1, so by the
functoriality of residues (Theorem 3.7.4) the residue of ax € Br(Ug) at P is
x € HY(K,Q/Z).

Let 7w be a local equation at P € Xg. Then ak differs from the cup-product
(x,m) by an element 8 € Br(V), where V C X is a Zariski neighbourhood
of P. One then finds a p-adic neighbourhood W C V(K) of P such that
B is constant on W and 7 is invertible on W ~. P. The assumption on o
then implies that (x,7) takes a constant value on W ~ P. But for points
M # Pin W C U(K), the value 7(M) € K takes all possible valuations. Thus
(x,7(M)) = v(n(M))x € H'(K,Z/N) is not constant, which is a contradiction.
(For a similar and more detailed argument in a global context, we refer the
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reader to Theorem 12.6.1.) We conclude that « has zero residues on X, hence
belongs to Br(X). Since a vanishes at all closed points of U, by the continuity
of the evaluation map it vanishes at all closed points of X. One then applies
Corollary 9.5.4.

3. There exist smooth, projective, geometrically integral curves X over a
p-adic field with non-zero elements in H}, (X, Z/¢) which vanish at each closed
point of X, see [CTPS12, §6].

4. Let X be a variety over the field of real numbers R. The natural pairing

X(R) x Br(X) —s Br(R) = Z/2

is locally constant on X (R) hence induces a map Br(X)—(Z/2)°, where S is
the set of connected components of X (R) for the real topology.

The real analogue of Tate’s duality theorem for abelian varieties over a p-adic
field and of Corollary 9.5.4 goes back to Witt (1934). For a smooth, projective,
geometrically connected curve over R, evaluating elements of Br(X) on the real
points induces an isomorphism Br(X)-=+(Z/2)°. In particular Br(X) = 0 if
X(R) = 0. If X is a quasi-projective but possibly singular real curve, the map
Br(X)—(Z/2)® is injective [CTOP02, Prop. 1.13].

9.5.2 Index

Let R be the ring of integers of a p-adic field K with finite residue field k. Let
X be a regular, connected, projective, flat R-scheme. Let X/K be the generic
fibre of X. We assume that X is geometrically integral. The closed fibre Xy/k
is a divisor ), e;D;, where e; is a positive integer and D; is an integral variety
over k. Let f; be the degree over k of the integral closure of k in the function
field k(D;). In this context one defines the following positive integers.

(1) Ig, is the order of Ker[Br(K)—Br(X)/Br(X)].
(2) I is the g.c.d. of the degrees of the closed points of X.
(3) Io is the g.c.d. of the e;f;.

The positive integer [ is called the index of X. Note, by the way, that the kernel
in (1) is cyclic; by the purity theorem it does not depend on the choice of X.

Theorem 9.5.6 We have Ig, = 1 = 1.

Saito and Sato [SS14, Thm. 5.4.1] proved this theorem assuming purity for the
Brauer group of regular schemes, a result which is now known in full generality
(Theorem 3.7.5). Earlier results had been obtained by Lichtenbaum [Lic69]
(in the case of a curve), then in [CTS96, Thm. 3.1] (for the prime-to-p part,
in arbitrary dimension) and in [GLL13, Cor. 9.1] which shows I = I;. The
paper [GLL13] studies the case of a henselian discrete valuation ring R with an
arbitrary residue field k.
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9.5.3 Finiteness results for the Brauer group

In the good reduction case, Section 9.4 gives some control on the Brauer group
of a smooth proper variety over a p-adic field. Here are two general results under
weaker assumptions.

Proposition 9.5.7 Let X be a variety over a p-adic field K. Then for any
positive integer n the group Br(X)[n] is finite.

Proof. The Kummer exact sequence shows that Br(X)[n] is a quotient of
HZ, (X, uu). Consider the spectral sequence

qu = HP(K, Hgt(y7 fn)) = ngq(X7 Mn)'

The groups HY, (X, p1,,) are finite for any ¢ > 0 (see [Mil80, Ch. VI, Cor. 4.5]).
The Galois cohomology groups HP (K, M), where K is a p-adic field and M is
finite, are finite for all p > 0 [SerCG, Ch. 2, §5, Prop. 14]. O

Proposition 9.5.8 Let X be a smooth, proper and geometrically integral va-
riety over a p-adic field K. Let X, = X Xg Ky, where Ky, is the mazximal
unramified extension of K. Then the group

Ker[Br(X)—Br(X,,)]/Bro(X)
is finite.

Proof. [CTS13a, Prop. 2.1] We assume that K,, C K and use the previous
notation g = Gal(K/K), G = Gal(K,,/K), I = Gal(K/K,,). Consider the
Hochschild—Serre spectral sequence [Mil80, Thm. II1.2.20, Remark I11.2.21 (b)]
attached to the morphism X,,—X:

BB = B (G HY, (Xor, Gn)) = HEF (X, G,). (9.4)

Since H?(G, K},) = Br(K), the exact sequence of low degree terms of (9.4)
shows that the group under consideration is a subgroup of H!(G,Pic(X;)).
There is an exact sequence of continuous discrete g-modules

0 — Pic?(X) — Pic(X) — NS(X) — 0.

By the representability of the Picard functor, and since char(K) = 0, _there
exists an abelian variety A over K such that A(K) is isomorphic to Pic’(X) as
a g-module (Theorem 4.1.1). Thus we rewrite the previous sequence as

0 — A(K) — Pic(X) — NS(X) — 0. (9.5)
The Hochschild-Serre spectral sequence attached to X — X, is

E? = HP(I,HY (X, Gp)) = B (X, G
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By Hilbert’s theorem 90 we have Hl(.L,F*) = 0. Since Br(Ky,) = 0 we obtain
that the natural map Pic(X,;)—Pic(X)! is an isomorphism. Now, by taking
I-invariants in (9.5) we obtain the exact sequence of G-modules

0 — A(Ky) — Pic(Xy) — NS(X)L.

The group NS(@ is finitely generated by the theorem of Néron and Severi,
hence so is NS(X)?. Thus there is a G-module N, finitely generated as an
abelian group, that fits into the exact sequence of continuous discrete G-modules

0 — A(Ky) — Pic(Xy) — N — 0.
The resulting exact sequence of cohomology groups gives us an exact sequence
HY(G, A(Ky)) — HY(G,Pic(X,,)) — HY(G, N). (9.6)

We note that G is canonically isomorphic to the profinite completion 7., with the
Frobenius as a topological generator. If M is a continuous discrete G-module
which is finitely generated as an abelian group, then H'(G, M) is finite. To see
this, let G’ be a finite index subgroup of G that acts trivially on M. The group
G' ~ 7 has a dense subgroup Z generated by a power of the Frobenius. Now
H(G’, M) is the group of continuous homomorphisms

Homcont (G/7 M) = Homcont(G/a Mtors) = Mtor57

which is visibly finite. An application of the restriction-inflation sequence fin-
ishes the proof of the finiteness of H*(G, M).

To complete the proof of the proposition it remains to prove the finite-
ness of H(G, A(K,;)). By [Mil86, Prop. 1.3.8] this group is isomorphic to
HY(G, mo(Ayp)), where mo(Ap) is the group of connected components of the closed
fibre Ag of the Néron model of A over Spec(R). Since mo(Ap) is finite, we see
that HY(G, mo(Ap)) is finite. O



Chapter 10

The Brauer group and
families of varieties

In this section we are interested in the following question. Let f : X—Y be a
dominant morphism of regular integral varieties. Can one compute the Brauer
group Br(X) and its elements from the Brauer group of the base Br(Y) and
the Brauer group of the generic fibre Br(X,), in terms of the geometry of va-
rieties X, Y and the morphism f? For example, when is the induced map
f* : Br(Y)—Br(X) surjective or injective? Recall that Br(X) is naturally a
subgroup of Br(X,). If Br(X,) is known, then computing Br(X) involves de-
termining the elements of Br(X,) that are unramified on X. In general, this is
a hard problem even if the generic fibre has very simple geometry, for instance,
X, is finite or X, is a projective quadric.

The focus of Section 10.1 is the so called wvertical subgroup Bryet(X/Y) of
Br(X). It is defined as the set of elements of Br(X) whose restriction to Br(X,)
belongs to the image of Br(k(Y')), where k(YY) = k(n) is the function field of Y.
There are several reasons to be interested in Bryey (X/Y).

e In some cases there are clean-cut algebraic formulae for Brye(X/Y),
whereas it may be difficult to give such formulae for the full Brauer group
Br(X). For example, when Y = P} and X, is geometrically integral, gen-
erators of Brye+(X/Y) are explicitly computed in terms of the structure
of the degenerate fibres of f : X—Y.

e For certain types of morphisms, e.g. for families of quadrics of relative
dimension at least one or for families of Severi-Brauer varieties, the full
Brauer group is vertical, that is, the natural map Brye(X/Y)——Br(X)
is an isomorphism.

e Over a number field k, the vertical Brauer group Bryet(X/Y') appears in
the definition of an obstruction to the existence of a rational point P €
Y (k) such that the fibre Xp is smooth and has points in all completions
of k.

209
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In Section 10.3 we give a description of the 2-torsion subgroup Br(X)[2],
where f : X—Y is a double cover of a rational surface Y over an algebraically
closed field k. In Section 10.4 we study a universal family of cyclic twists and
the associated vertical Brauer group; this construction has useful arithmetic
applications. The main result of Section 10.5 is a formula for Br(X) in the case
when X, is a conic and Y is a rational surface over C. This is used in Section 10.6
to recover the Artin—-Mumford examples of unirational non-rational threefolds,
along with several other examples.

10.1 The vertical Brauer group

Definition 10.1.1 Let Y be an integral scheme with generic point i : n—Y .
Let f : X=Y be a dominant morphism, and let X,, = X Xy n be the generic
fibre of f. Write j : X;,—X for the natural inclusion, so that there is a cartesian
square

X, =X

l ;
.

The vertical Brauer group of X/Y is

Bryer (X/Y) = {A € Br(X)|j*(4) € Im[Br()—Br(X,)]}.
A formal consequence of the definition of Brye(X/Y) is the exact sequence
0 — Bryet(X/Y) — Br(X) — Br(X,))/Im[Br(n)—Br(X,)].
If X is regular and integral, then by Theorem 3.5.4 we have inclusions
Br(X) € Br(X,) € Bi(i),

where 7/ is the generic point of X.

We shall mostly consider the case when X and Y are smooth, proper and
geometrically integral varieties over a field k, so that n = Spec(k(Y)) and ' =
Spec(k(X)). Then Brye(X/Y) C Br(X) C Br(k(X)) is the intersection of
Br(X) = Bry,,(k(X)/k) (see Proposition 5.2.2) with the image of the restriction
map Br(k(Y))—Br(k(X)). In other words, the elements of Bryet(X/Y") are the
restrictions to k(X) of the (possibly, ramified) classes in Br(k(Y")) that become
unramified in k(X).

The following standard lemma will be useful.

Lemma 10.1.2 Let k C K be an extension of fields such that k is separably
closed in K. Then the restriction map H(k,Q/Z)—H(K,Q/Z) is injective.

Proof. The assumption implies that the natural map Gal(Ks/K)—Gal(ks/k)
is surjective. Thus a non-trivial character y : Gal(ks/k)—Q/Z gives rise to a
non-trivial character Gal(K/K)—Q/Z. O
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Lemma 10.1.3 Let n be a positive integer. Fori = 1,...,n let k; be a finite
separable extension of k and let m; be a positive integer. Let m be the g.c.d. of
Mi,..., My, and let r be the g.c.d. of [k1 : klmq,...,[kn : klmy. Define

L= ﬁ Ker[m;resy, x : H' (k,Q/Z) — H'(k;, Q/Z)).

i=1

Then rL = 0. Moreover, L is an extension of a finite abelian group by an abelian
group of exponent m.

Proof. The first statement is clear since coresy, /presg, /p = [k; : k]. We note
that £ is the kernel of the composition of multiplication by m on H!(k,Q/Z)
and the direct sum of maps

(mi/m)resy, - H'(k,Q/Z) — H'(k;, Q/Z)

for ¢ = 1,...,n. Thus it is enough to prove that L is finite if m = 1. So we
now assume m = 1. Let K be a finite Galois extension of k£ that contains k; for
i=1,...,n. Then k; ®, K = Kkl Tt is clear that the kernel of the direct
sum of multiplication by m; maps on H!(K,Q/Z) is trivial. Extending k to K
we can conclude the proof since the kernel of resy ;. : H' (k,Q/Z)—H' (K, Q/Z)
is the finite group H'(Gal(K/k),Q/Z). O

Let k be a field of characteristic 0. Let X and Y be smooth, integral varieties
over k and let f : X—Y be a dominant morphism with generic fibre X, , where
n = Spec(k(Y")) is the generic point of Y. Then there is a commutative diagram
of exact sequences

0 Br(X) Br(Xn)HP@(l)Vg?( HY(k(V),Q/Z) (10.1)
/| | T
0 Br(Y) Br(k(Y)) ——— @ H'(k(P),Q/Z)
Pey @

The bottom sequence is the exact sequence (3.13); here P ranges over all codi-
mension 1 points of Y. The top exact sequence is obtained from (3.12) by taking
the inductive limit over all open subsets f~1(U) C X, where U is a non-empty
open subset of Y. Here V' C Xp ranges over the irreducible components of the
fibre Xp. Then the map H'(k(P),Q/Z)—H'(k(V),Q/Z) is myresiv)/k(p),
where my is the multiplicity of Vp in Xp. The diagram commutes by the
functoriality of residues (Theorem 3.7.4).

For an irreducible component V' of Xp we define ky as the algebraic closure
of k(P) in k(V). For f : X—Y as above, the fibre Xp at a codimension 1
point P € Y is a variety over k(P) which is split if and only if it contains an
irreducible component V' of multiplicity my = 1 such that ky = k(P).

When X, is geometrically integral, there is a non-empty Zariski open subset
U C Y such that the fibres of f at the points of U are geometrically integral.
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Thus all but finitely many fibres of f over the points of codimension 1 in Y are
geometrically integral, hence split.

Proposition 10.1.4 Let f : X—=Y be a dominant morphism of smooth, integral
varieties over a field k of characteristic 0 with geometrically integral generic
fibre. Let S be the finite set of points P € Y of codimension 1 such that the
fibre Xp is not split (for example, Xp can be empty). Then every element of
Bryet(X/Y) can be written as f*(«), where a € Br(k(Y')) is such that if P ¢ S,
then Op(a) =0, and if P € S, then

Op(a) € [ Ker[myrespv)wcp) : H' (k(P),Q/Z) — H'(ky,Q/Z)]. (10.2)
VCcXp

Proof. This follows from the above diagram in view of Lemma 10.1.2. [J

If Xp is empty, then the condition in (10.2) is vacuous.

This proposition shows, in particular, that split fibres can be disregarded,
that is, counted as ‘good’ fibres for the determination of the vertical Brauer
group attached to a morphism of varieties.

Corollary 10.1.5 Let f : X—Y be a dominant morphism of smooth, integral
varieties over a field k of characteristic 0 with geometrically integral generic
fibre.

(i) Assume that for each point P € Y of codimension 1, the g.c.d. of the
multiplicities my, where V is an irreducible component of Xp, is equal to 1.
(This condition is satisfied if the fibres of f over all points of Y of codimension
1 are geometrically split.) Then Brye(X/Y)/f*Br(Y) is finite.

(ii) Assume that for each point P € Y of codimension 1, the g.c.d. of the
integers my [ky : k(P)], where V is an irreducible component of Xp, is equal to
1. (This condition is satisfied if the fibres of f over all points of Y of codimension
1 are split.) Then Bryet(X/Y) = f*Br(Y).

Proof. Diagram (10.1) implies that Brye(X/Y)/f*Br(Y) is a quotient of
P Ker [H'(k(P),Q/Z) — @ H'(KV),Q/2)],
pPey @) VCcXp

where the map to H'(k(V),Q/Z) is my resy(vy/kp). Now both statements
follow from Lemma 10.1.3. [J

Remark 10.1.6 The proof of Corollary 10.1.5 (i) actually shows that the sub-
group of Br(k(Y)) consisting of the classes a such that f*(«) € Br(k(X)) lies
in the image of Br(X) is finite modulo the image of Br(Y').

Exercise 10.1.7 Let t be a coordinate function on A@ - IP’@. Let X be a
smooth, projective, geometrically integral surface over Q with a morphism X —P}
whose generic fibre X, is the smooth plane cubic curve over Q(t) defined by

u® + tvd + 2w = 0.
Show that the group Bryes (X)/Bro(X) is infinite.
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Hint. Use a valuative argument to show that divx(t) = 3D for some divisor D
on X. This implies that all symbols (x,t) € Br(Q(t)) with y € H}(Q,Z/3) and
t is viewed in Q(t)*/Q(t)** = HY(Q(t), u3) are unramified over X. Thus the
image of the composition, where the first arrow sends x to (x,t),

H'(Q,Z/3) = Br(Q(t)) — Br(X,) < Br(Q(X))

belongs to the subgroup Br(X) C Br(Q(X)). The group H}(Q,Z/3) is infinite.
The map H'(Q,Z/3) — Br(Q(t)) defined by x — (x,t) is injective, as one
sees by taking the residue at ¢ = 0. By the exact sequence (4.9) the kernel of
Br(Q(t))—Br(X,,) is the image of Pic(X,, xg«) Q(t))¢, where G is the absolute
Galois group of Q(t). By the theorems of Mordell-Weil and Néron, the group
Pic(X,, xqu) Q(t)) is finitely generated, hence its image in the torsion group
Br(Q(t)) is finite.

In this example the divisor of the function ¢ is divisible by 3. In fact, we can
consider the following general situation.

Proposition 10.1.8 Let X be a smooth, projective, geometrically integral vari-
ety over a field k of characteristic 0. Let F € k(X)* be a non-constant rational
function. Write the divisor of F as Z?zl m;D;, where each D; C X is an inte-
gral divisor. Let m be the g.c.d. of my,...,m,. Let k; be the algebraic closure
of k in the function field k(D;). Define

L(F) = () Ker[miresy, . : H' (k,Q/Z) — H' (k;, Q/Z)].
=1

Let Brp(X) be the intersection of Br(X) with the image of the homomorphism
H(k,Q/Z)—Br(k(X)) associating to x € H'(k,Q/Z) the class of the cyclic
algebra (F,x) of degree d in Br(k(X)), where d is the order of x. Then we have
the following statements.

(i) The group Brp(X) consists of the classes (F,x), where x € L(F).

(ii) If m =1, then Brp(X) is finite modulo Br(k). If m > 1 and k is finitely
generated over Q, then Brp(X) is infinite modulo Br(k).

(iil) Let X=X bea proper birational morphism such that F defines a sur-
jective morphism f : )~(—>JP’,1€. Then Brp(X) C Bryert ()Z'/IP}C)

Proof. (i) is immediate by a computation of residues of (F,x).

(ii) Lemma 10.1.3 gives that £(F') is finite if m = 1. For m > 1 use the hint
to Exercise 10.1.7.

(iii) is obvious, because (F, x) = (t, x), where t be the coordinate on P}, such
that F =t o f. OJ

Using diagram (10.1) one can compute the Brauer group of a product of two
varieties, under a simplifying assumption on the geometry of one of them. (For
more general statements see Sections 4.6 and 15.4.)
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Proposition 10.1.9 Let k be a field of characteristic 0. Let X and Y be
smooth, projective, geometrically integral varieties over k. Assume X (k) # 0.
If Pic(X) is torsion-free and Br(X) = 0, then Br(X x; Y) is generated by the
inverse images of Br(X) and Br(Y') with respect to the maps induced by projec-
tions. If, moreover, H' (k, Pic(X)) = 0, then the map Br(Y)—Br(X xY) is an
isomorphism.

Proof. The assumptions on X imply that Br(X) = Br;(X) and give a split
exact sequence (see Section 4.3)

0 — Br(k) — Br(X) — H'(k, Pic(X)) — 0.

If one extends the ground field from & to the function field K = k(Y') of Y, the
assumptions on the geometric Picard group and on the geometric Brauer group
of Xk over the algebraic closure K of K are preserved. For the Picard group,
see Section 4.1. For the Brauer group, see Proposition 4.2.2. Thus one still
has the analogous exact sequence for the K-variety Xgx. Moreover, the map
Pic(X)—Pic(X%) is an isomorphism and the absolute Galois group of k(X)
acts on these finitely generated free abelian groups via its quotient 'y, which
gives an isomorphism H!(k, Pic(X))—H!(K,Pic(X%)). The compatible split
exact sequences
0 — Br(k) — Br(X) — H'(k, Pic(X)) — 0
and
0 — Br(K) — Br(Xg) — H' (K, Pic(X%)) — 0
thus give that the natural map Br(X)/Br(k)—Br(Xg)/Br(K) is an isomor-
phism. All fibres of the projection X x; Y=Y are geometrically integral. Di-
agram 10.1 applied to the projection X x; Y=Y then immediately gives that
Br(X xjY) is generated by the sum of the images of Br(Y) and Br(X) under
the two projections. Compare with [GA18]. O
We conclude this section by proving a statement announced in Chapter 8.

Theorem 10.1.10 Let k be a field of characteristic 0. Let f : X—=Y be
a dominant morphism of smooth, projective, geometrically integral varieties
over k. Assume that the generic fibre X, is birationally equivalent to a k(Y)-

torsor for a simply connected semisimple group over k(Y). Then the map
f*:Br(Y)—=Br(X) is an isomorphism.

Proof. We have a commutative diagram of natural pullback maps

Br(X)—— Br(X,)

i

Br(Y)—> Br(k(Y))

The injectivity of horizontal arrows is due to the fact that X and Y are smooth
and integral. The right hand vertical arrow is an isomorphism by Proposition
8.2.1. Thus Br(X) = Brye(X/Y). Now the result follows from Proposition
9.1.13 in view of Corollary 10.1.5 (ii). O
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10.2 Conic bundles over the projective line

In this section we assume that the ground field k& has characteristic zero. With
extra care, one could extend most results over an arbitrary ground field.

Definition 10.2.1 A conic bundle over IP’}C is a smooth, projective, geometri-
cally integral surface X over a field k equipped with a morphism X—>]P’i whose
generic fibre X, is a smooth conic over K = k(P}.).

Let A € Br(K) be the class of the quaternion algebra associated to the conic
X,. If A=0, then X,, ~ P}, hence Br(X,,) = Br(K).

If A # 0, or, equivalently, X, has no K-point, i.e., X, # P}, then, by
Proposition 6.2.1, we have an exact sequence

0 — Z/2 — Br(K) — Br(X,) — 0, (10.3)

where 1 € Z/2 is mapped to A € Br(K).

After suitable birational transformations respecting the projection to P, one
may assume that for each closed point P = Spec(k(P)) € P} the fibre Xp is a
reduced conic and that X —P} is relatively minimal. The last property means
that no fibre Xp contains a curve that can be contracted onto a smooth point.

Let S be the finite set of closed points P € P} such that the fibre Xp is
not smooth over k(P), or, equivalently, is not geometrically integral. To such
a point P one associates a quadratic field extension Fp/k(P) over which Xp
decomposes as a pair of transversal lines, with a unique intersection point defined
over k(P). Let us write Fp = k(P)(\/ap), where ap € k(P)*.

By Proposition 10.1.4, since A goes to 0 in Br(X,), for each point P € S
the residue 9p(A) € H' (k(P),Q/Z) lies in the subgroup

HY(Fp/k(P),Z/2) = Ker[H' (k(P),Z/2) — H'(Fp,Z/2)] = 7./2.

A local calculation with a diagonal equation of X, shows that 0p(A) is the
generator of this group, i.e. the class of ap in k(P)*/k(P)** = H' (k(P),Z/2).

Lemma 10.2.2 Let X—Pj} be a relatively minimal conic bundle as above. Then
Bryert (X) = Br(X). The following properties are equivalent.

(a) The class A is in the image of Br(k)—Br(K).

(b) There ezists a smooth conic C over k such that X is birationally equiv-
alent over ]P’i to the constant conic bundle C' X ]P’,ﬁ—ﬂ?’,lc.

(¢) For each closed point P € P}, the fibre Xp is smooth.
If these properties do not hold, then the map Br(k)—Br(X) is injective.

Proof. Since Br(K)—Br(X,) is surjective and Br(X)—Br(X,) is injective (as
X is smooth over k), we have Brye(X) = Br(X). The class of A in Br(K) is
given by a quaternion (a,b), with a,b € K* = k(P1)*. Since k is infinite, there
exists a k-point P in P} where a and b are invertible. Under assumption (a),
the class (a,b) € Br(k(t)) coincides with the image of (a(P),b(P)) € Br(k) in
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Br(k(P')). Thus (a) implies (b). Under assumption (b), the generic fibre of
X —PP} is isomorphic to Cr@1). This gives (a).

The equivalence of (a) and (c) follows from the Faddeev exact sequence
(1.26) via the interpretation of the class ap in k(P)*/k(P)*? as the residue of
A at P.

The kernel of Br(k)—Br(X) < Br(k(X)) is equal to the kernel of the com-
position

Br(k) — Br(K)—Br(X,,) — Br(k(X)).

By (10.3), this map is injective unless X, = C' x;, K, where C' is a conic over k.
O

Proposition 10.2.3 Let f : X—>]P’]1C be a relatively minimal conic bundle as
above. If the class of X,, is not in the image of Br(k)—Br(K), then there is an
exact sequence

0 — Br(k) — Br(X) — @D(Z/2)p/(0(A)) — k" [k,
PeS

where O(A) € @ pes(Z/2)p = @ pes H (Fp/k(P),Z/2) is the vector with co-
ordinates Op(A). The last map sends 1 € (Z/2)p to the class of the norm
Nk(p)/k(ap) mn k*/k*Q.

Proof. When the base is P}, the commutative diagram (10.1) whose bottom row
is extended to the right as in the Faddeev exact sequence (1.26) and the middle
column is extended as in (10.3), takes the following form:

0
/l\
0 — Br(X) — Br(X,) — @H(kXp),Q/Z)
P
) ) T
0 — Br(k) — BrKk) — @H'(k(P),Q/Z) — H(kQ/Z) —
P

oo
)

The corestriction map coresy(py/, : H'(k(P),Z/2) — H'(k,Z/2) is the map
k(P)*/k(P)*?—k*/k*? induced by the norm Nyp)/,. Indeed, the Kummer
exact sequence in view of Hilbert’s theorem 90 shows that this map comes from
coresy(py/k : HO(k(P), k¥) — H'(k, k%) which is Ny pyi, : k(P)*—k*.

The proposition then follows from a diagram chase and Lemma 10.2.2. [0

Corollary 10.2.4 Let f : X—>]P’,1€ be a relatively minimal conic bundle as above.
Assume that the class of X, is not in the image of Br(k)—Br(K). Fiz a k-point
M € Pi with smooth fibre. Let S C Pi be the finite set of closed points with
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singular fibre. Let A}C - IP’,lC be the complement to M. Let t be the coordinate on
A}c. Then we have a direct sum decomposition

Br(X) = Br(k) & f*B,

where B C Br(K) = Br(k(t)) is a finite subgroup whose elements have the
following explicit description.

A closed point P € S is the zero set of a monic irreducible polynomial P(t) €
k[t]. Let Tp € k(P) be the image of t in k(P) = k[t]/(P(t)). Consider the
subgroup B C IE‘IQS‘ of vectors € = (ep) such that

H Nk(p)/k(ap)aP =1e k*/k*Z
pPeS

The injective map B—Br(K) sends € to

A. = epcoresyp)(t — Tp,ap),
PesS

where (t—Tp, ap) is the class of the quaternion algebra Q(t—7p,ap) in Br(k(P)).

Proof. A calculation based on Proposition 1.4.6 shows that 0p(A.) = a%’. This
shows that the map B—Br(K) is indeed injective. Then the statement follows
from Proposition 10.2.3. [

Exercise 10.2.5 Show that each A. is unramified at the point at infinity M
and, moreover, A.(M) = 0.

Exercise 10.2.6 Let P(z) € k[z] be a separable polynomial and let a € k,
a ¢ k*?. Let f: X—P}. be a smooth projective model of the generalised Chatelet
surface given by the affine equation

y? —az? = P(x).
Prove the following statements.

(a) If P(x) is irreducible, or is the product of two irreducible polynomials of
odd degree, then Br(X)/Br(k) = 0.

(b) If P(x) the product of two non-constant irreducible polynomials of even
degree, each of which is irreducible over k(y/a), then Br(X)/Br(k) = Z/2.

(¢) Assume that the degree of P(x) is even. Let n be the number of monic
irreducible factors of P(x) of even degree which remain irreducible over
k(y/a). Let m be the number of monic factors of P(x) of odd degree.
Then Br(X)/Br(k) = (Z/2)®, where s=n—1ifm=0,s=n+m—1if
m is odd, and s=n+m — 2 if m > 0 is even.
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Proposition 10.2.7 Let f: X—=Y be a proper surjective morphism of smooth
geometrically integral varieties over a field k of characteristic 0 such that the
generic fibre X, is a smooth quadric of dimension at least 1. Suppose that all
fibres over points of codimension 1 in'Y are split, or dim(X,) > 3. Then the
map f* : Br(Y)—=Br(X) is surjective.

Proof. From Proposition 6.2.3 we see that Br(X) = Bryet(X/Y). By Corollary
10.1.5 (ii) we have Bryert(X/Y) = f*Br(Y), whenever all fibres over points of
codimension 1 of Y are split. It remains to show that the splitness condition
is satisfied when dim(X,) > 3. Recall that, for P € Y of codimension 1, the
property that X p is split does not depend on the choice of a smooth and proper
model X—Y over the local ring Opy, see Corollary 9.1.11. If dim(X,) > 3,
then working with a diagonal quadratic form one constructs a model whose
closed fibre is split. [

In Section 10.5 we shall consider quadric bundles f : X—Y for which the
map f*: Br(Y)—Br(X) is not surjective.

Remark 10.2.8 (1) Another way to compute Br(X)/Br(k) is to identify the
Galois module Pic(X®), then to compute H!(k, Pic(X®)). By Remark 4.3.3 the
last group is Bry(X)/Br(k), which coincides with Br(X)/Br(k).

This method produces the finer invariant given by the Galois module Pic(X*)
but is slightly less effective for producing explicit generators of the group Br(X).
Further references: [CTSS87], [Sko96], [SkoO1, §7.1].

(2) Vertical Brauer groups have been computed in various set-ups, including
some cases where the generic fibre is given but there is no explicit smooth
projective model for the total space. Examples include families of quadrics of
relative dimension 2 over P}, and families of Severi-Brauer varieties, see [Sko90]
and [CTS94]. In these two cases one has Brye(X) = Br(X).

(3) More generally, one would like to compute Br(X) for a smooth, projective
and geometrically integral variety X equipped with a morphism X —P; whose
generic fibre is geometrically integral and contains an open subset isomorphic to
a homogeneous space of a connected linear algebraic group G over K = k(P!).
In this case the fibration admits a section over a finite extension of k.

Already in the case when G = T X K, where T is a k-torus, it is difficult
to compute Br(X). The quotient of Br(X) by the subgroup Brye(X) is a
subgroup of a known group, namely the unramified Brauer group of the K-
torus Tk modulo Br(K), but in general one does not know which subgroup. A
concrete case is when the generic fibre of X —P}. is birationally equivalent to
the affine K-variety with equation

Nz/k(E) = P(t)

for a finite separable extension L/k and a non-zero polynomial P(¢) € k[t]. (The
projection to P} is given by the coordinate t.) For some computations in this
direction see [CTHSO03] and [Weil2]; see also [VV12].
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10.3 Double covers

The following theorem is a special case of [Skol7, Thm. 1.1]. We refer to [Skol7]
for the proof of this theorem and more general results.

Theorem 10.3.1 Let k be an algebraically closed field of characteristic different
from 2. Let S be a smooth, projective, integral surface such that Pic(S)[2] =0
and Br(S)[2] = 0, for instance a rational surface. Let m : X—S be a double
cover ramified exactly along a smooth irreducible curve C. Let j : C — X be
the natural closed embedding. There is a natural map ® : Pic(C)[2]—Br(X)[2],
which gives rise to an exact sequence

0 — Pic(C)[2]/5* (Pic(X)[my]) — Br(X)[2] —» Pic(S) /7. (Pic(X)) — 0.

Here one writes Pic(X)[n.] for the kernel of 7, : Pic(X)—Pic(S).

In the special case when S = P2 we have Pic(S) = Pic(P?) = Z, hence
Pic(S)/m(Pic(X)) is 0 or Z/2.

Here we content ourselves with giving the definition of the map ®. It comes
from the comparison of the Gysin sequences for étale cohomology groups of S
and X with coefficients pus = Z/2:

H?(X, p1o) ——H*(X N\ O, pi2) ——H'(C,Z/2) —— H*(X, o)
AT

H2(8, p12) ——= H2(S N C, pp) ——HN(C,Z/2) ——H*(S, 1a)
The morphism 7 : X—S is ramified along C' with ramification index 2, hence
the induced map H!(C, Z/2)—H!(C,Z/2) is zero.

Since S and X are smooth, the restriction maps
Pic(S) — Pic(S N C), Pic(X) — Pic(X \ ()
are surjective, and the restriction maps
Br(S) — Br(S~C), Br(X)—Br(X ()

are injective. Using the Kummer sequences with coefficients ps, one obtains a
commutative diagram of exact sequences

0 — Br(X)[2] — Br(X ~ O)[2] — H(C,Z/2) — H3(X, u»)
N
0 —— Br(5)[2] —— Br(S \ O)[2] ——H'(C,Z/2) — H*(S, u2)
We thus get a map

® : Ker[H*(C, Z/2)—=H?(S, p2)] — Br(X)[2]/7*(Br(S)[2]).
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Assuming Pic(S)[2] = 0, we have H!(S, u2) = 0 and thus by Poincaré duality
H3(S, pa) = 0. If, moreover, Br(S)[2] = 0, then we get a map

® : Pic(C)[2] = H(C,Z/2) — Br(X)[2].

Remark 10.3.2 (1) The group H'(C,Z/2) is represented by rational functions
f € k(C)* such that div(f) = 2D for a divisor D on C. Such a rational function
thus gives rise to an element of Br(X)[2] C Br(k(X))[2]. By Merkurjev’s theo-
rem every such class is a sum of quaternion algebras. When k is algebraically
closed, k(X) is a Cy-field by Tsen’s theorem. By Albert’s criterion [GS17, Thm.
1.5.5] the class of a sum of quaternion algebras in Br(k(X)) is equal to the class
of a single quaternion algebra. It seems quite a challenge to construct such a
quaternion algebra explicitly starting from f.

(2) Other papers have been concerned with double and more generally cyclic
covers [F92, vG05, CV15, IOOV17]. In [IOOV17] for a double cover of S = P?
as above, one constructs an exact sequence

0 — Pic(X)/(Z7*O(1) + 2Pic(X)) — (Pic(C)/ZK¢)[2] — Br(X)[2] — 0,

where K¢ € Pic(C) is the canonical class. The map (Pic(C)/ZK¢)[2]—Br(X)[2]
has a description in terms of a geometric construction of Azumaya algebras on
X. See also [CV15].

Remark 10.3.3 In a different direction, one can ask the following question.
Suppose X—S is a double cover of smooth, projective, complex surfaces. Can
one compute the kernel of the restriction map Br(S)—Br(X)? A restriction-
corestriction argument shows that this kernel is contained in Br(S)[2]. An in-
teresting case is that of an Enriques surface S and its unramified double K3-
covering X—S over an algebraically closed field of characteristic zero. Here
Pic(S) = 2 @ Z/2, Br(S) = Z/2, Pic(X) is torsion-free, and Br(X) ~ (Q/Z)*
for some integer s > 0. Beauville [Bea09] showed that the kernel of the map
Z/2 = Br(S)—Br(X) = (Q/Z)* depends on the Enriques surface S. He proved
that in the (coarse) moduli space of Enriques surfaces, the surfaces S for which
the kernel is non-zero, hence equal to Z/2, form a countable, infinite union of
non-empty algebraic hypersurfaces. In [HS05] one finds an example definable
over Q for which the map Br(S)—Br(X) is injective.

One step in Beauville’s proof is the following general result [Bea09, Prop.
4.1]. Let m : X—S be an étale, cyclic covering of smooth projective varieties over
an algebraically closed field k. Let o be a generator of the Galois group G of 7 :
X—S, and let N = 7, : Pic(X)—Pic(S) be the natural norm homomorphism.
Then the kernel of 7* : Br(S)—Br(X) is isomorphic to Ker(N)/(1 — o*)Pic(X).

10.4 The universal family of cyclic twists

Let X be a smooth, proper and geometrically integral variety over a field k of
characteristic 0 equipped with an action of p,. Assume that there is a dense
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open subset U C X such that the morphism 7 : U=V, where V = U/u,, is a
pn-torsor. This implies that V' is smooth and geometrically integral.

For a € k* let X, be the cyclic twist of X by a, that is, the quotient of
X Xy T, by the diagonal action of u,, where T, is the u,-torsor over k given
by 2" = a. The twists are naturally parameterised by the points of G, ; and
there is a universal family of cyclic twists X =G, ;. More precisely, one defines
X as the quotient of X xj, Gy, by the diagonal action of i, where p, C Gy,
acts on Gy, by multiplication. Then U = (U x, Gy 1)/ ptn is Zariski open in
X. The projection U X, Gy, ,—U gives rise to a map /—V which is a G, x-
torsor. We have the following commutative diagram, where the vertical arrows
are quotients by p, and the arrows pointing left are G, ,-torsors:

U<—UxXtGpp—>Gpp

L

v u Gk

By Hilbert’s theorem 90 any G,,-torsor is trivial over the generic point. Hence
U, and thus X, is stably birationally equivalent to V.

Using Hironaka’s theorem, we can compactify X’ to a regular proper variety
W equipped with a morphism f : W—P}, so that X = f~!(G,, ;). In particular,
the generic fibre of W—P} is geometrically integral and the closed fibres away
from 0 and co are smooth (these fibres are twists of X, e.g., the fibre over a € k*
is X,).

Let Y be a smooth proper variety over k£ containing V' as a dense open subset.
Since X and W are stably birationally equivalent to Y, we have a isomorphism
Br(W) =2 Br(Y).

In this section we compute the vertical Brauer group Brye:(W/P}) as a
subgroup of Br(Y'). The motivation for this comes from arithmetic. Suppose
that k is a number field and Y is everywhere locally solvable. If Brye.(W/ IE”}C)
gives no Brauer—Manin obstruction to the Hasse principle on Y, for example, if
Bryert (W/PL) = Br(k), then, under an appropriate assumption on the ramifica-
tion, there is an a € k* such that X, is everywhere locally solvable, see Theorem
13.2.23. Moreover, an unobstructed family of points P, € V(k,) can be lifted
to a family of points @ € U,(k,) on a twisted form of the torsor 7 : U—=V.

Let [U/V] be the class of the torsor 7 : U—V in H (V, ). Let F € k(Y)*
be a non-zero rational function such that the generic fibre of 7 is given by
the equation 2™ = F. Since U is geometrically integral, F' is not a constant
function. In k(X) = k(W) we have the relation tu” = F, where u € k(W)*.
Write div(F') = >, mpD, where each D is an integral divisor in Y and mp
is a positive integer. Let kp be the integral closure of k in k(D). Recall from
Proposition 10.1.8 the notation

L(F) = (Ker[mpresi, i : H' (k,Q/Z) — H' (kp, Q/Z)]. (10.4)
D
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For x € H'(k,Z/n) we denote by [U/V] U x € HZ (V, uy) the element obtained
via the cup-product

He (Vi ) x HY (K, Z/n) — ey (V, pn) x HY (V. Z/n) — HE(V, pin).

Let A, € Br(V) be the image of this element under the map HZ, (V, u,)—Br(V)
coming from the Kummer sequence. The restriction of A, to Br(k(Y)) is the
class of the cyclic algebra (x, F). For each irreducible divisor D supported in
div(F) we have dp(Ay) = mpresy, x(x). (We have dp(Ay) = 0 if D is not
contained in Y\ V.) Thus A, € Br(Y) if and only if x € L(F)[n].

Proposition 10.4.1 (i) The group Brye.(W/P}) C Br(k(W)) is generated by
Br(k) and the classes A, = (x, F) = f*(x,t), where x € L(F)[n].
(ii) Let m be the g.c.d. of the integers mp, for all integral divisors D in the
support of div(F). If (m,n) =1, then Brye,(W/P}) is finite modulo Br(k).
(i) If (mp,n) = 1 for some integral divisor D in the support of div(F),
then each fibre of f : W—PL is geometrically split.

Proof. (i) Let ¢ : PL—P} be the finite morphism given by ¢t = 2". By the
definitions of X and W the base change of W/P}, along ¢ is a variety birationally
equivalent to X xy, IED}C over IP’,lﬁ. We have a commutative diagram

Br(k(z)) — Br(k(X xj Pi)) =<—Br(X x; P})

T | |

Br(k(t)) ———— Br(k(W)) <——Br(W)

where the Brauer groups in the right hand column are identified with the un-
ramified (over k) subgroups of their ambient groups.

By definition, any element of Brye(W/P}) comes from some A € Br(k(t))
whose image in Br(k(W)) lies in Br(W). The fibres of X —G,, . are geomet-
rically integral, thus A can be ramified only at 0 and co. Let x € H(k,Q/Z)
be the residue of A at co. By the diagram, ¢*A € Br(k(z)) gives an element
of Br(k(X xj P1)) that lies in Br(X xj, P}.). However, all fibres of the projec-
tion X xj PL—P} are geometrically integral, which implies that already ¢* A is
unramified over k, so that p*A € Br(P}) = Br(k). The covering ¢ : P} —P} is
ramified at co with ramification index n, hence nxy = 0. Thus x € H!(k,Z/n).
The Faddeev exact sequence implies that up to addition of an element of Br(k),
the class A is represented by the cyclic algebra (x,t). In k(W) we have the
relation tu™ = F, so the image of (x,t) in Br(k(W)) = Br(k(Y x; P})) is the
image of (x, F) € Br(k(Y)), which is exactly A, € Br(V) C Br(k(Y)). Thus
(x,t) € Br(W) if and only if A, € Br(Y). We have seen that A, € Br(Y) if
and only if x € £(F'). This proves (i).

(ii) Lemma 10.1.3 implies that £(F')[n] is finite in this case.

(iii) Since the fibres over the points other than ¢ = 0 and ¢ = co are geomet-
rically integral, it is enough to consider the fibre above 0 (the fibre above oo is
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treated similarly). This fibre has an integral component of multiplicity 1 if and
only if the morphism W—P} has a section over k[[t]]. By the valuative criterion
of properness, it suffices to show that the generic fibre of W—PL has a k((t))-
point. The generic fibre is the cyclic cover of Y xj, k((t)) given by 2™ = ¢t~1F.
By assumption, there is an irreducible divisor D C Y with valp(F) = m such
that (m,n) = 1. Take a,b € Z such that am — bn =1 and a > 0. Consider the
‘constant’ k[[t]]-scheme ) = Y x, k[[t] and let D = D x;, k[[t]] € V. We can

find a section s of Y—Spec(k[[t]]) such that the value of s at the generic point

Spec(k((t))) is outside the support of div(F) and the value of s at the closed
point Spec(k) is contained in D but not in any other irreducible component of
div(F'); moreover, we can arrange that the intersection index of D and s in Y
equals a. Let v be the valuation of the discrete valuation ring k[[t]]. By the
construction of s we have v(F(s)) = am, hence v(t"*F(s)) = am—1 = bn. Thus
s lifts to a k((t))-point on the cyclic cover of Y xj k((t)) given by 2" = ¢t~1F.
This means that the generic fibre of W—P} has a k((t))-point. [J

We compute the group in Proposition 10.4.1 in two concrete situations. Let
p(z) and ¢(y) be separable non-constant polynomials with coefficients in k, and
let n > 2 be a positive integer. Let C; and C3 be smooth, projective curves
with affine equations u™ = p(x) and v™ = ¢(y), respectively.

Example A Let n = 2. Consider the affine surface with equation 2% = p(z)q(y).
It is birationally equivalent to the quotient of Cy X Cy by the diagonal action
of s on u and v. Indeed, z = wv is invariant and satisfies 22 = p(z)q(y).
For example, if p(z) and ¢(z) are of degree 3 or 4, we obtain a K3 surface.
If degp(z) = degq(z) = 3, we obtain the Kummer surface associated to the
product of elliptic curves C; and Cs. If degp(z) = degg(x) = 4, we obtain the
Kummer surface associated to a 2-covering of the product of Jacobians of C;
and Cs. Such a situation occurs in [SkS05].

Example B Here we assume that n = degp(z) = degq(z). Let P(z,y) and
Q(z,w) be homogeneous forms of degree n such that p(z) = P(z,1) and ¢(z) =
Q(z,1). The smooth surface S C P} of degree n given by P(z,y) = Q(z,w) is
birationally equivalent to the quotient of Cy X Cy by the diagonal action of u,
on u and v. Indeed, z = u/v is invariant under this action of u, and satisfies
p(x) = q(y)z". If n = 3, then S is a smooth cubic surface; such a situation
occurs in Swinnerton-Dyer’s paper [SwDO1]. If n = 4, then S is a quartic K3
surface.

Let us consider both examples at the same time. In Example A, to fix ideas,
we assume that the degrees of p(x) and ¢(y) are even. The ramification locus of
the projection Clﬁ]P’,lC given by x is exactly the zero set of p(x), and similarly

for Cy. Define

Ly = klz]/(p(x)), L2 =k[yl/(q(y)), L= Li® Lo.

Let Z = Spec(L) C Cy xi Cy be the closed subset given by p(z) = ¢(y) = 0;
this is the fixed locus of the action of u,. Let U be the complement to Z in
Cy X Cs. It is clear that U is the largest open subset of C x; Cy on which the
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diagonal action of p, is free. The singular locus of the quotient (Cy X C2)/un
is Z/pu, =2 Z. We define Y as the minimal resolution of this quotient. Each
singular k-point of (Cy xj C2) /i, is an isolated quotient singularity with a well
known resolution. Over the completion of its local ring, it is isomorphic to
the vertex of the affine cone over the rational normal curve of degree n. The
exceptional divisor of the resolution is a smooth irreducible rational curve E
with (E?) = —n.

Let X be the blow-up of Z in C; xj C3. Then we have a finite morphism
m : X—Y of smooth projective varieties whose restriction to U is a torsor
7 : U=V with structure group p,,. We have the following commutative diagram
where the vertical arrows are quotient morphisms by the action of u, and the
horizontal arrows are birational morphisms:

Cl X CQ X S/

L

(C1 xx C2) /iy =<—Y —— S

The surfaces S and S’ feature only in Example B: here S’ C P} is given by
t" = P(x,y) = Q(z,w) and the action of y, on S’ is by multiplication on the
coordinate t. The natural projection S’—S is a torsor for u, away from its
ramification divisor D which is given by P(z,y) = Q(z,w) = 0. (Geometrically
this is the union of n? lines joining two sets of n points each. So Dging (k) consists
of 2n points.) Note that S, is the union of closed subsets z = y = 0 and
z = w = 0; the image of 5§, in S is Dsing. The morphism X—5" is obtained
by blowing-up S;ing, and the morphism Y —S is obtained by blowing-up Dsing.
With notation as before we can take F' = P(x,y)/z", then

L(F)[n] = H'(L/k,Z/n) = Ker[resy 5, : H' (k, Z/n)—H" (L, Z/n)).

Proposition 10.4.2 Assume that we are in the situation of Example A, with
n = 2 and deg(p(x)), deg(q(x)) even, or Example B, with n = deg(p(z)) =
deg(q(z))-

(i) If L is generated by the subgroups H'(Ly/k,Z/n) and H*(Ly/k,Z/n),
then Bryert(W/PL) = Bro(Y).

(ii) For n =2 the condition of (i) is satisfied when each of p(x) and q(y) is
wrreducible with a pluriquadratic splitting field.

(iii) If n is a prime number, the condition of (i) is satisfied when

p(x) = alxn + aq, Q(y) = a’3yn + a4, where ai,az,as, a4 € k*.

Proof. (i) Recall that C; and Cj are curves with affine equations 4™ = p(x) and
v™ = q(y), respectively. We have two natural morphisms Y%C’Z—H]P’}C given by
the projections to the coordinates x and y, respectively. The rational function F'
on Y can be represented by either p(z) or ¢(y) modulo n-th powers. Thus, if x €
HY(L1/k,Z/n), then A, = (p(z),x) € Br(Y) belongs to the image of Br(k(z))
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in Br(k(Y)). As an element of Br(k(x)), the class (p(x), x) is unramified away
from the closed points of A} given by the monic irreducible factors r(z) of p(z).
The residue at the closed point 7 € A} given by r(z) = 0 is the restriction
resy, /i(x) € H (kr, Z/n), where k, = k[z]/(r(z)). Since Ly = &,k,, where the
sum is over all monic irreducible r(z) dividing p(x), we have resy, /x(x) = 0.
Hence (p(z),x) is unramified everywhere on A}. This implies that (p(x),x) €
Br(k). Similar considerations apply to the case x € H!(Lz/k,Z/n). This proves
(i).

(ii) In this case L is the direct sum of copies of L Ly, the compositum of L
and Lo. All these fields are pluriquadratic extensions of k, and the statement
follows at once.

(iii) In this case n is coprime to [k(¢) : k] = n — 1, where ( is a primitive
n-th root of unity. A restriction-corestriction argument then shows that it is
enough to establish (i) for & = k(¢), but this is straightforward. O

If p(z) and q(y) are very general, then the map k*/k*?—L*/L*? is injective.
Such is the case if p(xz) and ¢(y) are both irreducible of degree 4, the Galois
closure of each of the extensions k[z]/(p(z)) and k[y]/(¢q(y)) is an extension of
k whose Galois group is the symmetric group Sy, and these Galois extensions
are linearly disjoint. See [HS16, Prop. 3.1, Lemma 2.1].

For a proof of (iii) in terms of valuations which avoids discussing the geom-
etry of underlying varieties, see [CT03, Prop. 3.5].

10.5 Conic bundles over a complex surface

The following result is due to Artin and Mumford [AM72, §3, Thm. 1]. We give
a different proof based on the Bloch—Ogus theory.

Theorem 10.5.1 (Artin—Mumford) Let S be a smooth, projective, rational
surface over C. There is an exact sequence

0—Br(C(S))— € H'(C(z),Q/Z)— P Q/Z(-1)=Q/Z(—1)—0.

zeS1) yesS 2

The map Br(C(S))—H"(C(x), Q/Z), is the residue map O, attached to x € SM).
The map 9, : H'(C(x), Q/Z)—Q/Z(—1) attached to y € S? is zero when y is
not in the closure of x, otherwise it is the sum of residue maps computed on the
normalisation of the closure of x. The last map is the sum.

Proof. Let X be a smooth integral variety over C. We write n for the generic
point Spec(C(X)). Let n > 0, ¢ > 0 and j be integers. Let H9(u%7) be the
Zariski sheaf on X associated to the presheaf

U — Hg (U, 1?).
Then there is the local-to-global spectral sequence

Bt = M, (X, H (7)) = HE (X, 7). (10.5)

zar
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By the Gersten conjecture for étale cohomology proved by Bloch and Ogus in
1974 (see [CT95a, CTKH97]) there is an exact sequence of Zariski sheaves

O HI ()i I (CO), 1) @) i (CL), 180 (10,6
zeX 1)

which is a flasque resolution of the sheaf H?(u$7). Here i,, is the map induced
by the natural map i : n»—X, and similarly for i,.. The maps in the exact
sequence are residue maps, as explained by Kato in [Kat86]. In particular, we
obtain '
HE, (X, HI(u3?)) =0, p>q.
Together with the spectral sequence (10.5) this gives an injective map
Har (X, H2 (177) — HE (X, 7). (10.7)

Now set ¢ = 2 and j = 2. Taking global sections of the flasque resolution
(10.6) we obtain a complex

0 — HE(C(X),u$?) — €D HL(C), ) — €D Z/n— 0. (10.8)
zeX 1) zeX (2

By the purity theorem for the Brauer group we have an exact sequence

0 — Br(X)[n] — Br(C(X))[n] — @B HE(C(x),Z/n).
reX )

It shows that the cohomology group of (10.8) at HZ (C(X), u%?) is canonically
isomorphic to Br(X)[n] ® p,. The cohomology group at the middle term is
HL (X, H?(u®7)). Finally, the cohomology group at the right term is the co-
kernel of the map

P c@)/Cla)y"— P z/n

xeX(l) ;cEX(Q)

induced by the divisor map on the normalisation of the closure of x in X. This
group is CH?*(X)/n, the mod n quotient of the codimension 2 Chow group
CH*(X).

Let us specialise to the case when X = S is a smooth and projective ra-
tional surface. Since S is simply connected, we have H} (S,Z/n) = 0. By
Poincaré duality this implies H, (5,Z/n) = 0. Now the inclusion (10.7) gives
HL (S, H?(u®7)) = 0. For any smooth, projective, integral variety over C the
Chow group of zero-cycles of degree zero is divisible, as one sees by reducing to
the case of curves. Hence the degree map CH?(S)—Z induces an isomorphism
CH?(S)/n—=Z/n.

Since S is a smooth and projective rational variety, we have Br(S) = 0 by
Corollary 5.2.6. The complex (10.8) then gives the exact sequence

0—Br(C(5))[n] ® pn— Bpexm C(x)*/C(x)" = Syex@ Z/n—Z/n—0.

Twisting by u% =) and passing to the direct limit over all integers n gives the
exact sequence of the theorem. []
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Theorem 10.5.2 Let S be an integral surface over C. Any element of Br(C(S))[2]
1s the class of a quaternion algebra.

Proof. Any element of order 2 in the Brauer group of a field of characteristic
not equal to 2 is the class of a tensor product of quaternion algebras. This is a
special case of Merkurjev’s theorem, itself a special case of the Merkurjev—Suslin
theorem. In the special case when the field is the field of rational functions on
a surface over C, this was proved earlier by S. Bloch.

The tensor product of two quaternion algebras over C(S) is similar to a
quaternion algebra. This follows from Albert’s criterion [GS17, Thm. 1.5.5]
and the fact that a quadratic form in at least 5 variables over C(S) has a
nontrivial zero (Tsen-Lang). O

Corollary 10.5.3 Let S be a smooth and projective rational surface over C.
Suppose that {7} € ®yesHN(C(x),Z/2) has trivial image in Syes@ /2.
Then there exists a quaternion algebra o over C(S) whose class in Br(C(S))
has residue v, € H'(C(x),Z/2) at each x € SN, The class of a in Br(C(S)) is
uniquely defined.

Proof. This follows from Theorems 10.5.1 and 10.5.2. [OJ

Note that the above proof is far from constructive: it is not clear how to
find rational functions f and g in C(S)* such that a = (f,g) € Br(C(95))[2].

Proposition 10.5.4 Let S be a smooth surface over C. Let m : X—S be a
proper morphism. If X is smooth and all the fibres of m are conics, then the
morphism 7 is flat and the ramification locus C' C S is a curve with at most
ordinary quadratic singularities.

Proof. See [Bea77, Ch. I, Prop. 1.2]. O

We could not find the following general formula in the literature.

Theorem 10.5.5 Let S be a smooth and projective rational surface over C. Let
X be a smooth threefold equipped with a dominant morphism 7 : X—S whose
generic fibre is a smooth conic. Let o € Br(C(S))[2] be the associated quaternion
algebra class. Assume that o # 0. Let C1,...,Cy be the integral curves in S
such that the residue of o at the generic point of C; is non-zero:

0 # dc, () € HY(C(Ci), Z/2) = C(Cy)* /T(Cy)*.

Assume that each C; is smooth and the ramification locus C' = U}, C; of a is
a curve with at most ordinary quadratic singularities. Consider the subgroup
H C (Z/2)™ consisting of the elements (r1,...,ry) such that for i # j we have
r; = r; when there is a point p € C; N C; with the property that 0,(0c, () =
0p(0c, () € Z/2 is non-zero. Then Br(X) is the quotient of H by the diagonal
element (1,...,1) which is the image of a.
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Proof. The generic fibre X, of 7 is a smooth conic over the function field
C(S). By a result going back to Witt, the natural map Br(C(S))—Br(X,) is
surjective with kernel Z/2 spanned by a # 0 (Proposition 6.2.1). Pick any
f € Br(X). The image of 3 in Br(X,) is the image of some p € Br(C(S)).
For x € SM write 7, = 0,(a). Comparing the residues of p on S and on
X we see that for any = € S™) the residue of p in H'(C(z),Q/Z) lies in the
subgroup of H'(C(z),Z/2) generated by .. From Theorem 10.5.1 we conclude
that p is of exponent 2, hence Br(X) is of exponent 2. Moreover, the injective
image of Br(X) in Br(C(X)) coincides with the image of a certain subgroup
of Br(C(5))[2] under the natural map Br(C(S5))[2]—+Br(C(X))[2] (whose kernel
Z/2 is generated by ).

Let us prove that this subgroup consists of the classes p € Br(C(95))[2]
unramified outside the C;’s and with the property that

(e, (p); -+ 0c, (p)) = (rn, - ra) € EDHN(C(C), 2/2)
i=1

is in the kernel of the map
P HU(C(C). 2/2) = e Z/2.
i=1

Indeed, let v be a discrete, rank one valuation on the function field C(X) of X.
Let F, be its residue field, which contains C. Since 7 is proper, the valuation v
centered at a point M of S. If M does not lie on one of the C;’s, then clearly
7*(p) is unramified at v. If M is the generic point of one of the C;’s, then the
residue of p at v is a multiple of the residue of a at v, hence is zero since a = 0
in Br(C(X)).

Assume M is a closed point which lies on exactly one C;. The residue «y; can
be represented by the class of a rational function which is invertible at M. One
may lift this function to a rational function h on S invertible at M. If u is a
local equation for C; C S at M, the difference a — (h, u) is in the Brauer group
of the local ring of S at M, because its residues on the curves passing through
M vanish. Thus the image of (h,u) in Br(C(X)) is unramified at v. Similarly,
the difference p — r;(h,u) is in the Brauer group of the local ring of S at M.
Hence the image of p in Br(C(X)) is unramified at v.

Let us now consider the case when M lies at the intersection of two curves
Cl and CQ.

Suppose first that dp(9¢, () = O (Oc, () = 0 € Z/2. Let u, resp. v, be
a local equation for C7 C S, resp. Cy C S at M. One may find rational functions
hi and hg invertible at M with the property that p — r1(hy,u) — ro(hg,v) is in
the Brauer group of the local ring of S at M. The residue of pc(x) at v is then
the class of a product of powers of hy (M) and ho(M) in F¥/F?, and that is 1,
since hi(M) and ho(M) are in C*.

Suppose now that dn(9c, (@) = O (0c, () = 1 € Z/2. By assumption,
we then have r;1 = ro. Thus locally around M, the residue of p is a multiple
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of the residue of «, hence there exists an integer s (equal to 0 or 1) such that
p — sa is in the Brauer group of the local ring of S at M. Since « vanishes in
Br(C(X)), we conclude that pc(xy is unramified at v. O.

Remark 10.5.6 By a definition common in the literature on complex algebraic
geometry, a “standard conic bundle” over a surface S is a proper flat morphism
f : X—S8 of smooth projective varieties such that each fibre is a conic, the
ramification locus is a simple normal crossings divisor with smooth components,
and the fibration is relatively minimal. Assume that X—S is a standard conic
bundle — this is a more stringent assumption than the hypothesis of Theorem
10.5.5. Then by [Bea77, Lemme 1.5.2] in each connected component of the
ramification divisor the integers r; are equal. Theorem 10.5.5 then gives the
formula Br(X) ~ (Z/2)¢!, where c is the number of connected components of
C'. This result is mentioned by V.A. Iskovskikh [Isk97, Teorema, p. 206]; it can
also be extracted from [Zag77].

10.6 Variations on the Artin—-Mumford example

Now let us take S = IP’?C. Let E; and E5 be two transversal smooth cubic curves
By and Es. Let v € HY (B, Z/2), v # 0, for i = 1,2. By Corollary 10.5.3
there exists a unique quaternion algebra class a € Br(C(P?))[2] unramified
outside of E; U Fs, with residues 7, on F; and 7; on Es. Let X be a smooth
threefold with a morphism X —P% whose generic fibre is a conic corresponding
to a € Br(C(P?)). By Proposition 6.2.1 (Witt’s theorem) the kernel of the map
Br(C(P?))—Br(C(X)) is Z/2 generated by a. Theorem 10.5.5 gives Br(X) =
Z)2.

Artin and Mumford [AMT72] provided a concrete example of such a situa-
tion and proved that Br(X) # 0 by computing H3(X(C),Z)ers on an explicit
smooth projective model. In [AM72, §2] they construct a singular variety V'
which is a double cover of PZ ramified along a special quartic surface with 10
nodes. They compute an explicit resolution of singularities V—V and determine
H3(‘7, Z)tors- In [AMT2, §3, §4], they study general conic bundles over rational
complex surfaces. At the end of §4, they come back to the variety V of §2 and
show that it is birational to a conic bundle, and look at it from this point of
view. Here are some details (cf. [CTO89]).

Let C C P2 be a smooth conic with a homogeneous quadratic equation
q(z,y,t) = 0. Fix three distinct points P;, @1, R1 on C and consider the divisor
2P +2Q1 + 2Ry on C. The restriction map H°(PZ, O(3))—=H’(C, Oc(3)) is
surjective, since H'(PZ,O(j)) = 0 for any j € Z. Thus there exists a cubic
curve F; which meets C in the divisor 2P, + 2Q1 + 2R, that is, a cubic curve
through Py, @1, R1, which is tangent to C' at these points and whose equation
is not a multiple of q. Repeat this construction for a disjoint triple of points
P5,Q2, Ry on C to obtain a cubic curve F5. A Bertini argument shows that one
can choose F; and Fy which are smooth and intersect each other transversally
outside of C. Let hy = 0 and hy = 0 be the equations of these cubic curves.
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Let [ = 0 be a general tangent line to C. Then it is not hard to check (see
[CTO8Y]) that the quaternion algebra (q/I2, hihs/I®) defines a conic bundle
over IP’(QC unramified outside F; U F5 such that the residue at FE; is a non-zero
element v; € HY(FE;,Z/2), for i = 1,2. Similarly, the unique non-trivial residue
of the quaternion algebra (q/I%,hy/13) is v1 € HY(E1,7Z/2); thus this algebra
defines a non-trivial element in Br(C(X)) which is actually in Br(X).

One advantage of this concrete representation is that it leads to a proof of the
unirationality of this particular X. Indeed, the conic bundle acquires a rational
section after the base change from PZ to the double cover 2% = ¢(z,y,t). This
equation defines a smooth quadric in PZ which is a rational variety.

In Section 11.1.2 we shall use this very special example for a deformation
argument.

Similar examples are given in [CTO89]. The ramification locus in [CTOS89,
Example 2.4] is a union of eight lines.

Exercise 10.6.1 Let X—>]P’% be a smooth conic bundle as in Theorem 10.5.5.
If the ramification locus C = U?_,C; is a union of n < 5 lines without triple
intersections, then Br(X) = 0.

In fact, one can drop the assumption about triple intersections. For this,
blow up ]P’(Qc in the points where more than two lines meet. We obtain a surface
S, where the reduced total transform of the 5 lines (including the exceptional
curves produced in the process) is a divisor C' with normal crossings. We also
obtain a smooth conic bundle X’'—S unramified outside C. Check that for any
initial configuration of 5 lines, we have Br(X) = 0.

Exercise 10.6.2 Construct smooth conic bundles X —P2 with Br(X) # 0 ram-
ified exactly in the union of siz lines.

It is enough to take six lines in general position and partition them into two
triples, say Li, Lo, Ly and My, Ma, M3. Choose v, € C(L1)*/C(L1)*? to be
the class of a rational function whose divisor on L; is (L1 N Ly) — (L1 N L3), and
similarly for the other lines. One immediately checks that the assumptions of
Corollary 10.5.3 are fulfilled for the family v, with v, = vz, at © = L, similarly
at the other 5 lines, and 1 € C(z)*/C(z)*? at other codimension 1 points.
There thus exists a quaternion algebra (a,b) over C(S) which has exactly these
residues. One may thus produce a conic bundle X —S = PZ with ramification
locus the union of these 6 lines in PZ.

Choosing six lines tangent to a given smooth conic, one produces a degen-
erate version of the Artin-Mumford example.

Exercise 10.6.3 Let (u,v) be the coordinates in A%. Let X—A% be the conic
bundle given in AZ x PZ by the equation

S2u(v? — 1) — T?u(u? — 1) + uwv(u? — v?)W? = 0.
Let Y —AZL be the conic bundle given in A% x P% by the equation

S? —uT? —wR?>=0.
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By computing residues on A% show that X and Y are birationally equivalent
over AZ. Hint. Use the fact that if two quaternions algebras have the same
class in the Brauer group, then the associated conics are isomorphic. Conclude
that X is rational over C. For background and a detailed proof, see [CT15].

Exercise 10.6.4 A construction of a unirational but not stably rational vari-
ety fibred in Severi-Brauer varieties over P%. In [CTO89, Exemple 2.4] one
constructs a non-trivial unramified Brauer class in the function field of a conic
bundle over ]P’(% without actually producing a nice explicit model. This example
can be generalised.

Let p be a prime. Let Lq, respectively Lo, be the line in IE”(% given by the
affine equation u = 0, respectively by v = 0. Choose p distinct points on each
of these affine lines. Join each of these p points on L, to all the p points on L.
Let g1 be an equation of the union of these p? lines. Do this construction again
using disjoint sets of points. Let g be an equation of the union of the second
family of p? lines. Let ¢ be a primitive p-th root of unity. Let X —P% be a proper
morphism such that X is smooth and the generic fibre X, is the Severi-Brauer
variety over C(P?) = C(u,v) attached to the cyclic algebra (u/v,g192)¢.

By Amitsur’s theorem ([GS17, Thm. 5.4.1], see also Section 6.1), the kernel
of the restriction map Br(C(P?))—Br(C(X)) is the Z/p-module generated by
the class (u/v,g192)¢. Comparing the residues of & = (u/v,g192)c and f =
(u/v,g1)¢ at codimension 1 points of PZ, one sees that (3 is not a multiple of a,
hence its image B¢(x) € Br(C(X)) does not vanish. One then shows that the
residue of f¢(x) is trivial at any point = of codimension 1 of X by studying the
behaviour of 3 at the point y € P? which is the image of . (Note that y can
have dimension 0, 1 or 2.) Thus Br(X) # 0. This implies that X is not stably
rational.

Let K = C(u,v) = C(P?). Let L = K(y/g91g2). By Proposition 6.1.7 the
generic fibre X, is birationally equivalent to the affine K-variety with equation
u/v =N/ (Z). Let E = K({/u/v). We have E = C(u, z), where 2P = u/v, so
E is a purely transcendental extension of C. The variety Xg = X,, X E is then
birationally equivalent to the affine variety over E with equation 1 = Ng,/g(Z).
As is well-known (Hilbert’s theorem 90 for a cyclic extension, see the proof of
Proposition 6.1.6), the latter variety is an E-torus isomorphic to the cokernel
of the diagonal embedding G, r—Rgr/£(G,,). But this is an open set of a
projective space over E, hence the function field of X is purely transcendental
over E, hence over C. Thus the function field C(X) is contained in a purely
transcendental extension of C, hence X is unirational.

For some recent computations of unramified Brauer groups of conic bundles
over threefolds, see [ABBP].
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Chapter 11

Rationality in a family

The specialisation method allows one to prove that a smooth and projective
complex variety is not stably rational if it can be deformed into a singular variety
whose desingularisation has a non-zero Brauer group. The original idea is due
to C. Voisin who stated it in terms of the decomposition of the diagonal. In
this chapter we present this method in the set-up proposed by Colliot-Thélene
and Pirutka [CTP16] and later simplified by S. Schreieder. In this form the
method can be applied under very mild additional assumptions. As an example
of application, we construct a conic bundle over IP% ramified in a smooth sextic
curve which is not stably rational.

In Section 11.2 we consider smooth projective fourfolds X with a dominant
morphism X %]P’(% such that the generic fibre is a quadric. Using a calculation of
Br(X) in this case, we present the striking recent example of Hassett, Pirutka
and Tschinkel of an algebraic family of smooth projective fourfolds some of
whose elements are rational, whereas others not even stably rational.

Most of the material in this chapter follows the exposition in [CT18].

11.1 Specialisation method

11.1.1 Main theorem

The following theorem is S. Schreieder’s improvement [Sch18, Prop. 26] of the
specialisation method. The assumptions in [Sch18, Prop. 26] are weaker than
in this section. The same proof also works in the more general setting of higher
unramified cohomology with torsion coefficients in place of the Brauer group.

Schreieder’s proof is cast in the geometric language of the decomposition of
the diagonal. We give here a more “field-theoretic” proof. It is known that both
points of view are equivalent, cf. [ACTP17, CTP16].

Theorem 11.1.1 Let R be a discrete valuation ring with field of fractions K
and algebraically closed residue field k of characteristic 0. Let X be an integral

233
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projective scheme over R, whose generic fibre X = Xy is smooth and geomet-
rically integral and whose closed fibre Z/k is geometrically integral. Assume
that

(i) there exist a non-empty open set U C Z and a projective, birational
desingularisation f : Z—Z such that V := f~Y(U)—=U is an isomorphism and
such that Z .V is a union U;Y; of smooth irreducible divisors of Z;

(ii) X3 is stably rational, where K is an algebraic closure of K.

Then the restriction map Br(Z)— @®; Br(k(Y;)) is injective. In particular, if

each Br(Y;) = 0, then Br(Z) = 0.

Proof. We can go over to the completion of R and thus assume that R = [[t]]
and K = k((t)). Since X is stably rational, there exists a finite extension
K, = &((t"™)) of K such that Xy, is K;-stably rational. We replace X /R by
X x g &[[t'"/™]]. This does not affect the closed fibre.

Now X' /R is an integral projective scheme whose generic fibre X/K is stably
rational over K and whose closed fibre Z/k satisfies (i). Since X is stably
rational over K, for any field extension K C F the degree map CHy(Xp)—7Z is
an isomorphism.

Let L = k(Z). We have a commutative diagram of exact sequences

@®,CHo(Y;,) — CHo(Z,) — CHo(Vz) — 0

) L
CHo(ZL) — CHO(UL) — 0.

Let us explain how this diagram is constructed. For each 4, the closed em-
bedding p; : Y;i—Z induces a map pi. : CHo(Y; )—CHo(ZL). The top ex-
act sequence is the classical localisation sequence for the Chow group. The
map f, : CHo(Z1)—CHy(Zy1) is induced by the proper map f : Z—Z. The
map CHg(Vz)—CHg(Uyr) is the isomorphism induced by the isomorphism®
f: V—=U. Finally, CHy(Z)—CHy(UL) is the restriction map.

Let & be the generic point of Z and let 1 be the generic point of Z. Choose
m € V (k) and let n = f(m) € U(k). Thus n and ny, are smooth L-points of Zy,.

Let S = L[[t]] and let F be the field of fractions of S. The extension R C S
of complete discrete valuation rings is compatible with the extension x C L of
their residue fields. By Hensel’s lemma, the points 1 and ny, lift to F-points
of the generic fibre Xp of Xg/S. Since the degree map CHy(Xp)—Z is an
isomorphism, these two points are rationally equivalent in Xr. By Fulton’s
specialisation theorem for the Chow group of a proper scheme over a discrete
valuation ring [Ful98, Prop. 20.3], we obtain n = n € CHo(Z1). Then from
the above diagram we conclude that

E=mr+Y pilz) € CHo(Z1),

7

!nstead of assuming that f~1(U)—U is an isomorphism, it would be enough, as in [Sch19],
to assume that this morphism is a universal CHp-isomorphism.
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where z; € CHo(Y; ). There is a natural bilinear pairing (5.2)

CHo(Z1) x Br(Z) — Br(L).
Suppose that o € Br(Z) goes to zero in Br(x(Y;)), for each i. Since Y; is smooth
and integral, already the image of « in Br(Y;) is zero. The value a(my) € Br(L)
is just the image of a(m) € Br(x) = 0. Now the above equality implies a(§) =
0 € Br(L). But since Z is smooth and integral, the pairing of Br(Z) with the

generic point & € Z (L) induces the embedding Br(Z) — Br(x(Z)) = Br(L).

Thus @ =0 € Br(Z). O

Remark 11.1.2 (a) One may replace condition (ii) in the above theorem by the
weaker hypothesis that X4 is universally CHg-trivial. The same proof works.

(b) In the proof of the theorem, under the assumption of (ii), one can replace
the use of specialisation of the Chow group by specialisation of R-equivalence
on rational points. See [CTP16] and [CT18].

11.1.2 Irrational conic bundles with smooth ramification

The Artin-Mumford example was used by Voisin [Voil5] to prove that very
general double coverings of P? ramified in a smooth quartic hypersurface are
not stably rational. It was used by Colliot-Thélene and Pirutka [CTP16] to
prove that very general quartic hypersurfaces in IF’%C are not stably rational. The
specialisation method was applied in [BB18] and [HKT16] to prove that for
d > 6 very general conic bundles over PZ ramified in a smooth curve of degree
d are not stably rational. Let us show how the Artin-Mumford example can be
used to establish the following special case of this result.

Proposition 11.1.3 There exists a standard conic bundle X —P2% ramified in
a smooth curve of degree 6 such that X is not stably rational.

Proof. In Deligne’s Bourbaki talk [Del71] we find the following presentation of
the Artin—-Mumford example. As in Section 10.6 we are given two transversal
smooth cubic curves with homogeneous equations h; = 0 and he = 0 and
a smooth conic ¢ = 0 which is tangent to the each cubic h; = 0 in three
points P;, Q;, R;, where i = 1,2. Moreover, the points Py, Q1, R1, P», Q2, Ry are
distinct and disjoint from the intersection points of the two cubics. Let g = 0 be
a cubic curve that meets the conic in the divisor P; + Q1 + R1 + P> + Q2 + Ro.
Multiplying ¢ by a non-zero number we arrange that the curve hihy — g% = 0
contains the conic as an irreducible component, so that

hihy = g* + qc

for some homogeneous polynomial ¢ of degree 4. Consider the vector bundle
V=0(-2) 8 O(-1) ® O on P2 and the quadratic form ® : V—O given by

D(z,y,2) = cx’ + 2gxy — qy® — 2°.
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The vanishing of ® defines a flat conic bundle X C P(V*) over P% whose total
space has nine singular points, which are ordinary quadratic singularities. Re-
solving the singularities gives a birational map X’—X. There are many ways
to prove that Br(X') # 0, see Section 10.6.

One then considers the family of all quadratic forms ® : V—O given by

®(z,y,2) = Cx? + 2Gxy — Qy* — 22,

where C, G, @ are homogeneous forms of respective degrees 4,3,2. We claim
that for a very general triple of such forms, the vanishing of the discriminant
G?+QC = 0 defines a smooth curve in PZ. (Then the total space X is smooth.)
More precisely, suppose that C' =0, G = 0, @ = 0 are smooth curves such that
the closed set C' = G = @ = 0 is empty. We claim that for almost all A € C,
the curve G? + A\QC = 0 is smooth. By one of the Bertini theorems, since G?
and QQC have no common factor, it is enough to show that for A # 0, the curve
G? + M\QC = 0 has no singular point with G?> = 0 and QC = 0. Any such
point would satisfy 2GG! + A\Q!,.C + AQC!, = 0 and the similar equations with
respect to the variables y and z. If the point lies on G = C' = 0 it then satisfies
QC; =0,QC, = 0,QC7, =0, hence Q = 0 by the non-singularity of the curve
C = 0. However, the set G = C = @ = 0 is empty, so we have a contradiction.
A similar argument shows that the point cannot lie on G = @Q = 0.

Voisin’s deformation argument in its original form [Voil5] can now be ap-
plied: by specialising to the Artin—-Mumford example in the version recalled
above, we see that the very general conic bundle in the family defined by C, G, @
is not stably rational. Alternatively, one can use [CTP16, Thm. 1.17] or Theo-
rem 11.1.1 together with [CTP16, §2] to establish this result. [J

11.2 Quadric bundles over the complex plane

Hassett, Pirutka and Tschinkel [HPT18] used the specialisation method to give
the first examples of families X—B of smooth, projective, integral complex
varieties with some fibres rational and some other fibres not even stably rational.
A simplified version of the specialisation method, as proposed by Schreieder
[Sch18, Sch], gives a streamlined proof of the main result of [HPT18] which
avoids explicit resolution of singularities. This simplified specialisation method
was described in Section 11.1. In this section, following [CT18], we give examples
from [HPT18] in their simplest form.

11.2.1 A special quadric bundle

The references for this section are [HPT18], [Pirl8], [CT18].
Let =, y, z be homogeneous coordinates in IE”%, and U, V., W, T be homogeneous
coordinates in IE”%. Let

F(x,y,2) = 2> +y* + 2% — 2(zy + yz + 2z).
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Let X C IP’% X IP’(% be the hypersurface given by the bihomogeneous equation
yzU? 4 22V? + ayW? 4 F(x,y, 2)T? = 0.

Letp: X —>]P’(% be the morphism given by the projection IP’% X IP’(%—>IP’(%. The fibres
of p: X —HP% are 2-dimensional quadrics; in particular, p is a flat morphism.
The morphism p is smooth over the complement to the plane octic curve defined
by the vanishing of the determinant

2?y? 22 F(x,y,2) = 0.

Note that this equation describes the union of the smooth conic ' = 0 and
three tangents to this conic taken with multiplicity 2. Note that X has singular
points over the singular points of the curve zyzF(z,y,2) = 0.

Part (a) of the following proposition is a result of Hassett, Pirutka, and
Tschinkel [HPT18, Prop. 11]. Part (b) is a special case of the general statement
[Sch18, Prop. 7], the proof of which builds upon results of Pirutka ([Pir18, Thm.
3.17], [Sch18, Thm. 4]). As we shall now see, the proof of (a) can be modified
to simultaneously give a proof of (b).

Proposition 11.2.1 Let X=X be a projective birational desingularisation of
X. Let
a = (z/zy/z) € Br(C(P?))
and let 3 be the image of o under the map p* : Br(C(P?))—Br(C(X)).
(a) We have B € Br(X) and § # 0.
(b) For each irreducible divisor Y C X the restriction of 8 to Br(C(Y)) is 0.

Proof. The equation of X is symmetric in (z,y, z). In view of this symmetry, it
is enough to consider the open set z = 1 with affine coordinates x and y. In the
rest of the proof we consider only this open set. Then a = (z,y) has non-trivial
residues precisely at x = 0 and y = 0. In particular, a # 0.

Let K = C(P?) = C(z,y), let L = C(X), and let X, /K be the generic fibre
of p: X—PZ%. The discriminant of the quadratic form (y, z, zy, F(z,y,1)) is not
a square in K, thus the map Br(K)—Br(X,) is an isomorphism by Proposition
6.2.3 (c), so that the composition Br(K)——DBr(X,) — Br(L) is injective. Thus
B = p*(a) € Br(L) is non-zero.

Let v be a discrete valuation L*—Z, let S be the valuation ring of v and
let %, be the residue field. If K C S, then v(z) = v(y) = 0, hence (z,y) is
unramified. If K ¢ S, then SN K = R is a discrete valuation ring with field
of fractions K. The image of the closed point of Spec(R) in P% is then either a
point m of codimension 1 or a (complex) closed point m of IP’%.

Consider the first case. If the codimension 1 point m does not belong to
zy = 0, then a = (z,y) € Br(K) is unramified at m, hence 8 € Br(L) is
unramified at v. Moreover, the evaluation of 8 in Br(k,) is just the image
under Br(C(m))—Br(x,) of the evaluation of & in Br(C(m)). By Tsen’s theorem
Br(C(m)) = 0, hence the image of 8 in Br(k,) is zero.
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Suppose that m is a generic point of a component of xy = 0, say m is the
generic point of 2 = 0. In L = C(X) we have an identity

yU? + 2V 4 oyW? 4 F(x,y,1) =0

with yU? + 2V? # 0. In the completion of K at the generic point of z = 0,
F(x,y,1) is a square, because F(x,y,1) modulo z is equal to (y — 1)2, a non-
zero square. Thus, in the completion L,, the quadratic form (y, z,zy, 1) has a
non-trivial zero, hence (z,y) goes to zero in Br(L,). Hence g is unramified at
v, thus € Br(S) and the image of § in Br(k,) is zero.

Now consider the second case, i.e. m is a closed point of P%. There is a local
homomorphism of local rings Opz ,,,—S which induces an embedding C—x, of
residue fields. If z(m) # 0, then 2 becomes a non-zero square in the residue
field C hence in k,,. This implies that the residue of 5 = (z,y) € Br(L) at v is
trivial. The analogous argument holds if y(m) # 0. It remains to discuss the
case z(m) = y(m) = 0. We have F'(0,0,1) =1 € C*. Thus F(z,y,1) reduces
to 1 in k,, hence is a square in the completion L,. As above, in the completion
L,, the quadratic form (y, z,zy, 1) has a non-trivial zero, hence (z,y) goes to
zero in Br(L,). Hence § is unramified at v, thus 8 € Br(S) and the image of 3
in Br(k,) is zero. O

As in the reinterpretation [CTO89] of the Artin—-Mumford examples, the
intuitive idea behind the above result is that the quadric bundle X _>P<2c is ram-
ified along xyzF(z,y,z) = 0 and the ramification of the symbol (z/z,y/2),
which is “contained” in the ramification of the quadric bundle X —P%, disap-
pears over smooth projective models of X: ramification eats up ramification
(Abhyankar’s lemma). Here one also uses the fact that the smooth conic de-
fined by F(z,y,z) = 0 is tangent to each of the lines z = 0,y = 0,z = 0, and
does not vanish at the intersection point of any two of these three lines.

11.2.2 Rationality is not constant in a family

In this section we complete the simplified proof of the theorem of Hassett,
Pirutka and Tschinkel [HPT18].

Theorem 11.2.2 There exist a smooth projective family of complex fourfolds
X =T, where T is an open subset of the affine line A}C, and points m,n € T(C)
such that the fibre X,, is rational whereas the fibre X,, is not stably rational.

Proof. Consider the universal family of quadric bundles over P given in P& x P2
by a bihomogeneous form of bidegree (2, 2). This is given by a symmetric (4 x 4)-
matrix whose entries a; ;(z,y, z) are homogeneous quadratic forms in z,y, z. If
the determinant of the matrix is non-zero, it is a homogeneous polynomial of
degree 8. The parameter space is B = Pg?:g (the corresponding vector space is
given by the coefficients of 10 quadratic forms in three variables). We have the
map X — B whose fibres X,,, are quadric bundles X,,—P2%, where X,,, C P2 xP%
is the zero set of a non-zero complex bihomogeneous form of bidegree (2,2).
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Using Bertini’s theorem, one shows that there exists a non-empty open set
By C B such that the fibres of X— B over the points m € By are flat quadric
bundles X,,—P% which are smooth as complex varieties.

Using Bertini’s theorem, one also shows that there exist points m € By with
the property that the corresponding quadric bundle has a;; = 0. This implies
that the morphism Xm—>]P’(2C has a rational section given by the point (1,0, 0,0),
hence the generic fibre of X,,,—P% is rational over C(P?), so that the complex
variety X, is rational over C. [Warning. This Bertini argument uses the fact
that we consider families of quadric surfaces over PZ. It does not work for
families of conics over PZ.]

These Bertini arguments are briefly described in [Sch19, Lemma 20, Thm.
47] and are tacitly used in [Sch18, p. 3].

The special example in Section 11.2.1 defines a point Py € B(C). Let
Z = Xp,. Using Proposition 11.2.1, one finds a projective birational desin-
gularisation f: Z—Z and a non-empty open set U C Z such that

e the induced map V := f~1(U)—U is an isomorphism;

e 7~V is a union U;Y; of smooth irreducible divisors of Z ;

e there is a non-trivial element in Br(Z) which vanishes on each Y;.

Theorem 11.1.1 then implies that the generic fibre of X — B is not geomet-
rically stably rational. There are various ways to conclude from this that there
are many points m € By(C) such that the fibre X,, is not stably rational.

Take one such point m € By(C) and a point n € By(C) such that X, is
rational. Over an open set of the line joining m and n we get a projective
family of smooth varieties with one fibre rational and another fibre not stably
rational. [

The proof by Hassett, Pirutka and Tschinkel [HPT18] uses an explicit desin-
gularisation of the variety Z in Section 11.2.1, with a description of the ex-
ceptional divisors appearing in the process. Schreieder’s improvement of the
specialisation method enables one to bypass this explicit desingularisation. Pa-
pers [HPT18] and [Sch18] contain many other results about families of quadric
surfaces over the projective plane. For further developments the reader is re-
ferred to [ABBP], which gives a different approach to [HPT18] as well as some
generalisations, to [ABP] and [Sch19, Sch].

Let us summarise the current state of knowledge about the behaviour of
rationality and stable rationality in the fibres of an algebraic family of proper
and smooth varieties. Let T be a smooth connected variety over C and let X —T
be a proper and smooth morphism with connected, projective fibres of relative
dimension d. It has been known for a while that the set of points ¢ such that X,
is rational, respectively, stably rational, is a countable union of locally closed
subsets of T', see [dFF13, Prop. 2.3].

e For d < 2, stable rationality is equivalent to rationality, and either all
fibres are rational or no fibre is rational.
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For arbitrary d stable rationality specialises. Thus the set of points ¢ such
that X; is stably rational, is a countable union of closed subsets of T
(Nicaise—Shinder [NSh]).

For arbitrary d rationality specialises. Thus the set of points ¢ such that
X, is rational, is a countable union of closed subsets of T (Kontsevich—
Tschinkel [KTsc]).

By the examples discussed in this section, for d > 4, neither rationality nor
stable rationality extends by generisation (Hassett, Pirutka and Tschinkel
[HPT13)]).

For d = 3 stable rationality does not extend by generisation (Hassett,
Kresch and Tschinkel [HKT]).

For d = 3 it is not known if rationality extends by generisation.

Recall that a property P of varieties over algebraically closed fields, which is
stable under extensions of such fields, extends by generisation if for any smooth
projective scheme X over Spec(C[[t]]), if P holds for the closed fibre, then P
holds for the geometric generic fibre, that is, the fibre over an algebraic closure

of C((¢)).



Chapter 12

The Brauer—Manin set and
the formal lemma

This is the first of three chapters which deal with applications of the Brauer
group to the arithmetic of varieties over a number field k. Section 12.1 is a collec-
tion of preliminary results from algebraic number theory and class field theory.
In Section 12.2 we discuss the Hasse principle, weak and strong approximation.
Section 12.3 contains the definition and basic properties of the Brauer-Manin
obstruction, which is the fundamental reason why the knowledge of the Brauer
group is necessary for the study of local-to-global principles for rational points.
When the cokernel of the natural map Br(k)—Br(X) is finite, the Brauer—Manin
obstruction on X involves only finitely many primes; the set of these primes is
studied in Section 12.4. Explicit examples of calculation of the Brauer-Manin
obstruction to the Hasse principle and weak approximation are presented in
Section 12.5. In Section 12.6 we state and prove Harari’s formal lemma, which
is a fundamental tool in studying the variation of the Brauer-Manin obstruction
in a family of varieties.

12.1 Number fields

Let k£ be a number field. We write Q2 for the set of places of k. The completion
of k at a place v is denoted by k,. For a finite (=non-archimedean) place v we
will also use the notation v to denote the associated normalised valuation.

12.1.1 Primes and approximation

Dirichlet’s theorem on primes in an arithmetic progression can be extended to
number fields in the following form.

Theorem 12.1.1 (Dirichlet, Hasse) Let S C {2 be a finite set of finite places
and let \, € k, for each v € S. For any € > 0 there exist A € k* and a finite
place vg ¢ S of absolute degree 1 such that

241
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(1) |A = Aplv < € for each place v € S;
(ii) A > 0 in each real completion of k;
(iil) A s a unit at any place v ¢ S U {vg} whereas vg(A\) = 1.

Here vy may not be chosen at the outset.

The next statement (which is easy for £ = Q) enables one to approximate
also at the archimedean places, if one accepts to lose control over an infinite set
of places of k that can be chosen at the outset. Typically, this will be the set of
places split in a given finite extension of k.

Theorem 12.1.2 (Dirichlet, Hasse, Waldschmidt, Sansuc) LetS C Q be
a finite set of places and let A\, € k, for each v € S. Let V be an infinite set
of places of k. For any € > 0 there exist A € k* and a finite place vg ¢ S of
absolute degree 1 such that

(1) A= Aplo <€ for eachv €S,

(ii) A is a unit at each finite place v ¢ SU{vo} UV and vo(N) = 1.

Proof. See [San82a]. [

Here again vy may not be chosen at the outset.
We recall a corollary of the celebrated Chebotarev density theorem.

Theorem 12.1.3 (Chebotarev) Let K/k be a finite extension of number fields.
There exists an infinite set of places v of k which are completely split in K, i.e.
such that the k,-algebra K ®y, k, is isomorphic to k:LK:k].

This special case of Chebotarev’s theorem has an elementary proof (reference
given in [HW15, Lemma 5.2]). Theorem 12.1.2 can be compared to the following
proposition [HW15, Lemma 5.2].

Proposition 12.1.4 Let K/k be an extension of number fields. Let S be a
finite set of places of k. Let §, € Ng (K @4 k) C k}; for each v € S. Then
there exists £& € k* arbitrarily close to &, for v € S and such that £ is a unit
outside S except possibly at the places above which K has a place of degree 1.
In addition, if vy is a place of k not in S, over which K possesses a place of
degree 1, one can ensure that £ is integral outside S U {vg}.

Chebotarev’s theorem is used to prove the existence of such a place vy, but
the proof otherwise only uses the strong approximation theorem.
Here is another corollary of the Chebotarev density theorem.

Theorem 12.1.5 Let K/k be a non-trivial finite extension of number fields.
There exist infinitely many places v of k such that the k,-algebra K ®y k,, has no
direct summand isomorphic to k,. In particular, given an irreducible polynomial
P(t) of degree at least 2, there exist infinitely many places v such that P(t) has
no root in k.

It is well known that the second statement does not hold for reducible poly-
nomials. A classical example is P(t) = (¢* — 13)(t? — 17)(t? — 221) € Q[t].
Here is another variation on the same theme [Har94, Prop. 2.2.1].
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Theorem 12.1.6 Let L/K/k be finite extensions of number fields, with L/K
cyclic. There exist infinitely many places w of K of degree 1 over k which are
inert in the extension L/K.

12.1.2 Class field theory and the Brauer group

There is a vast literature on class field theory. We refer here to Harari’s recent
book [Harl7] both for proofs and for a list of references to classical literature.
The Witt residue was introduced in Definition 1.4.9.

Definition 12.1.7 For each place v of k define
inv, : Br(k,) — Q/Z

as follows. If v is finite, let inv, be the Witt residue Br(k,)—H"(F,,Q/Z) =
Hom(Gal(F, /F,),Q/Z) followed by the evaluation at the Frobenius element. If
v is real, define inv, by Br(k,) = Z/2 < Q/Z. For a complex place v set
inv, = 0.

The definition of Br(k,)—Q/Z given here is the one used in [SerCL, Ch.
XII1, §2], [ANT67, Ch. VI, [NSW, Ch. VII, Cor. (7.1.4)], and [Harl7, §3.2).

Theorem 12.1.8 (i) For each finite place v of k, the map inv, is an isomor-
phism. For each real place v, the map inv, is the injection Br(k,) = Z/2 —
Q/Z. For each complez place v we have Br(k,) = 0.

(ii) The diagonal map Br(k)— [[,cq Br(ky) factors through the direct sum
EBEGQBI'(]{IU),

(iii) The maps inv, fit into an exact sequence

0 — Br(k) — @ Br(k,) — Q/Z — 0, (12.1)
vEN

where the map to Q/Z is the sum of inv, for all v € Q.

The fact that (12.1) is a complex is a generalisation of the Gauss quadratic
reciprocity law. Injectivity on the second arrow is a celebrated theorem of H.
Hasse, R. Brauer and E. Noether, generalising results of Legendre and Hilbert.

Theorem 12.1.9 Let K/k be an abelian extension of number fields, and let
G = Gal(K/k). For each place v € Q, let G, C G be the decomposion group of
v. There is a well-defined isomorphism

Ju k;/NK/k((K ®p k)" )Gy

called the norm residue homomorphism, or the local Artin map [SerCL, Ch.
X111, §4], [Harl7, Ch. 9]. For a normalised valuation v of k unramified in K,
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this map sends an element ¢ € k™ to Frobz(c) € G (ibid.). These maps fit into
an exact sequence

E*/Ng/i(K*) — @kfj/NK/k((K Qk ky)") — G — 1. (12.2)
vEQN

If K/k is cyclic, we have an exact sequence

1— B /Ny jp(K*) — @k /N ju(K @ ko)*) — G — 1. (12.3)
vEQN

Corollary 12.1.10 Let K/k be an abelian extension of number fields.

(a) If ¢ € k* is a local norm for K/k at all places of k except possibly one
place vg, then c is also a local norm at vg.

(b) (Hasse) If K/k is cyclic, and ¢ € k* is a local norm for K/k at all places
of k except possibly one place vqy, then it is a global norm.

The above results are special cases of the following theorem.

Theorem 12.1.11 (Tate-Nakayama) Let T' be an algebraic k-torus. Write
T = Homy—gp (T, Gy 1) for the Galois lattice defined by the character group of
T. There is a natural exact sequence of abelian groups

H' (k, T)— @ H' (ky, T)—Hom(H' (k, T), Q/Z)—H?(k, T)— P H> (k,, T)
veEN veEQ
(12.4)
and a perfect duality of finite abelian groups 1T (k, T) x 12 (k, T)—Q/Z.

The map H'(k,, T)—Hom(H' (k,T),Q/Z) is induced by a perfect pairing
induced by the cup-product

H'(k,,T) x H'(ky,T) — H?(ky, G,,) = Br(k,) < Q/Z.

We refer the reader to the following references: [Tate66], [SerCG, Ch. II,
§5.8, Thm. 6] (local duality), [NSW, Ch. VII, VIII], [Mil86, Ch. I, Thm. 4.20].

Remark 12.1.12 Using Theorem 12.1.11, one easily proves the following state-
ment. If K/k, K # k, is a finite extension of number fields, then the quo-
tient k* /Ny, (K*) is infinite if and only if the kernel of the restriction map
Br(k)—Br(K) is infinite. In fact, these groups are indeed infinite. The only
known proof of this statement for an arbitrary extension K/k (due to Fein,
Kantor, and Schacher) uses the classification of finite simple groups.

Note that a priori there are two possible definitions of the map Br(k,)—Q/Z
(see Theorem 1.4.10). To discuss global problems, it is necessary to define the
local maps inv, : Br(k,)—Q/Z and j, : kj /Ng /(K ®k ky)*)—G in a uniform
way. (It is not enough to define these maps up to sign, except obviously in the
case where one deals with the 2-torsion subgroups).
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Formulae for invariants of cup-products with values in Br(k,) C Q/Z are
called explicit reciprocity laws [SerCL, Ch. XIV], [Iwa68], [Harl7, Ch. 9].
One should pay particular attention when applying the formulas. For instance,
formulae for residues of cup-products in Section 1.4.1 in this book are given for
the cohomological residue, and not for the Witt residue. By Theorem 1.4.10,
the Witt residue is the negative of the cohomological residue.

See [CTKS8T7] for a concrete example where one handles 3-torsion elements.

12.1.3 Adeles and adelic points

In this section we use a very helpful article of B. Conrad [C12] to which we refer
for many carefully worked out details.

If v is a non-archimedean place of k, we denote by O, the ring of integers of
the completion k,. We shall write S for a finite set of places of k containing all
the archimedean places. Let O be the ring of integers of k and 