Superelliptic Jacobians, Brauer groups and Kummer varieties

Yuri G. Zarhin (Penn State/MPIM)

(based on a joint work with Alexei N. Skorobogatov)

(ロ) (日) (日) (王) (王) (王) (0,0)

a) Notation;

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;

2

白 ト イヨト イ

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;

э

c) Construction and generalities on Kummer varieties;

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;

э

- c) Construction and generalities on Kummer varieties;
- d) Examples

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;

э

- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

If G - commutative group,

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;

э

- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- If G commutative group, n a positive integer \implies
 - $G[n] \subset G$ the kernel of multiplication by n in G;

э

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

If G - commutative group, n a positive integer \implies

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$

э

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

If G - commutative group, n a positive integer \implies

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$

k is a field \Longrightarrow

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$
- k is a field \Longrightarrow we assume char(k) does not divide n and
 - \bar{k} is an algebraic closure of k;

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$
- k is a field \Longrightarrow we assume char(k) does not divide n and
 - \bar{k} is an algebraic closure of k;
 - $\mu_n \subset \bar{k}^*$ is the multiplicative group of *n*th roots of unity;

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$
- k is a field \Longrightarrow we assume char(k) does not divide n and
 - \bar{k} is an algebraic closure of k;
 - $\mu_n \subset \bar{k}^*$ is the multiplicative group of *n*th roots of unity;
 - $\Gamma = \operatorname{Gal}(\overline{k}/k) := \operatorname{Aut}(\overline{k}/k)$ is the absolute Galois group of k;

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$
- k is a field \Longrightarrow we assume char(k) does not divide n and
 - \bar{k} is an algebraic closure of k;
 - $\mu_n \subset \bar{k}^*$ is the multiplicative group of *n*th roots of unity;
 - $\Gamma = \operatorname{Gal}(\overline{k}/k) := \operatorname{Aut}(\overline{k}/k)$ is the absolute Galois group of k;
 - Br(k) is the Brauer group of k

- a) Notation;
- b) Review finiteness results for abelian and K3 surfaces;
- c) Construction and generalities on Kummer varieties;
- d) Examples

Notation

If G - commutative group, n a positive integer \implies

- $G[n] \subset G$ the kernel of multiplication by n in G;
- $G[\operatorname{non} n] := \{g \in G_{\operatorname{tors}} \mid (\operatorname{ord}(g), n) = 1\} \subset G.$

k is a field \Longrightarrow we assume char(k) does not divide n and

- \bar{k} is an algebraic closure of k;
- $\mu_n \subset \bar{k}^*$ is the multiplicative group of *n*th roots of unity;
- $\Gamma = \operatorname{Gal}(\overline{k}/k) := \operatorname{Aut}(\overline{k}/k)$ is the absolute Galois group of k;
- Br(k) is the Brauer group of k (it is a torsion abelian group).

・ロト・日本・日本・日本・日本・今日の

$$\overline{X} = X \times_k \overline{k};$$

▲ロ▶ ▲圖▶ ▲唐▶ ▲唐▶ 三唐 - わえの

$$\overline{X} = X \times_k \overline{k};$$

• $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;

・ 同 ト ・ ヨ ト ・ ヨ ト

3

• The group $Br(\overline{X})$ is a Γ -module.

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;

A (1) > (1) > (1) > (1)

- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ-modules

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$
- There are two natural group homomorphisms

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$
- There are two natural group homomorphisms $\alpha : Br(k) \to Br(X),$

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$
- There are two natural group homomorphisms $\alpha : \operatorname{Br}(k) \to \operatorname{Br}(X), \qquad \beta : \operatorname{Br}(X) \to \operatorname{Br}(\overline{X})^{\Gamma} \subset \operatorname{Br}(\overline{X}).$

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$
- There are two natural group homomorphisms $\alpha : \operatorname{Br}(k) \to \operatorname{Br}(X), \qquad \beta : \operatorname{Br}(X) \to \operatorname{Br}(\overline{X})^{\Gamma} \subset \operatorname{Br}(\overline{X}).$

Let $\operatorname{Br}_0(X) := \alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$
- There are two natural group homomorphisms $\alpha : \operatorname{Br}(k) \to \operatorname{Br}(X), \qquad \beta : \operatorname{Br}(X) \to \operatorname{Br}(\overline{X})^{\Gamma} \subset \operatorname{Br}(\overline{X}).$

Let $\operatorname{Br}_0(X) := \alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$ $\operatorname{Br}_1(X) := \operatorname{ker}(\beta) \subset \operatorname{Br}(X).$

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$
- There are two natural group homomorphisms $\alpha : \operatorname{Br}(k) \to \operatorname{Br}(X), \qquad \beta : \operatorname{Br}(X) \to \operatorname{Br}(\overline{X})^{\Gamma} \subset \operatorname{Br}(\overline{X}).$

Let
$$\operatorname{Br}_0(X) := \alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$$

 $\operatorname{Br}_1(X) := \operatorname{ker}(\beta) \subset \operatorname{Br}(X).$
Then

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$

(a)

There are two natural group homomorphisms $\alpha : \operatorname{Br}(k) \to \operatorname{Br}(X), \qquad \beta : \operatorname{Br}(X) \to \operatorname{Br}(\overline{X})^{\Gamma} \subset \operatorname{Br}(\overline{X}).$

Let $\operatorname{Br}_0(X) := \alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$ $\operatorname{Br}_1(X) := \ker(\beta) \subset \operatorname{Br}(X).$ Then $\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

- $\overline{X} = X \times_k \overline{k};$
- $\operatorname{Br}(X) = H^2_{\operatorname{\acute{e}t}}(X, \mathbb{G}_m)$ is the Brauer-Grothendieck group of X;
- The group $Br(\overline{X})$ is a Γ -module.
- For all *n* the subgroups $Br(\overline{X})[n]$ are *finite*.
- There is a short exact sequence of Γ -modules $0 \to \operatorname{Pic}(\overline{X})/n \ (= \operatorname{NS}(\overline{X})/n) \to H^2_{\operatorname{\acute{e}t}}(\overline{X}, \mu_n) \to \operatorname{Br}(\overline{X})[n] \to 0.$

(a)

There are two natural group homomorphisms $\alpha : \operatorname{Br}(k) \to \operatorname{Br}(X), \qquad \beta : \operatorname{Br}(X) \to \operatorname{Br}(\overline{X})^{\Gamma} \subset \operatorname{Br}(\overline{X}).$

Let $\operatorname{Br}_0(X) := \alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$ $\operatorname{Br}_1(X) := \ker(\beta) \subset \operatorname{Br}(X).$ Then $\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

Finiteness Theorems

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

Ξ.

 $\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

□ > < E > < E >

2

There are two embeddings:

 $\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

・聞き ・ ほき・ ・ ほき

Ξ.

There are two embeddings: 1. $\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}.$ $\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

There are two embeddings:

1. $\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}.$ 2. $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) \hookrightarrow H^1(k, \operatorname{Pic}(\overline{X})).$

(本部) (本語) (本語)

E 990

Finiteness Theorems

 $\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$

There are two embeddings:

1. $\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}.$ 2. $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) \hookrightarrow H^1(k, \operatorname{Pic}(\overline{X})).$

Finiteness Theorems

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

There are two embeddings: 1. $\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}$. 2. $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) \hookrightarrow H^1(k, \operatorname{Pic}(\overline{X}))$. If $\operatorname{Pic}(\bar{X})$ is torsion-free

・聞き ・ ヨキ ・ ヨキ

Ξ.

Finiteness Theorems

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

There are two embeddings: 1. $\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}$. 2. $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) \hookrightarrow H^1(k, \operatorname{Pic}(\overline{X}))$. If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and

э

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\operatorname{NS}(\bar{X})$ is torsion-free)

э

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

Example X is a K3 surface.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

Example X is a K3 surface.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

Remark

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

Remark If k is a number field

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

There are two embeddings:

1

$$\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}.$$

2. $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) \hookrightarrow H^1(k, \operatorname{Pic}(\bar{X})).$

Example X is a K3 surface.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

Remark If k is a number field then $Br_0(X)$ is *infinite*.

$$\operatorname{Br}_0(X) \subset \operatorname{Br}_1(X) \subset \operatorname{Br}(X).$$

There are two embeddings:

1

$$\operatorname{Br}(X)/\operatorname{Br}_1(X) \hookrightarrow \operatorname{Br}(\overline{X})^{\Gamma}.$$

2. $\operatorname{Br}_1(X)/\operatorname{Br}_0(X) \hookrightarrow H^1(k, \operatorname{Pic}(\bar{X})).$

Example X is a K3 surface.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X}) = 0$ and $\Rightarrow \operatorname{NS}(\bar{X})$ is torsion-free) then $\operatorname{Br}_{1}(X)/\operatorname{Br}_{0}(X)$ is finite.

Remark If k is a number field then $Br_0(X)$ is *infinite*.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ わえの

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

 $ar{X}$ is either an abelian variety,

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

 \bar{X} is either an abelian variety, or a product of curves and S is a K3 surface/k.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

(i) If char(k) = 0, then

 \bar{X} is either an abelian variety, or a product of curves and S is a K3 surface/k.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$,

 \overline{X} is either an abelian variety, or a product of curves and S is a K3 surface/k.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$,

 \overline{X} is either an abelian variety, or a product of curves and S is a K3 surface/k.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

 \bar{X} is either an abelian variety, or a product of curves and S is a K3 surface/k. (i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite.

(ii) If
$$char(k) = p > 0$$
 then

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite.

(ii) If char(
$$k$$
) = $p > 0$ then

$$Br(X)' [non - p]$$
 and

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite.

(ii) If char(k) = p > 0 then $Dr(\overline{X})$ [non- n] and

$$(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$$
 and $(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite.

(ii) If $\operatorname{char}(k) = p > 0$ then Br $(\overline{X})^{\Gamma}[\operatorname{non} - p]$ and

 $(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$ are finite.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite.

(ii) If char(k) = p > 0 then

 $\operatorname{Br}(\overline{X})^{\Gamma}[\operatorname{non} - p]$ and $(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$

are finite.

If p > 2 then $\operatorname{Br}(\overline{S})^{\Gamma}[\operatorname{non} - p]$ and

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite. (ii) If $\operatorname{char}(k) = n > 0$ then

(ii) If char(k) = p > 0 then $Dr(\overline{X})$ [non n] and

$$(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$$
 and $(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$

are finite.

If p > 2 then $\operatorname{Br}(\overline{S})^{\Gamma}[\operatorname{non} - p]$ and $(\operatorname{Br}(S)/\operatorname{Br}_0(S))[\operatorname{non} - p]$

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If $\operatorname{char}(k) = 0$, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$, $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite. (ii) If $\operatorname{char}(k) = p > 0$ then $\operatorname{Br}(\overline{X})^{\Gamma}[\operatorname{non} - p]$ and $(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$

are finite.

If p > 2 then $\operatorname{Br}(\overline{S})^{\Gamma}[\operatorname{non} - p]$ and $(\operatorname{Br}(S)/\operatorname{Br}_0(S))[\operatorname{non} - p]$ are finite.

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and

 \Rightarrow

- \bar{X} is either an abelian variety, or a product of curves and
- S is a K3 surface/k.

(i) If char(k) = 0, then the groups $\operatorname{Br}(\overline{X})^{\Gamma}$, $\operatorname{Br}(\overline{S})^{\Gamma}$. $\operatorname{Br}(X)/\operatorname{Br}_1(X)$ and $\operatorname{Br}(S)/\operatorname{Br}_0(S)$ are finite. (ii) If char(k) = p > 0 then $\operatorname{Br}(\overline{X})^{\mathsf{\Gamma}}[\operatorname{non} - p]$ and $(\operatorname{Br}(X)/\operatorname{Br}_1(X))[\operatorname{non} - p]$ are finite. If p > 2 then $\operatorname{Br}(\overline{S})^{\Gamma}[\operatorname{non} - p]$ and $(\operatorname{Br}(S)/\operatorname{Br}_0(S))$ [non -p]

are finite.

The case p = 2 for K3 surfaces was settled by Kazuhiro Ito (2017)

Let

Let

• A - an abelian variety over k,

Let

• A - an abelian variety over k, dim(A) = g;

□ > < E > < E >

Ξ.

Let

- A an abelian variety over k, dim(A) = g;
- A^t its dual;

Let

- A an abelian variety over k, dim(A) = g;
- A^t its dual;
- n positive integer that is not divisible by char(k);

2

Let

- A an abelian variety over k, dim(A) = g;
- A^t its dual;
- n positive integer that is not divisible by char(k);

э

• $A[n] := A(\overline{k})[n]$ as a k-group (sub)scheme;

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);

▲ □ ▶ ▲ 三 ▶ ▲

э

- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

Then

Let

- A an abelian variety over k, dim(A) = g;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\overline{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

Then

Groups A[n] and $A^t[n]$

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

Then

Groups A[n] and A^t[n] are finite

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

Then

• Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$ are divisble.

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$ are divisble.
- The quotient

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$ are divisble.
- The quotient $Y = (A \times_k T)/A[2]$

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$ are divisble.
- The quotient $Y = (A \times_k T)/A[2]$ by the diagonal action of A[2]

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$ are divisble.
- The quotient $Y = (A \times_k T)/A[2]$ by the diagonal action of A[2] is the attached **2-covering** $f : Y \to A/A[2] = A$

Let

- A an abelian variety over k, $\dim(A) = g$;
- A^t its dual;
- n positive integer that is not divisible by char(k);
- $A[n] := A(\bar{k})[n]$ as a k-group (sub)scheme;
- T a k-torsor for A[2].

- Groups A[n] and $A^t[n]$ are finite free \mathbb{Z}/n -modules of rank 2g;
- they have the same order n^{2g} ;
- infinite groups $A(\bar{k})$ and $A^t(\bar{k})$ are divisble.
- The quotient Y = (A ×_k T)/A[2] by the diagonal action of A[2] is the attached 2-covering f : Y → A/A[2] = A induced by projection A ×_k T → A.

$Y = \overline{(A \times_k T)} / \overline{A[2]}$

(ロ) (日) (日) (王) (王) (王) (0,0)

1. $f: Y \rightarrow A \Rightarrow$

1. $f : Y \to A \Rightarrow f$ torsor for A[2],

1. $f: Y \to A \Rightarrow f$ torsor for $A[2], T = \{0\} \times T = f^{-1}(0) \subset Y$.

1. $f: Y \to A \Rightarrow f$ torsor for A[2], $T = \{0\} \times T = f^{-1}(0) \subset Y$. **2.** A acts on Y freely transitively \Rightarrow

1. $f : Y \to A \Rightarrow f$ torsor for A[2], $T = \{0\} \times T = f^{-1}(0) \subset Y$. **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.

1. $f: Y \to A \Rightarrow f$ torsor for $A[2], T = \{0\} \times T = f^{-1}(0) \subset Y$.

- **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.
- **3.** Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .

- **1.** $f: Y \to A \Rightarrow f$ torsor for $A[2], T = \{0\} \times T = f^{-1}(0) \subset Y$.
- **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.
- **3.** Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .
- **4.** Involution $\iota_A = [-1] : A \to A$

- **1.** $f: Y \to A \Rightarrow f$ torsor for $A[2], T = \{0\} \times T = f^{-1}(0) \subset Y$.
- **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.
- **3.** Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .
- **4.** Involution $\iota_A = [-1] : A \to A \Rightarrow$

- **1.** $f: Y \to A \Rightarrow f$ torsor for $A[2], T = \{0\} \times T = f^{-1}(0) \subset Y$.
- **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.
- **3.** Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .
- **4.** Involution $\iota_A = [-1] : A \to A \Rightarrow$ involution $\iota_Y : Y \to Y$.

1. $f: Y \to A \Rightarrow f$ torsor for $A[2], T = \{0\} \times T = f^{-1}(0) \subset Y$.

(日) (同) (三) (三)

3

- **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.
- **3.** Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .
- **4.** Involution $\iota_A = [-1] : A \to A \Rightarrow$ involution $\iota_Y : Y \to Y$.
- **5.** Let $\sigma: Y' \to Y$ be the blow-up of $T \subset Y$.

- **1.** $f: Y \to A \Rightarrow f$ torsor for A[2], $T = \{0\} \times T = f^{-1}(0) \subset Y$.
- **2.** A acts on Y freely transitively \Rightarrow Y an A-torsor.
- **3.** Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .
- **4.** Involution $\iota_A = [-1] : A \to A \Rightarrow$ involution $\iota_Y : Y \to Y$.
- **5.** Let $\sigma: Y' \to Y$ be the blow-up of $T \subset Y$. Since $\iota_Y: Y \to Y$ preserves $T \Rightarrow$

f: Y → A ⇒ f torsor for A[2], T = {0} × T = f⁻¹(0) ⊂ Y.
 A acts on Y freely transitively ⇒ Y an A-torsor.
 Hence, there is an isomorphism of varieties Y ≅ A over k.
 Involution ι_A = [-1] : A → A ⇒ involution ι_Y : Y → Y.
 Let σ : Y' → Y be the blow-up of T ⊂ Y. Since ι_Y : Y → Y preserves T ⇒ ι_Y lifts to the involution ι_{Y'} : Y' → Y'.

1.
$$f : Y \to A \Rightarrow f$$
 torsor for $A[2]$, $T = \{0\} \times T = f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A -torsor.
3. Hence, there is an isomorphism of varieties $\overline{Y} \cong \overline{A}$ over \overline{k} .
4. Involution $\iota_A = [-1] : A \to A \Rightarrow$ involution $\iota_Y : Y \to Y$.
5. Let $\sigma : Y' \to Y$ be the blow-up of $T \subset Y$. Since $\iota_Y : Y \to Y$ preserves $T \Rightarrow \iota_Y$ lifts to the involution $\iota_{Y'} : Y' \to Y'$.

(ロ) (日) (日) (王) (王) (王) (0,0)

Definition.

f: Y → A ⇒ f torsor for A[2], T = {0} × T = f⁻¹(0) ⊂ Y.
 A acts on Y freely transitively ⇒ Y an A-torsor.
 Hence, there is an isomorphism of varieties Y ≅ A over k.
 Involution ι_A = [-1] : A → A ⇒ involution ι_Y : Y → Y.
 Let σ : Y' → Y be the blow-up of T ⊂ Y. Since ι_Y : Y → Y preserves T ⇒ ι_Y lifts to the involution ι_{Y'} : Y' → Y'.

Definition. The Kummer variety attached to Y is the quotient $X = Y'/\iota_{Y'}$.

f: Y → A ⇒ f torsor for A[2], T = {0} × T = f⁻¹(0) ⊂ Y.
 A acts on Y freely transitively ⇒ Y an A-torsor.
 Hence, there is an isomorphism of varieties Y ≅ A over k.
 Involution ι_A = [-1]: A → A ⇒ involution ι_Y: Y → Y.
 Let σ: Y' → Y be the blow-up of T ⊂ Y. Since ι_Y: Y → Y preserves T ⇒ ι_Y lifts to the involution ι_{Y'}: Y' → Y'.

Definition. The Kummer variety attached to Y is the quotient $X = Y'/\iota_{Y'}$.

It is a smooth absolutely irreducible projective variety over k. Moreover,

f: Y → A ⇒ f torsor for A[2], T = {0} × T = f⁻¹(0) ⊂ Y.
 A acts on Y freely transitively ⇒ Y an A-torsor.
 Hence, there is an isomorphism of varieties Y ≃ A over k.
 Involution ι_A = [-1]: A → A ⇒ involution ι_Y: Y → Y.
 Let σ: Y' → Y be the blow-up of T ⊂ Y. Since ι_Y: Y → Y preserves T ⇒ ι_Y lifts to the involution ι_{Y'}: Y' → Y'.

Definition. The Kummer variety attached to Y is the quotient $X = Y'/\iota_{Y'}$.

It is a smooth absolutely irreducible projective variety over k. Moreover,

• $\pi: Y' \to X$ is a double covering;

f: Y → A ⇒ f torsor for A[2], T = {0} × T = f⁻¹(0) ⊂ Y.
 A acts on Y freely transitively ⇒ Y an A-torsor.
 Hence, there is an isomorphism of varieties Y ≃ A over k.
 Involution ι_A = [-1]: A → A ⇒ involution ι_Y: Y → Y.
 Let σ: Y' → Y be the blow-up of T ⊂ Y. Since ι_Y: Y → Y preserves T ⇒ ι_Y lifts to the involution ι_{Y'}: Y' → Y'.

Definition. The Kummer variety attached to Y is the quotient $X = Y'/\iota_{Y'}$.

It is a smooth absolutely irreducible projective variety over k. Moreover,

• $\pi: Y' \to X$ is a double covering;

■ its branch locus is a smooth divisor *E*;

f: Y → A ⇒ f torsor for A[2], T = {0} × T = f⁻¹(0) ⊂ Y.
 A acts on Y freely transitively ⇒ Y an A-torsor.
 Hence, there is an isomorphism of varieties Y ≃ A over k.
 Involution ι_A = [-1]: A → A ⇒ involution ι_Y: Y → Y.
 Let σ: Y' → Y be the blow-up of T ⊂ Y. Since ι_Y: Y → Y preserves T ⇒ ι_Y lifts to the involution ι_{Y'}: Y' → Y'.

Definition. The Kummer variety attached to Y is the quotient $X = Y'/\iota_{Y'}$.

It is a smooth absolutely irreducible projective variety over k. Moreover,

• $\pi: Y' \to X$ is a double covering;

■ its branch locus is a smooth divisor *E*;

•
$$\overline{E} = \sigma^{-1}(\overline{T})$$
 is the disjoint union of 2^{2g} copies of $\mathbb{P}^{g-1}_{\overline{k}}$.

(ロ) (日) (日) (王) (王) (王) (0,0)

6. A[2] acts on A by translations \Rightarrow

6. A[2] acts on A by translations \Rightarrow Y is the twisted form of A

6. A[2] acts on A by translations \Rightarrow Y is the twisted form of A defined by a 1-cocycle with coefficients in A[2]

6. A[2] acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in A[2] representing the class of T

6. A[2] acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in A[2] representing the class of T in $H^1(k, A[2])$.

6. A[2] acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in A[2] representing the class of T in $H^1(k, A[2])$.

(日) (同) (三) (三)

3

7. There is an exact sequence of Γ -modules

イロト イポト イヨト イヨト

3

7. There is an exact sequence of Γ -modules

 $0 \longrightarrow A^{t}(\overline{k}) \longrightarrow \operatorname{Pic}(\overline{Y}) \longrightarrow \operatorname{NS}(\overline{Y}) \longrightarrow 0.$

(日) (同) (三) (三)

- 7. There is an exact sequence of Γ -modules
- $0 \longrightarrow \mathcal{A}^{t}(\overline{k}) \longrightarrow \operatorname{Pic}(\overline{Y}) \longrightarrow \operatorname{NS}(\overline{Y}) \longrightarrow 0.$
- **8.** The abelian groups $NS(\overline{Y})$ and $NS(\overline{A})$ are isomorphic.

7. There is an exact sequence of Γ -modules

$$0 \longrightarrow A^{t}(\overline{k}) \longrightarrow \operatorname{Pic}(\overline{Y}) \longrightarrow \operatorname{NS}(\overline{Y}) \longrightarrow 0.$$

- **8.** The abelian groups $NS(\overline{Y})$ and $NS(\overline{A})$ are isomorphic.
- **9.** Also $NS(\overline{Y}) \cong NS(\overline{A})$ as Γ -modules

7. There is an exact sequence of Γ -modules

$$0 \longrightarrow A^{t}(\overline{k}) \longrightarrow \operatorname{Pic}(\overline{Y}) \longrightarrow \operatorname{NS}(\overline{Y}) \longrightarrow 0.$$

8. The abelian groups $NS(\overline{Y})$ and $NS(\overline{A})$ are isomorphic.

9. Also $NS(\overline{Y}) \cong NS(\overline{A})$ as Γ -modules, because translations by elements of $A(\overline{k})$ act trivially on $NS(\overline{A})$.

There is an exact sequence of Γ-modules
 0 → A^t(k) → Pic(Y) → NS(Y) → 0.
 The abelian groups NS(Y) and NS(A) are isomorphic.
 Also NS(Y) ≅ NS(A) as Γ-modules, because translations by elements of A(k) act trivially on NS(A).
 ι_Y acts on Pic⁰(Y) = A^t(k) as [-1],

7. There is an exact sequence of Γ-modules
0 → A^t(k̄) → Pic(Ȳ) → NS(Ȳ) → 0.
8. The abelian groups NS(Ȳ) and NS(Ā) are isomorphic.
9. Also NS(Ȳ) ≅ NS(Ā) as Γ-modules, because translations by elements of A(k̄) act trivially on NS(Ā).
10. ι_Y acts on Pic⁰(Ȳ) = A^t(k̄) as [-1], A^t(k̄) is divisible

There is an exact sequence of Γ-modules
 0 → A^t(k̄) → Pic(Ȳ) → NS(Ȳ) → 0.
 The abelian groups NS(Ȳ) and NS(Ā) are isomorphic.
 Also NS(Ȳ) ≅ NS(Ā) as Γ-modules, because translations by elements of A(k̄) act trivially on NS(Ā).
 *ι*_Y acts on Pic⁰(Ȳ) = A^t(k̄) as [-1], A^t(k̄) is divisible

 $\Rightarrow \mathrm{H}^{0}(\langle \iota_{Y} \rangle, A^{t}(\bar{k})) = A^{t}[2], \quad \mathrm{H}^{1}(\langle \iota_{Y} \rangle, A^{t}(\bar{k})) = 0.$

There is an exact sequence of Γ-modules
 0 → A^t(k̄) → Pic(Ȳ) → NS(Ȳ) → 0.
 The abelian groups NS(Ȳ) and NS(Ā) are isomorphic.
 Also NS(Ȳ) ≅ NS(Ā) as Γ-modules, because translations by elements of A(k̄) act trivially on NS(Ā).
 ι_Y acts on Pic⁰(Ȳ) = A^t(k̄) as [-1], A^t(k̄) is divisible ⇒ H⁰(⟨ι_Y⟩, A^t(k̄)) = A^t[2], H¹(⟨ι_Y⟩, A^t(k̄)) = 0.

11. We get an exact sequence of Γ -modules

7. There is an exact sequence of Γ-modules
0 → A^t(k̄) → Pic(Ȳ) → NS(Ȳ) → 0.
8. The abelian groups NS(Ȳ) and NS(Ā) are isomorphic.
9. Also NS(Ȳ) ≅ NS(Ā) as Γ-modules, because translations by elements of A(k̄) act trivially on NS(Ā).
10. ι_Y acts on Pic⁰(Ȳ) = A^t(k̄) as [-1], A^t(k̄) is divisible ⇒ H⁰(⟨ι_Y⟩, A^t(k̄)) = A^t[2], H¹(⟨ι_Y⟩, A^t(k̄)) = 0.
11. We get an exact sequence of Γ-modules 0 → A^t[2] → Pic(Ȳ)^{ι_Y} → NS(Ȳ) → 0.

7. There is an exact sequence of Γ-modules
0 → A^t(k̄) → Pic(Ȳ) → NS(Ȳ) → 0.
8. The abelian groups NS(Ȳ) and NS(Ā) are isomorphic.
9. Also NS(Ȳ) ≅ NS(Ā) as Γ-modules, because translations by elements of A(k̄) act trivially on NS(Ā).
10. ι_Y acts on Pic⁰(Ȳ) = A^t(k̄) as [-1], A^t(k̄) is divisible ⇒ H⁰(⟨ι_Y⟩, A^t(k̄)) = A^t[2], H¹(⟨ι_Y⟩, A^t(k̄)) = 0.
11. We get an exact sequence of Γ-modules 0 → A^t[2] → Pic(Ȳ)^{ι_Y} → NS(Ȳ) → 0.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ──のへの

Example (V. Nikulin, 1975).

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow$

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A. Properties.

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

3

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

э

Properties. Let X be a Kummer variety over $k = \mathbb{C}$.

1. X is simply connected;

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

э

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

< 🗇 > < 🖃 > <

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$,

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

< 🗇 🕨 < 🖻 🕨 <

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$, $b_{2i+1} = 0$,

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;

3. Betti numbers
$$b_0 = b_{2g} = 1$$
, $b_{2i+1} = 0$,

$$b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$$
, where $0 < i < n$.

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;

3. Betti numbers
$$b_0 = b_{2g} = 1$$
, $b_{2i+1} = 0$,
 $b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$, where $0 < i < n$.
• E. Spanier (1956);

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$, $b_{2i+1} = 0$, $b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$, where 0 < i < n. • E. Spanier (1956);
- 4. for $g \ge 1$ the canonical class $K_X = \frac{1}{2}(g-2)[E]$

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$, $b_{2i+1} = 0$, $b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$, where 0 < i < n.
- E. Spanier (1956);
- 4. for $g \ge 1$ the canonical class $K_X = \frac{1}{2}(g-2)[E]$
- 5. so for g > 2 it contains an effective divisor;

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$, $b_{2i+1} = 0$, $b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$, where 0 < i < n.
- E. Spanier (1956);
- 4. for $g \ge 1$ the canonical class $K_X = \frac{1}{2}(g-2)[E]$
- so for g > 2 it contains an effective divisor; (hence X is not Calabi-Yau!)

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$, $b_{2i+1} = 0$, $b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$, where 0 < i < n.
- E. Spanier (1956);
- 4. for $g \ge 1$ the canonical class $K_X = \frac{1}{2}(g-2)[E]$
- so for g > 2 it contains an effective divisor; (hence X is not Calabi-Yau!)
- 6. Kodaira dimension $\kappa(X) = 0$;

Example (V. Nikulin, 1975). $g = \dim(A) = 2$ and $T = A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k = \mathbb{C}$.

- 1. X is simply connected;
- 2. $H^i(X,\mathbb{Z})$ are torsion-free;
- 3. Betti numbers $b_0 = b_{2g} = 1$, $b_{2i+1} = 0$, $b_{2i} = \begin{pmatrix} 2g \\ 2i \end{pmatrix} + 2^{2g}$, where 0 < i < n.
- E. Spanier (1956);
- 4. for $g \ge 1$ the canonical class $K_X = \frac{1}{2}(g-2)[E]$
- so for g > 2 it contains an effective divisor; (hence X is not Calabi-Yau!)

・ロト ・回ト ・ヨト ・ヨト

- 6. Kodaira dimension $\kappa(X) = 0$;
- K. Ueno (1971, 1975).

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 めんの

Proposition (S-Z, 2016).

Proposition (S-Z, 2016). X a Kummer variety

Proposition (S-Z, 2016). X a Kummer variety $chark \neq 2 \Rightarrow$

Proposition (S-Z, 2016). X a Kummer variety $\operatorname{char} k \neq 2 \Rightarrow$ (i) $\operatorname{Pic}^{0}(\overline{X}) = 0$.

Proposition (S-Z, 2016). X a Kummer variety char $k \neq 2 \Rightarrow$

Proposition (S-Z, 2016). X a Kummer variety $chark \neq 2 \Rightarrow$

▲□ → ▲ 三 → ▲ 三 →

3

Proposition (S-Z, 2016). X a Kummer variety $chark \neq 2 \Rightarrow$

(i) Pic⁰(X) = 0.
(ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
(iii) H¹_{ét}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
(iv) H²_{ét}(X, Z_ℓ) is torsion-free for any prime ℓ ≠ char(k).

Proposition (S-Z, 2016). X a Kummer variety $chark \neq 2 \Rightarrow$

(i) Pic⁰(X) = 0.
(ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
(iii) H¹_{ét}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
(iv) H²_{ét}(X, Z_ℓ) is torsion-free for any prime ℓ ≠ char(k).
(v) g > 2 ⇒ K_X ≠ 0 and contains an effective divisor.

Proposition (S-Z, 2016). X a Kummer variety $chark \neq 2 \Rightarrow$

(i) Pic⁰(X) = 0.
(ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
(iii) H¹_{ét}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
(iv) H²_{ét}(X, Z_ℓ) is torsion-free for any prime ℓ ≠ char(k).
(v) g > 2 ⇒ K_X ≠ 0 and contains an effective divisor.(In particular, X is not Calabi-Yau!)

(i)
$$\operatorname{Pic}^{0}(\overline{X}) = 0.$$

- (ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
 (iii) H¹_{δt}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
- (iv) $H^2_{\text{ct}}(\overline{X}, \mathbb{Z}_{\ell})$ is torsion-free for any prime $\ell \neq \text{char}(k)$.
- (v) $g > 2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
- (vi) The group $\mathrm{H}^{1}(k, \mathrm{Pic}(\overline{X}))$ is finite.

(i)
$$\operatorname{Pic}^{0}(\overline{X}) = 0.$$

- (ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
 (iii) H¹_{dt}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
- (iv) $H^2_{\text{ét}}(\overline{X}, \mathbb{Z}_{\ell})$ is torsion-free for any prime $\ell \neq \text{char}(k)$.
- (v) $g > 2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
- (vi) The group $\mathrm{H}^{1}(k, \mathrm{Pic}(\overline{X}))$ is finite.
- (vii) The kernel of $\mathrm{H}^{1}(k, \operatorname{Pic}(\overline{X})) \to \mathrm{H}^{1}(k, \operatorname{NS}(\overline{Y}))$ is killed by 2.

(i)
$$\operatorname{Pic}^{0}(\overline{X}) = 0.$$

- (ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
 (iii) H¹_{dt}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
- (iv) $H^2_{\text{ét}}(\overline{X}, \mathbb{Z}_{\ell})$ is torsion-free for any prime $\ell \neq \text{char}(k)$.
- (v) $g > 2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
- (vi) The group $\mathrm{H}^{1}(k, \mathrm{Pic}(\overline{X}))$ is finite.
- (vii) The kernel of $\mathrm{H}^{1}(k, \mathrm{Pic}(\overline{X})) \to \mathrm{H}^{1}(k, \mathrm{NS}(\overline{Y}))$ is killed by 2.
- (viii) If $NS(\overline{A})$ is a trivial Γ -module, then

(i)
$$\operatorname{Pic}^{0}(\overline{X}) = 0.$$

- (ii) Pic(X) = NS(X) is torsion-free of rank 2^{2g} + rk(NS(A)).
 (iii) H¹_{dt}(X, Z_ℓ) = 0 ∀ ℓ ≠ char(k).
- (iv) $\mathrm{H}^{2}_{\acute{\alpha}t}(\overline{X},\mathbb{Z}_{\ell})$ is torsion-free for any prime $\ell \neq \mathrm{char}(k)$.
- (v) $g > 2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
- (vi) The group $\mathrm{H}^{1}(k, \mathrm{Pic}(\overline{X}))$ is finite.
- (vii) The kernel of $\mathrm{H}^{1}(k, \operatorname{Pic}(\overline{X})) \to \mathrm{H}^{1}(k, \operatorname{NS}(\overline{Y}))$ is killed by 2.
- (viii) If $NS(\overline{A})$ is a trivial Γ -module, then every element of odd order in $Br_1(X)$ is contained in $Br_0(X)$.

Theorem (S-Z, 2016). X a Kummer variety,

 Theorem (S-Z, 2016). X a Kummer variety, $char(k) = 0 \Rightarrow$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Theorem (S-Z, 2016). X a Kummer variety, $char(k) = 0 \Rightarrow$ morphisms $\pi : Y' \to X$ and $\sigma : Y' \to Y$

Theorem (S-Z, 2016). X a Kummer variety, $char(k) = 0 \Rightarrow$ morphisms $\pi : Y' \to X$ and $\sigma : Y' \to Y$ induce isomorphisms of Γ -modules

-Y is the twist of A by a 1-cocycle with coefficients in A[2],

(日) (同) (三) (三)

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on Br(\overline{A}) is trivial.

(日) (同) (三) (三)

э

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$

Comments. Right isomorphism:

- -Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.
- $\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $Br(\bar{A})[n]$,

Comments. Right isomorphism:

- -Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.
- $\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $Br(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $Aut(Br(\bar{A})[n])$ is finite.

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. **Middle isomorphism:**

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

- Grothendieck's results about Brauer groups (including a certain exact sequence)

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

– Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E} .

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

– Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E} . Theorem (S-Z, 2016). X Kummer,

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

– Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \overline{E} . Theorem (S-Z, 2016). X Kummer, k finitely generated/ $\mathbb{Q} \Rightarrow$

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

– Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \overline{E} . Theorem (S-Z, 2016). X Kummer, k finitely generated/ $\mathbb{Q} \Rightarrow$ the groups $\operatorname{Br}(X)/\operatorname{Br}_0(X)$ and $\operatorname{Br}(\overline{X})^{\Gamma}$ are finite.

Comments. Right isomorphism:

-Y is the twist of A by a 1-cocycle with coefficients in A[2], -the induced action of A[2] on $Br(\overline{A})$ is trivial.

 $- \forall n$ the whole group $A(\overline{k})$ acts trivially on the finite group $Br(\overline{A})[n]$, since $A(\overline{k})$ is divisible and $Aut(Br(\overline{A})[n])$ is finite. Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

– Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \overline{E} . Theorem (S-Z, 2016). X Kummer, k finitely generated/ $\mathbb{Q} \Rightarrow$ the groups $\operatorname{Br}(X)/\operatorname{Br}_0(X)$ and $\operatorname{Br}(\overline{X})^{\Gamma}$ are finite.

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 めんの

• k(A[n]) - the field of definition of all points of order n on A;

k(A[n]) - the field of definition of all points of order n on A;
μ_n ⊂ k(A[n]) (Serre);

• k(A[n]) - the field of definition of all points of order n on A;

3

- µ_n ⊂ k(A[n]) (Serre);
- Γ acts on A[n]

• k(A[n]) - the field of definition of all points of order n on A;

3

- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$

• k(A[n]) - the field of definition of all points of order n on A;

(日) (國) (문) (문) (문)

- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ-module

k(A[n]) - the field of definition of all points of order n on A;

◆ロ → ◆屈 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{\'et}}(\bar{A}, \mathbb{Z}/n) = \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$

- k(A[n]) the field of definition of all points of order n on A;
- µ_n ⊂ k(A[n]) (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ-module H²_{ét}(Ā, ℤ/n) = Hom_{ℤ/n}(Λ²_{ℤ/n}A[n], μ_n) is the (free) ℤ/n-module of alternating bilinear forms

▲ 御 ▶ → 注 ▶ → 注 ▶ →

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n]

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n] with values in μ_n ; \Rightarrow

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \text{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n] with values in μ_n ; \Rightarrow it is actually a $\tilde{G}_{n,A}$ -module;

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \text{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n] with values in μ_n ; \Rightarrow it is actually a $\tilde{G}_{n,A}$ -module;

• $0 \to \operatorname{NS}(\bar{A})/n \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n) \to \operatorname{Br}(\bar{A})[n] \to 0.$

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \text{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n] with values in μ_n ; \Rightarrow it is actually a $\tilde{G}_{n,A}$ -module;

•
$$0 \to \operatorname{NS}(\overline{A})/n \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n) \to \operatorname{Br}(\overline{A})[n] \to 0.$$

If $NS(\overline{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \text{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n] with values in μ_n ; \Rightarrow it is actually a $\tilde{G}_{n,A}$ -module;
- $0 \to \operatorname{NS}(\bar{A})/n \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n) \to \operatorname{Br}(\bar{A})[n] \to 0.$

If $NS(\overline{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially on $NS(\overline{A})$

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ -module $H^2_{\text{ét}}(\bar{A}, \mathbb{Z}/n) = \text{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)$ is the (free) \mathbb{Z}/n -module of *alternating bilinear* forms on A[n] with values in μ_n ; \Rightarrow it is actually a $\tilde{G}_{n,A}$ -module;

•
$$0 \to \operatorname{NS}(\bar{A})/n \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n) \to \operatorname{Br}(\bar{A})[n] \to 0.$$

If $NS(\overline{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially on $NS(\overline{A})) \Rightarrow$

 $0 \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n],\mu_n)^{\Gamma}/(\operatorname{NS}{(\bar{A})/n}) \to (\operatorname{Br}(\bar{A})[n])^{\Gamma} \to$

- k(A[n]) the field of definition of all points of order n on A;
- $\mu_n \subset k(A[n])$ (Serre);
- Γ acts on A[n] through finite $\tilde{G}_{n,A} := \operatorname{Gal}(k(A[n])/k);$
- the Γ-module H²_{ét}(Ā, ℤ/n) = Hom_{ℤ/n}(Λ²_{ℤ/n}A[n], μ_n) is the (free) ℤ/n-module of alternating bilinear forms on A[n] with values in μ_n; ⇒it is actually a G̃_{n,A}-module;

•
$$0 \to \operatorname{NS}(\overline{A})/n \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n) \to \operatorname{Br}(\overline{A})[n] \to 0.$$

If $NS(\overline{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts **trivially** on $NS(\overline{A})) \Rightarrow$

 $0 \to \operatorname{Hom}_{\mathbb{Z}/n}(\Lambda^2_{\mathbb{Z}/n}A[n], \mu_n)^{\Gamma}/(\operatorname{NS}{(\bar{A})/n}) \to (\operatorname{Br}(\bar{A})[n])^{\Gamma} \to$

 $H^1(\tilde{G}_{n,A}, \operatorname{NS}{(\bar{A})}/n) \cong \operatorname{Hom}(\tilde{G}_{n,A}, \mathbb{Z}/n).$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

• $n = \ell$ is a prime;

• $n = \ell$ is a prime;

・ロン ・回 と ・ ヨン ・ ヨン …

= 900

• $NS(\bar{A}) \cong Z;$

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module $A[\ell]$ is absolutely simple;

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ .

2

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ .

2

Then

$$-\operatorname{Hom}_{\mathbb{F}_{\ell}}(\Lambda^{2}_{\mathbb{F}_{\ell}}A[\ell],\mu_{\ell})^{\tilde{\mathsf{G}}_{\ell,A}}=\mathbb{Z}/\ell$$

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ .

- 4 同 6 4 日 6 4 日 6

3

Then

- $-\operatorname{Hom}_{\mathbb{F}_\ell}(\Lambda^2_{\mathbb{F}_\ell}A[\ell],\mu_\ell)^{\tilde{G}_{\ell,A}}=\mathbb{Z}/\ell \Rightarrow$
- $-\operatorname{Hom}_{\mathbb{F}_{\ell}}(\Lambda^{2}_{\mathbb{F}_{\ell}}A[\ell],\mu_{\ell})^{\tilde{G}_{\ell,A}}/\left(\operatorname{NS}{(\bar{A})}/\ell\right)=0.$

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ .

- 4 同 6 4 日 6 4 日 6

э

Then

- $-\operatorname{Hom}_{\mathbb{F}_{\ell}}(\Lambda^{2}_{\mathbb{F}_{\ell}}A[\ell],\mu_{\ell})^{\tilde{G}_{\ell,A}}=\mathbb{Z}/\ell \Rightarrow$
- $-\operatorname{Hom}_{\mathbb{F}_{\ell}}(\Lambda^{2}_{\mathbb{F}_{\ell}}\mathcal{A}[\ell],\mu_{\ell})^{\tilde{G}_{\ell,A}}/\left(\operatorname{NS}\left(\bar{\mathcal{A}}\right)/\ell\right)=0.$
- $-\operatorname{Hom}(\tilde{\textit{G}}_{\ell,\textit{A}},\mathbb{Z}/\ell)=0$

- $n = \ell$ is a prime;
- $NS(\bar{A}) \cong Z;$
- the $\tilde{G}_{\ell,A}$ -module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ .

3

Then

$$-\operatorname{Hom}_{\mathbb{F}_{\ell}}(\Lambda^{2}_{\mathbb{F}_{\ell}}A[\ell],\mu_{\ell})^{\tilde{G}_{\ell,A}} = \mathbb{Z}/\ell \Rightarrow$$

$$-\operatorname{Hom}_{\mathbb{F}_{\ell}}(\Lambda^{2}_{\mathbb{F}_{\ell}}\mathcal{A}[\ell],\mu_{\ell})^{\tilde{G}_{\ell,A}}/\left(\operatorname{NS}\left(\bar{A}\right)/\ell\right)=0.$$

 $-\operatorname{Hom}(\widetilde{G}_{\ell,A},\mathbb{Z}/\ell)=0$

Therefore $\operatorname{Br}(\overline{A})[\ell]^{\Gamma} = 0.$

Proposition (S-Z, 2016). Assume that

= 900

メロト メポト メヨト メヨト

Assume that

•
$$NS(\overline{A}) \cong \mathbb{Z};$$

ъ.

- 4 聞 と 4 注 と 4 注 と

Assume that

• NS
$$(\bar{A}) \cong \mathbb{Z};$$

• ℓ is a prime;

Assume that

- $NS(\bar{A}) \cong \mathbb{Z};$
- \blacksquare ℓ is a prime; ,
- the $\tilde{G}_{\ell,A}$ -module is absolutely simple;

< 回 > < 三 > < 三 >

Ξ.

Assume that

- $NS(\bar{A}) \cong \mathbb{Z};$
- $\blacksquare \ \ell$ is a prime; ,
- the $\tilde{G}_{\ell,A}$ -module is absolutely simple;
- $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ ;

э

Assume that

- $NS(\bar{A}) \cong \mathbb{Z};$
- \blacksquare ℓ is a prime; ,

• the $\tilde{G}_{\ell,A}$ -module is absolutely simple;

• $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ ; Then $|\operatorname{Br}(\bar{A})^{\Gamma}| = |\operatorname{Br}(\bar{X})^{\Gamma}|$ is prime to ℓ .

Assume that

- $NS(\bar{A}) \cong \mathbb{Z};$
- \blacksquare ℓ is a prime; ,
- the $\tilde{G}_{\ell,A}$ -module is absolutely simple;

• $\tilde{G}_{\ell,A}$ does not contain a normal subgroup of index ℓ ; Then $|\operatorname{Br}(\bar{A})^{\Gamma}| = |\operatorname{Br}(\bar{X})^{\Gamma}|$ is prime to ℓ .

Here is a more elaborated version.

Theorem (S-Z, 2016).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Theorem (S-Z, 2016). Let char(k) = 0,

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Theorem (S-Z, 2016). Let $char(k) = 0, A_1, \ldots, A_n$ be abelian varieties over k

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(日) (同) (三) (三)

3

- (a) The fields $k(A_i[\ell])$ are linearly disjoint over k;
- (b) The Γ -module $A_i[\ell]$ is absolutely simple;

3

- (a) The fields $k(A_i[\ell])$ are linearly disjoint over k;
- (b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) $NS(\overline{A}_i) \cong \mathbb{Z};$

<ロ> <同> <同> < 回> < 回>

э.

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) NS
$$(\overline{A}_i) \cong \mathbb{Z};$$

(d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that

- (a) The fields $k(A_i[\ell])$ are linearly disjoint over k;
- (b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) NS
$$(\overline{A}_i) \cong \mathbb{Z};$$

- (d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that
 - *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

э.

- (a) The fields $k(A_i[\ell])$ are linearly disjoint over k;
- (b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) NS $(\overline{A}_i) \cong \mathbb{Z};$

(d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that

■ *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

 $\blacksquare \nexists F_i \leq H_i \text{ with } [H_i : F_i] = \ell.$

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) NS $(\overline{A}_i) \cong \mathbb{Z};$

(d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that

■ *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

• $\nexists F_i \leq H_i$ with $[H_i : F_i] = \ell$.

Let $A = \prod_{i=1}^{n} A_i$.

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) NS
$$(\overline{A}_i) \cong \mathbb{Z};$$

(d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that

■ *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

• $\nexists F_i \leq H_i$ with $[H_i : F_i] = \ell$.

Let $A = \prod_{i=1}^{n} A_i$. Then

 $\operatorname{Br}(\overline{A})[\ell]^{\Gamma} = 0.$

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c) NS
$$(\overline{A}_i) \cong \mathbb{Z};$$

(d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that

■ *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

• $\nexists F_i \leq H_i$ with $[H_i : F_i] = \ell$.

Let $A = \prod_{i=1}^{n} A_i$. Then

 $\operatorname{Br}(\overline{A})[\ell]^{\Gamma} = 0.$

Moreover, if $\dim(A) \geq 2$,

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c)
$$NS(\overline{A}_i) \cong \mathbb{Z};$$

- (d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that
 - *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

• $\nexists F_i \leq H_i$ with $[H_i : F_i] = \ell$.

Let $A = \prod_{i=1}^{n} A_i$. Then Br $(\overline{A})[\ell]^{\Gamma} = 0.$

Moreover, if $\dim(A) \ge 2$, X is a Kummer, attached to a 2-covering of $A \Rightarrow$

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c)
$$NS(\overline{A}_i) \cong \mathbb{Z};$$

- (d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that
 - *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

• $\nexists F_i \leq H_i$ with $[H_i : F_i] = \ell$.

Let $A = \prod_{i=1}^{n} A_i$. Then Br $(\overline{A})[\ell]^{\Gamma} = 0.$

Moreover, if $\dim(A) \ge 2$, X is a Kummer, attached to a 2-covering of $A \Rightarrow$

 $\operatorname{Br}(\overline{X})[\ell]^{\Gamma} = 0.$

◆□> ◆□> ◆三> ◆三> ・三> のへで

(a) The fields $k(A_i[\ell])$ are linearly disjoint over k;

(b) The Γ -module $A_i[\ell]$ is absolutely simple;

(c)
$$NS(\overline{A}_i) \cong \mathbb{Z};$$

- (d) $\exists H_i \subset \operatorname{Gal}(k(A_i[\ell])/k)$ such that
 - *H_i*-module *A_i*[ℓ] is simple, and absolutely simple when dim(*A_i*) > 1;

• $\nexists F_i \leq H_i$ with $[H_i : F_i] = \ell$.

Let $A = \prod_{i=1}^{n} A_i$. Then Br $(\overline{A})[\ell]^{\Gamma} = 0.$

Moreover, if $\dim(A) \ge 2$, X is a Kummer, attached to a 2-covering of $A \Rightarrow$

 $\operatorname{Br}(\overline{X})[\ell]^{\Gamma} = 0.$

◆□> ◆□> ◆三> ◆三> ・三> のへで

 $-\mathbf{S}_m$ - the symmetric group on m letters,

 $-\mathbf{S}_m$ - the symmetric group on m letters, $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on m letters.

個 と く ヨ と く ヨ と

э

- $-\mathbf{S}_m$ the symmetric group on m letters,
- $-\mathbf{A}_m \subset \mathbf{S}_m$ the alternating group on m letters.
- Ex. I. Condition (d) does not hold. (S-Z, 2012).

- $-\mathbf{S}_m$ the symmetric group on m letters,
- $-\mathbf{A}_m \subset \mathbf{S}_m$ the alternating group on m letters.
- Ex. I. Condition (d) does not hold. (S-Z, 2012). If

э

- $-\mathbf{S}_m$ the symmetric group on m letters,
- $-\mathbf{A}_m \subset \mathbf{S}_m$ the alternating group on m letters.
- Ex. I. Condition (d) does not hold. (S-Z, 2012). If
- E-elliptic curve over k without CM

- $-\mathbf{S}_m$ the symmetric group on m letters, $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on m letters.
- Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$

 $-\mathbf{S}_m$ - the symmetric group on m letters, $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ $-A = E \times E.$

A (1) > A (2) > A

 $-\mathbf{S}_m$ - the symmetric group on *m* letters, $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on *m* letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ $-A = E \times E.$ Then $\operatorname{Gal}(k(A[2])/k) = \operatorname{Gal}(k(E[2])/k)$

- 4 同 ト 4 ヨ ト 4 ヨ ト

 $-\mathbf{S}_m$ - the symmetric group on *m* letters, $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on *m* letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ $-A = E \times E.$ Then $\operatorname{Gal}(k(A[2])/k) = \operatorname{Gal}(k(E[2])/k)$ and

- 4 同 6 4 日 6 4 日 6

 $-\mathbf{S}_m$ - the symmetric group on *m* letters,

 $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ $-A = E \times E.$ Then $\operatorname{Gal}(k(A[2])/k) = \operatorname{Gal}(k(E[2])/k)$ and there is a Galois-invariant element in $\operatorname{Br}(\overline{A})[2]$ $-\mathbf{S}_m$ - the symmetric group on m letters,

 $-\mathbf{A}_m \subset \mathbf{S}_m$ - the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ $-A = E \times E.$ Then $\operatorname{Gal}(k(A[2])/k) = \operatorname{Gal}(k(E[2])/k)$ and there is a Galois-invariant element in $\operatorname{Br}(\overline{A})[2]$ that does not come from a Galois-invariant element of $\operatorname{H}^2(\overline{A}, \mu_2)$.

- $-\mathbf{S}_m$ the symmetric group on m letters,
- $-\mathbf{A}_m \subset \mathbf{S}_m$ the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If – *E*-elliptic curve over *k* without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ – $A = E \times E$. Then $\operatorname{Gal}(k(A[2])/k) = \operatorname{Gal}(k(E[2])/k)$ and there is a Galois-invariant element in $\operatorname{Br}(\overline{A})[2]$ that does not come from a Galois-invariant element of $\operatorname{H}^2(\overline{A}, \mu_2)$. –Here $H = \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3$.

- $-\mathbf{S}_m$ the symmetric group on m letters,
- $-\mathbf{A}_m \subset \mathbf{S}_m$ the alternating group on m letters.

Ex. I. Condition (d) does not hold. (S-Z, 2012). If -E-elliptic curve over k without CM with $\operatorname{Gal}(k(E[2])/k) \cong \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3;$ $-A = E \times E.$ Then $\operatorname{Gal}(k(A[2])/k) = \operatorname{Gal}(k(E[2])/k)$ and there is a Galois-invariant element in $\operatorname{Br}(\overline{A})[2]$ that does not come from a Galois-invariant element of $\operatorname{H}^2(\overline{A}, \mu_2)$. $-\operatorname{Here} H = \operatorname{GL}(2, \mathbb{F}_2) = \mathbf{S}_3.$ So, the condition that H has no normal subgroup of index ℓ cannot

be removed.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Examples of A_i that meet conditions of the Theorem.

Ξ.

Examples of A_i that meet conditions of the Theorem. Ex. II. (Z, 1999 - 2004).

Examples of A_i that meet conditions of the Theorem. Ex. II. (Z, 1999 - 2004). If

Examples of A_i that meet conditions of the Theorem. Ex. II. (Z, 1999 - 2004). If $1 \operatorname{char}(k) \neq 2, 3;$

Ξ.

- Ex. II. (Z, 1999 2004). If
 - 1 $char(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree d ≥ 5

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve,

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve, $g = \frac{d-1}{2}$;

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve, $g = \frac{d-1}{2}$;
 - 4 $J(C_f)$ its jacobian, a g-dimensional abelian variety over k.

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve, $g = \frac{d-1}{2}$;
- **4** $J(C_f)$ its jacobian, a *g*-dimensional abelian variety over *k*. Then

Examples of A_i that meet conditions of the Theorem.

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve, $g = \frac{d-1}{2}$;
 - **4** $J(C_f)$ its jacobian, a g-dimensional abelian variety over k.

Then the Galois module $J(C_f)_2$ is absolutely simple,

Examples of A_i that meet conditions of the Theorem.

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve, $g = \frac{d-1}{2}$;
 - **4** $J(C_f)$ its jacobian, a *g*-dimensional abelian variety over *k*.

Then the Galois module $J(C_f)_2$ is absolutely simple, End $(\overline{J(C_f)}) = \mathbb{Z}$,

Examples of A_i that meet conditions of the Theorem.

- Ex. II. (Z, 1999 2004). If
 - 1 $\operatorname{char}(k) \neq 2, 3;$
 - f(x) ∈ K[x] is an irreducible separable polynomial of degree
 d ≥ 5 such that Gal(f) is either S_d or A_d;
 - 3 $C_f := \{y^2 = f(x)\} \subset \mathbb{A}^2$ hyperelliptic curve, $g = \frac{d-1}{2}$;
 - **4** $J(C_f)$ its jacobian, a g-dimensional abelian variety over k.

Then the Galois module $J(\underline{C_f})_2$ is absolutely simple, End $(\overline{J(C_f)}) = \mathbb{Z}$, and NS $(\overline{J(C_f)}) \cong \mathbb{Z}$.

Generalization of this example

▲ロ▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ──のへの

Generalization of this example

Theorem (S-Z, 2016).

Theorem (S-Z, 2016). Let k be a field of characteristic zero.

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$,

э

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$,

э

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$, i = 1, ..., n, is a separable polynomial of

э

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$, i = 1, ..., n, is a separable polynomial of either odd degree $d_i \ge 5$ Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$, i = 1, ..., n, is a separable polynomial of either odd degree $d_i \ge 5$ with Galois group \mathbf{S}_{d_i} or \mathbf{A}_{d_i} , Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$, i = 1, ..., n, is a separable polynomial of either odd degree $d_i \ge 5$ with Galois group \mathbf{S}_{d_i} or \mathbf{A}_{d_i} , or of degree 3 Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$, i = 1, ..., n, is a separable polynomial of either odd degree $d_i \ge 5$ with Galois group \mathbf{S}_{d_i} or \mathbf{A}_{d_i} , or of degree 3 with Galois group \mathbf{S}_3 . Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves $y^2 = f_i(x)$, where $f_i(x) \in k[x]$, i = 1, ..., n, is a separable polynomial of either odd degree $d_i \ge 5$ with Galois group \mathbf{S}_{d_i} or \mathbf{A}_{d_i} , or of degree 3 with Galois group \mathbf{S}_3 . Assume that $g = \sum_{i=1}^n (d_i - 1)/2 \ge 2$

If X is the Kummer variety attached to a 2-covering of A,

If X is the Kummer variety attached to a 2-covering of A, then $\operatorname{Br}(\overline{X})[2]^{\Gamma} = 0.$

If X is the Kummer variety attached to a 2-covering of A, then $\operatorname{Br}(\overline{X})[2]^{\Gamma} = 0.$

More!!!

If X is the Kummer variety attached to a 2-covering of A, then $\operatorname{Br}(\overline{X})[2]^{\Gamma} = 0.$

More!!! If k is a number field and X is everywhere locally soluble, then

If X is the Kummer variety attached to a 2-covering of A, then $\operatorname{Br}(\overline{X})[2]^{\Gamma} = 0.$

More!!! If k is a number field and X is everywhere locally soluble, then $X(\mathbb{A}_k)^{\operatorname{Br}} \neq \emptyset.$ • We write \mathbb{A}_k for the ring of adèles of k.

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$,

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.

< 🗇 > < 🖃 > <

э

• The Brauer–Manin pairing $X(\mathbb{A}_k) \times \operatorname{Br}(X) \to \mathbb{Q}/\mathbb{Z}$

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.
- The Brauer–Manin pairing X(A_k) × Br(X) → Q/Z is given by the sum of local invariants of class field theory.

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.
- The Brauer–Manin pairing X(A_k) × Br(X) → Q/Z is given by the sum of local invariants of class field theory.
- For a subgroup B ⊂ Br(X) we denote by X(A_k)^B ⊂ X(A_k) the orthogonal complement to B under this pairing.

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.
- The Brauer–Manin pairing X(A_k) × Br(X) → Q/Z is given by the sum of local invariants of class field theory.
- For a subgroup B ⊂ Br(X) we denote by X(A_k)^B ⊂ X(A_k) the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014).

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.
- The Brauer–Manin pairing X(A_k) × Br(X) → Q/Z is given by the sum of local invariants of class field theory.
- For a subgroup B ⊂ Br(X) we denote by X(A_k)^B ⊂ X(A_k) the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014). X and Y are absolutely irreducible smooth projective varieties $/k \Rightarrow$

- We write \mathbb{A}_k for the ring of adèles of k.
- If X is a projective variety over k we have $X(\mathbb{A}_k) = \prod X(k_v)$, where v ranges over all places of k.
- The Brauer–Manin pairing X(A_k) × Br(X) → Q/Z is given by the sum of local invariants of class field theory.
- For a subgroup B ⊂ Br(X) we denote by X(A_k)^B ⊂ X(A_k) the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014). X and Y are absolutely irreducible smooth projective varieties /k $\Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)} \times Y(\mathbb{A}_k)^{\operatorname{Br}(Y)} = (X \times Y)(\mathbb{A}_k)^{\operatorname{Br}(X \times Y)}$

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 めんの

Let A be an abelian variety of dimension $g \ge 2$;

1 (S-Z, 2016)

1 (S-Z, 2016) $X(\mathbb{A}_k) \neq \emptyset \Rightarrow$

1 (S-Z, 2016)

$$X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset;$$

$$(S-Z, 2016) X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset;$$

$$(S-Z, 2016)$$

$$X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset;$$

2 (B. Creutz - B. Viray, 2017)
$$X(\mathbb{A}_k)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow$$

$$(S-Z, 2016) X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset;$$

2 (B. Creutz - B. Viray, 2017)

$$X(\mathbb{A}_k)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)} \neq \emptyset;.$$

$$(S-Z, 2016) X(\mathbb{A}_k) \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset;$$

2 (B. Creutz - B. Viray, 2017)

$$X(\mathbb{A}_k)^{\operatorname{Br}(X){2}} \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)} \neq \emptyset;$$

3 (S, 2017)

$$\begin{array}{l} \hline (S-Z, \ 2016) \\ X(\mathbb{A}_k) \neq \emptyset \Rightarrow \ X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset; \end{array}$$

2 (B. Creutz - B. Viray, 2017)

$$X(\mathbb{A}_k)^{\operatorname{Br}(X){2}} \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)} \neq \emptyset;$$

3 (S, 2017) Let B be a subgroup of Br(X) such that $X(\mathbb{A}_k)^B \neq \emptyset \Rightarrow$

$$\begin{array}{l} \textbf{I} \quad (S-Z, \ 2016) \\ X(\mathbb{A}_k) \neq \emptyset \Rightarrow \ X(\mathbb{A}_k)^{\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset; \end{array}$$

2 (B. Creutz - B. Viray, 2017)

$$X(\mathbb{A}_k)^{\operatorname{Br}(X){2}} \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{\operatorname{Br}(X)} \neq \emptyset;.$$

3 (S, 2017) Let B be a subgroup of $\operatorname{Br}(X)$ such that $X(\mathbb{A}_k)^B \neq \emptyset \Rightarrow X(\mathbb{A}_k)^{B+\operatorname{Br}(X)(\operatorname{non}-2)} \neq \emptyset.$

Our calculation uses the following fact.

Our calculation uses the following fact.

Let n be an odd integer. Then there is a canonical decomposition of abelian groups

$$H^2_{\text{\'et}}(Y,\mathbb{Z}/n) = H^2(k,\mathbb{Z}/n) \oplus \mathrm{H}^1(k,H^1_{\text{\'et}}(\overline{Y},\mathbb{Z}/n)) \oplus H^2_{\text{\'et}}(\overline{Y},\mathbb{Z}/n)^{\Gamma}$$

Our calculation uses the following fact. Let n be an odd integer. Then there is a canonical decomposition of abelian groups

$$H^2_{\text{\'et}}(Y,\mathbb{Z}/n) = H^2(k,\mathbb{Z}/n) \oplus \mathrm{H}^1(k,H^1_{\text{\'et}}(\overline{Y},\mathbb{Z}/n)) \oplus H^2_{\text{\'et}}(\overline{Y},\mathbb{Z}/n)^{\Gamma}$$

compatible with the natural action of the involution, so that

$$egin{aligned} & H^2_{ ext{
m \acute{e}t}}(Y,\mathbb{Z}/n)^+ = H^2(k,\mathbb{Z}/n) \oplus H^2_{ ext{
m \acute{e}t}}(\overline{Y},\mathbb{Z}/n)^{\Gamma}, \ & H^2_{ ext{
m \acute{e}t}}(Y,\mathbb{Z}/n)^- = H^1(k,H^1(\overline{Y},\mathbb{Z}/n)). \end{aligned}$$

Our calculation uses the following fact. Let n be an odd integer. Then there is a canonical decomposition of abelian groups

$$H^2_{\text{\'et}}(Y,\mathbb{Z}/n) = H^2(k,\mathbb{Z}/n) \oplus \mathrm{H}^1(k,H^1_{\text{\'et}}(\overline{Y},\mathbb{Z}/n)) \oplus H^2_{\text{\'et}}(\overline{Y},\mathbb{Z}/n)^{\Gamma}$$

compatible with the natural action of the involution, so that

$$egin{aligned} &\mathcal{H}^2_{ ext{
m \acute{e}t}}(Y,\mathbb{Z}/n)^+ = \mathcal{H}^2(k,\mathbb{Z}/n) \oplus \mathcal{H}^2_{ ext{
m \acute{e}t}}(\overline{Y},\mathbb{Z}/n)^{\Gamma}, \ &\mathcal{H}^2_{ ext{
m \acute{e}t}}(Y,\mathbb{Z}/n)^- = \mathcal{H}^1(k,\mathcal{H}^1(\overline{Y},\mathbb{Z}/n)). \end{aligned}$$

This allows one to represent elements of Br(X)(non - 2) by explicit cup-products, and so evaluate them at local points.