Superelliptic Jacobians, Brauer groups and Kummer varieties

Yuri G. Zarhin (Penn State/MPIM)

(based on a joint work with Alexei N. Skorobogatov)

Plan of the talk

Plan of the talk

a）Notation；

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group,

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.
k is a field \Longrightarrow

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.
k is a field \Longrightarrow we assume char (k) does not divide n and

- \bar{k} is an algebraic closure of k;

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.
k is a field \Longrightarrow we assume char (k) does not divide n and

- \bar{k} is an algebraic closure of k;
- $\mu_{n} \subset \bar{k}^{*}$ is the multiplicative group of nth roots of unity;

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.
k is a field \Longrightarrow we assume char (k) does not divide n and

- \bar{k} is an algebraic closure of k;
- $\mu_{n} \subset \bar{k}^{*}$ is the multiplicative group of nth roots of unity;

■ 「 $=\operatorname{Gal}(\bar{k} / k):=\operatorname{Aut}(\bar{k} / k)$ is the absolute Galois group of k;

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.
k is a field \Longrightarrow we assume char (k) does not divide n and

- \bar{k} is an algebraic closure of k;
- $\mu_{n} \subset \bar{k}^{*}$ is the multiplicative group of nth roots of unity;

■ 「 $=\operatorname{Gal}(\bar{k} / k):=\operatorname{Aut}(\bar{k} / k)$ is the absolute Galois group of k;
■ $\operatorname{Br}(k)$ is the Brauer group of k

Plan of the talk

a) Notation;
b) Review finiteness results for abelian and $K 3$ surfaces;
c) Construction and generalities on Kummer varieties;
d) Examples

Notation

If G - commutative group, n a positive integer \Longrightarrow
■ $G[n] \subset G$ - the kernel of multiplication by n in G;
■ $G[$ non $-n]:=\left\{g \in G_{\text {tors }} \mid(\operatorname{ord}(g), n)=1\right\} \subset G$.
k is a field \Longrightarrow we assume char (k) does not divide n and

- \bar{k} is an algebraic closure of k;
- $\mu_{n} \subset \bar{k}^{*}$ is the multiplicative group of nth roots of unity;

■ 「 $=\operatorname{Gal}(\bar{k} / k):=\operatorname{Aut}(\bar{k} / k)$ is the absolute Galois group of k;
■ $\operatorname{Br}(k)$ is the Brauer group of k (it is a torsion abelian group).
X smooth absolutely irreducible projective variety over k
X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
X smooth absolutely irreducible projective variety over k
- $\bar{X}=X \times{ }_{k} \bar{k} ;$
$■ \operatorname{Br}(X)=H_{e \mathrm{e} t}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times{ }_{k} \bar{k}$;

■ $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;

- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times{ }_{k} \bar{k}$;

■ $\operatorname{Br}(X)=H_{\text {et }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;

- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.

■ For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times{ }_{k} \bar{k}$;

■ $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;

- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.

■ There is a short exact sequence of Γ-modules

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times{ }_{k} \bar{k}$;

■ $\operatorname{Br}(X)=H_{\text {et }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;

- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\mathrm{NS}(\bar{X}) / n) \rightarrow H_{\text {ett }}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times{ }_{k} \bar{k}$;

■ $\operatorname{Br}(X)=H_{\text {et }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;

- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\mathrm{NS}(\bar{X}) / n) \rightarrow H_{\text {ett }}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms $\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X)$,

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{e \mathrm{et}}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

$$
\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X), \quad \beta: \operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})^{\ulcorner } \subset \operatorname{Br}(\bar{X}) .
$$

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

$$
\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X), \quad \beta: \operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})^{\ulcorner } \subset \operatorname{Br}(\bar{X}) .
$$

Let $\operatorname{Br}_{0}(X):=\alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

$$
\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X), \quad \beta: \operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})^{\ulcorner } \subset \operatorname{Br}(\bar{X}) .
$$

Let $\operatorname{Br}_{0}(X):=\alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$
$\operatorname{Br}_{1}(X):=\operatorname{ker}(\beta) \subset \operatorname{Br}(X)$.

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{e \mathrm{et}}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of Γ-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

$$
\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X), \quad \beta: \operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})^{\ulcorner } \subset \operatorname{Br}(\bar{X}) .
$$

Let $\operatorname{Br}_{0}(X):=\alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$
$\operatorname{Br}_{1}(X):=\operatorname{ker}(\beta) \subset \operatorname{Br}(X)$.
Then

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of $\mathrm{\Gamma}$-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

$$
\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X), \quad \beta: \operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})^{\ulcorner } \subset \operatorname{Br}(\bar{X}) .
$$

Let $\operatorname{Br}_{0}(X):=\alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$
$\operatorname{Br}_{1}(X):=\operatorname{ker}(\beta) \subset \operatorname{Br}(X)$.
Then $\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)$.

X smooth absolutely irreducible projective variety over k

- $\bar{X}=X \times_{k} \bar{k} ;$
- $\operatorname{Br}(X)=H_{\text {ett }}^{2}\left(X, \mathbb{G}_{m}\right)$ is the Brauer-Grothendieck group of X;
- The group $\operatorname{Br}(\bar{X})$ is a Γ-module.
- For all n the subgroups $\operatorname{Br}(\bar{X})[n]$ are finite.
- There is a short exact sequence of $\mathrm{\Gamma}$-modules

$$
0 \rightarrow \operatorname{Pic}(\bar{X}) / n(=\operatorname{NS}(\bar{X}) / n) \rightarrow H_{\mathrm{et}}^{2}\left(\bar{X}, \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{X})[n] \rightarrow 0 .
$$

- There are two natural group homomorphisms

$$
\alpha: \operatorname{Br}(k) \rightarrow \operatorname{Br}(X), \quad \beta: \operatorname{Br}(X) \rightarrow \operatorname{Br}(\bar{X})^{\ulcorner } \subset \operatorname{Br}(\bar{X}) .
$$

Let $\operatorname{Br}_{0}(X):=\alpha(\operatorname{Br}(k)) \subset \operatorname{Br}(X)$
$\operatorname{Br}_{1}(X):=\operatorname{ker}(\beta) \subset \operatorname{Br}(X)$.
Then $\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)$.

Finiteness Theorems

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
\Rightarrow
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$.
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.
If $\operatorname{Pic}(\bar{X})$ is torsion-free
\Rightarrow

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$.
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free)

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$.
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.
Example X is a $K 3$ surface.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.
Example X is a $K 3$ surface.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X)
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.
Example X is a $K 3$ surface.
Remark

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.
Example X is a $K 3$ surface.
Remark If k is a number field

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Example X is a $K 3$ surface.
Remark If k is a number field then $\operatorname{Br}_{0}(X)$ is infinite.

Finiteness Theorems

$$
\operatorname{Br}_{0}(X) \subset \operatorname{Br}_{1}(X) \subset \operatorname{Br}(X) .
$$

There are two embeddings:
1.
$\operatorname{Br}(X) / \operatorname{Br}_{1}(X) \hookrightarrow \operatorname{Br}(\bar{X})^{\Gamma}$
2.
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X) \hookrightarrow H^{1}(k, \operatorname{Pic}(\bar{X}))$.

If $\operatorname{Pic}(\bar{X})$ is torsion-free (i.e., $\operatorname{Pic}^{0}(\bar{X})=0$ and
$\Rightarrow \quad \mathrm{NS}(\bar{X})$ is torsion-free) then
$\operatorname{Br}_{1}(X) / \operatorname{Br}_{0}(X)$ is finite.

Example X is a $K 3$ surface.
Remark If k is a number field then $\operatorname{Br}_{0}(X)$ is infinite.

Finiteness theorems for abelian varieties and K3 surfaces

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety,

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
(i) If $\operatorname{char}(k)=0$, then
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/ k.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}$,
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/ k.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$,
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/ k.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ and
S is a $K 3$ surface/k.
(ii) If $\operatorname{char}(k)=p>0$ then

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/ k.

$$
\Rightarrow \quad \operatorname{Br}(\bar{X})^{\ulcorner }[\text {non }-p] \text { and }
$$

(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then
$\Rightarrow \quad \operatorname{Br}(\bar{X})^{\Gamma}[$ non $-p]$ and
$\left(\operatorname{Br}(X) / \operatorname{Br}_{1}(X)\right)[$ non $-p]$

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then
$\Rightarrow \quad \operatorname{Br}(\bar{X})^{\Gamma}[$ non $-p]$ and $\left(\operatorname{Br}(X) / \operatorname{Br}_{1}(X)\right)[$ non $-p]$ are finite.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then
$\Rightarrow \quad \operatorname{Br}(\bar{X})^{\Gamma}[$ non $-p]$ and $\left(\operatorname{Br}(X) / \operatorname{Br}_{1}(X)\right)[$ non $-p]$ are finite.
If $p>2$ then $\operatorname{Br}(\bar{S})^{\Gamma}[$ non $-p]$ and

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then
$\Rightarrow \quad \operatorname{Br}(\bar{X})^{\Gamma}[$ non $-p]$ and $\left(\operatorname{Br}(X) / \operatorname{Br}_{1}(X)\right)[$ non $-p]$ are finite.
If $p>2$ then $\operatorname{Br}(\bar{S})^{\ulcorner }[$non $-p]$ and $\left(\operatorname{Br}(S) / \operatorname{Br}_{0}(S)\right)[$ non $-p]$

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then
$\Rightarrow \quad \operatorname{Br}(\bar{X})^{\Gamma}[$ non $-p]$ and $\left(\operatorname{Br}(X) / \operatorname{Br}_{1}(X)\right)[$ non $-p]$ are finite.
If $p>2$ then $\operatorname{Br}(\bar{S})^{\ulcorner }[$non $-p]$ and $\left(\operatorname{Br}(S) / \operatorname{Br}_{0}(S)\right)[$ non $-p]$ are finite.

Finiteness theorems for abelian varieties and K3 surfaces

Theorem (S-Z, 2006, 2014). Suppose that k is finitely generated over its prime subfield and
\bar{X} is either an abelian variety, or a product of curves and
S is a $K 3$ surface/k.
(i) If $\operatorname{char}(k)=0$, then the groups $\operatorname{Br}(\bar{X})^{\Gamma}, \operatorname{Br}(\bar{S})^{\Gamma}$, $\operatorname{Br}(X) / \operatorname{Br}_{1}(X)$ and $\operatorname{Br}(S) / \operatorname{Br}_{0}(S)$ are finite.
(ii) If $\operatorname{char}(k)=p>0$ then
$\Rightarrow \quad \operatorname{Br}(\bar{X})^{\Gamma}[$ non $-p]$ and
$\left(\operatorname{Br}(X) / \operatorname{Br}_{1}(X)\right)[$ non $-p]$
are finite.
If $p>2$ then $\operatorname{Br}(\bar{S})^{\Gamma}[$ non $-p]$ and
$\left(\operatorname{Br}(S) / \operatorname{Br}_{0}(S)\right)[$ non $-p]$
are finite.

The case $p=2$ for K3 surfaces was settled by Kazuhiro Ito (2017)

Kummer varieties

Let

Kummer varieties

Let

- A - an abelian variety over k,

Kummer varieties

Let

- A - an abelian variety over $k, \operatorname{dim}(A)=g$;

Kummer varieties

Let

- A - an abelian variety over $k, \operatorname{dim}(A)=g$;
- A^{t} its dual;

Kummer varieties

Let

- A - an abelian variety over $k, \operatorname{dim}(A)=g$;
- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

Kummer varieties

Let

- A - an abelian variety over $k, \operatorname{dim}(A)=g$;
- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;
- $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

Kummer varieties

Let

■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

Kummer varieties

Let

■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$

Kummer varieties

Let

■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite

Kummer varieties

Let

■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;

Kummer varieties

Let

■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;

Kummer varieties

Let
■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;

■ n - positive integer that is not divisible by $\operatorname{char}(k)$;

- $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;
- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$

Kummer varieties

Let
■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;

■ n - positive integer that is not divisible by $\operatorname{char}(k)$;

- $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;
- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$ are divisble.

Kummer varieties

Let
■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$ are divisble.
- The quotient

Kummer varieties

Let
■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$ are divisble.
- The quotient $Y=\left(A \times_{k} T\right) / A[2]$

Kummer varieties

Let
■ A - an abelian variety over $k, \operatorname{dim}(A)=g$;

- A^{t} its dual;
- n - positive integer that is not divisible by $\operatorname{char}(k)$;

■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$ are divisble.
- The quotient $Y=\left(A \times_{k} T\right) / A[2]$ by the diagonal action of $A[2]$

Kummer varieties

Let

- A - an abelian variety over $k, \operatorname{dim}(A)=g$;
- A^{t} its dual;

■ n - positive integer that is not divisible by $\operatorname{char}(k)$;
■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$ are divisble.
- The quotient $Y=\left(A \times_{k} T\right) / A[2]$ by the diagonal action of $A[2]$ is the attached 2-covering $f: Y \rightarrow A / A[2]=A$

Kummer varieties

Let

- A - an abelian variety over $k, \operatorname{dim}(A)=g$;
- A^{t} its dual;

■ n - positive integer that is not divisible by $\operatorname{char}(k)$;
■ $A[n]:=A(\bar{k})[n]$ as a k-group (sub)scheme;

- T - a k-torsor for $A[2]$.

Then

- Groups $A[n]$ and $A^{t}[n]$ are finite free \mathbb{Z} / n-modules of rank $2 g$;
- they have the same order $n^{2 g}$;
- infinite groups $A(\bar{k})$ and $A^{t}(\bar{k})$ are divisble.
- The quotient $Y=\left(A \times_{k} T\right) / A[2]$ by the diagonal action of $A[2]$ is the attached 2-covering $f: Y \rightarrow A / A[2]=A$ induced by projection $A \times_{k} T \rightarrow A$.

$Y=\left(A \times_{k} T\right) / A[2]$

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow$

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2]$,

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively \Rightarrow

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A$

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow$

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

Definition.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

Definition. The Kummer variety attached to Y is the quotient $X=Y^{\prime} / \iota_{Y^{\prime}}$.

$Y=\left(A \times_{k} T\right) / A[2]$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

Definition. The Kummer variety attached to Y is the quotient $X=Y^{\prime} / \iota_{Y^{\prime}}$.
It is a smooth absolutely irreducible projective variety over k. Moreover,

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

Definition. The Kummer variety attached to Y is the quotient $X=Y^{\prime} / \iota_{Y^{\prime}}$.
It is a smooth absolutely irreducible projective variety over k. Moreover,

■ $\pi: Y^{\prime} \rightarrow X$ is a double covering;

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

Definition. The Kummer variety attached to Y is the quotient $X=Y^{\prime} / \iota Y^{\prime}$.
It is a smooth absolutely irreducible projective variety over k. Moreover,

■ $\pi: Y^{\prime} \rightarrow X$ is a double covering;

- its branch locus is a smooth divisor E;

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

1. $f: Y \rightarrow A \Rightarrow f$ torsor for $A[2], \quad T=\{0\} \times T=f^{-1}(0) \subset Y$.
2. A acts on Y freely transitively $\Rightarrow Y$ an A-torsor.
3. Hence, there is an isomorphism of varieties $\bar{Y} \cong \bar{A}$ over \bar{k}.
4. Involution $\iota_{A}=[-1]: A \rightarrow A \Rightarrow$ involution $\iota_{Y}: Y \rightarrow Y$.
5. Let $\sigma: Y^{\prime} \rightarrow Y$ be the blow-up of $T \subset Y$. Since $\iota_{Y}: Y \rightarrow Y$ preserves $T \Rightarrow \iota_{Y}$ lifts to the involution $\iota_{Y^{\prime}}: Y^{\prime} \rightarrow Y^{\prime}$.

Definition. The Kummer variety attached to Y is the quotient $X=Y^{\prime} / \iota Y^{\prime}$.
It is a smooth absolutely irreducible projective variety over k. Moreover,

■ $\pi: Y^{\prime} \rightarrow X$ is a double covering;

- its branch locus is a smooth divisor E;
- $\bar{E}=\sigma^{-1}(\bar{T})$ is the disjoint union of $2^{2 g}$ copies of $\mathbb{P}_{\bar{k}}^{g-1}$.
$Y=\left(A \times_{k} T\right) / A[2]$

$Y=\left(A x_{k} T\right) / A[2]$

6. $A[2]$ acts on A by translations \Rightarrow

$Y=\left(A \times_{k} T\right) / A[2]$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A

$Y=\left(A x_{k} T\right) / A[2]$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$

$Y=\left(A \times_{k} T\right) / A[2]$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T

$Y=\left(A \times_{k} T\right) / A[2]$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.

$Y=\left(A \times_{k} T\right) / A[2]$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules $0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic. 9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.
10. ι_{Y} acts on $\operatorname{Pic}^{0}(\bar{Y})=A^{t}(\bar{k})$ as $[-1]$,

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.
10. ι_{Y} acts on $\operatorname{Pic}^{0}(\bar{Y})=A^{t}(\bar{k})$ as $[-1], A^{t}(\bar{k})$ is divisible \Rightarrow

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.
10. ι_{Y} acts on $\operatorname{Pic}^{0}(\bar{Y})=A^{t}(\bar{k})$ as $[-1], A^{t}(\bar{k})$ is divisible $\Rightarrow \mathrm{H}^{0}\left(\left\langle\iota_{\curlyvee}\right\rangle, A^{t}(\bar{k})\right)=A^{t}[2], \quad \mathrm{H}^{1}\left(\langle\iota Y\rangle, A^{t}(\bar{k})\right)=0$.

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.
10. ι_{Y} acts on $\operatorname{Pic}^{0}(\bar{Y})=A^{t}(\bar{k})$ as $[-1], A^{t}(\bar{k})$ is divisible $\Rightarrow \mathrm{H}^{0}\left(\left\langle\iota_{\varphi}\right\rangle, A^{t}(\bar{k})\right)=A^{t}[2], \quad \mathrm{H}^{1}\left(\langle\iota \varphi\rangle, A^{t}(\bar{k})\right)=0$.
11. We get an exact sequence of Γ-modules

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.
10. ι_{Y} acts on $\operatorname{Pic}^{0}(\bar{Y})=A^{t}(\bar{k})$ as $[-1], A^{t}(\bar{k})$ is divisible $\Rightarrow \mathrm{H}^{0}\left(\left\langle\iota_{\varphi}\right\rangle, A^{t}(\bar{k})\right)=A^{t}[2], \quad \mathrm{H}^{1}\left(\langle\iota \varphi\rangle, A^{t}(\bar{k})\right)=0$.
11. We get an exact sequence of Γ-modules
$0 \longrightarrow A^{t}[2] \longrightarrow \operatorname{Pic}(\bar{Y})^{\iota Y} \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.

$$
Y=\left(A \times_{k} T\right) / A[2]
$$

6. $A[2]$ acts on A by translations $\Rightarrow Y$ is the twisted form of A defined by a 1-cocycle with coefficients in $A[2]$ representing the class of T in $\mathrm{H}^{1}(k, A[2])$.
7. There is an exact sequence of Γ-modules
$0 \longrightarrow A^{t}(\bar{k}) \longrightarrow \operatorname{Pic}(\bar{Y}) \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.
8. The abelian groups $\mathrm{NS}(\bar{Y})$ and $\mathrm{NS}(\bar{A})$ are isomorphic.
9. Also $\mathrm{NS}(\bar{Y}) \cong \mathrm{NS}(\bar{A})$ as Γ-modules, because translations by elements of $A(\bar{k})$ act trivially on $\operatorname{NS}(\bar{A})$.
10. ι_{Y} acts on $\operatorname{Pic}^{0}(\bar{Y})=A^{t}(\bar{k})$ as $[-1], A^{t}(\bar{k})$ is divisible $\Rightarrow \mathrm{H}^{0}\left(\left\langle\iota_{\varphi}\right\rangle, A^{t}(\bar{k})\right)=A^{t}[2], \quad \mathrm{H}^{1}\left(\langle\iota \varphi\rangle, A^{t}(\bar{k})\right)=0$.
11. We get an exact sequence of Γ-modules
$0 \longrightarrow A^{t}[2] \longrightarrow \operatorname{Pic}(\bar{Y})^{\iota Y} \longrightarrow \mathrm{NS}(\bar{Y}) \longrightarrow 0$.

Properties of Kummer varieties

Properties of Kummer varieties

Example (V. Nikulin, 1975).

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow$

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties.

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1$,

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, \quad b_{2 i+1}=0$,

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n .
$$

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n
$$

- E. Spanier (1956);

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n
$$

- E. Spanier (1956);

4. for $g \geq 1$ the canonical class $K_{X}=\frac{1}{2}(g-2)[E]$

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n
$$

- E. Spanier (1956);

4. for $g \geq 1$ the canonical class $K_{X}=\frac{1}{2}(g-2)[E]$
5. so for $g>2$ it contains an effective divisor;

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n
$$

- E. Spanier (1956);

4. for $g \geq 1$ the canonical class $K_{X}=\frac{1}{2}(g-2)[E]$
5. so for $g>2$ it contains an effective divisor; (hence X is not Calabi-Yau!)

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n
$$

- E. Spanier (1956);

4. for $g \geq 1$ the canonical class $K_{X}=\frac{1}{2}(g-2)[E]$
5. so for $g>2$ it contains an effective divisor; (hence X is not Calabi-Yau!)
6. Kodaira dimension $\kappa(X)=0$;

Properties of Kummer varieties

Example (V. Nikulin, 1975). $g=\operatorname{dim}(A)=2$ and $T=A[2] \Rightarrow X$ is the classical Kummer surface attached to the abelian surface A.

Properties. Let X be a Kummer variety over $k=\mathbb{C}$.

1. X is simply connected;
2. $H^{i}(X, \mathbb{Z})$ are torsion-free;
3. Betti numbers $b_{0}=b_{2 g}=1, b_{2 i+1}=0$,

$$
b_{2 i}=\binom{2 g}{2 i}+2^{2 g}, \text { where } 0<i<n
$$

- E. Spanier (1956);

4. for $g \geq 1$ the canonical class $K_{X}=\frac{1}{2}(g-2)[E]$
5. so for $g>2$ it contains an effective divisor; (hence X is not Calabi-Yau!)
6. Kodaira dimension $\kappa(X)=0$;

■ K. Ueno (1971, 1975).

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016).

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {ett }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {êt }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\mathrm{et}}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {ét }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\text {ett }}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.
(v) $g>2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {ét }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\text {ett }}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.
(v) $g>2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {êt }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\text {êt }}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.
(v) $g>2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
(vi) The group $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X}))$ is finite.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {êt }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\text {êt }}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.
(v) $g>2 \Rightarrow K_{\bar{X}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
(vi) The group $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X}))$ is finite.
(vii) The kernel of $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X})) \rightarrow \mathrm{H}^{1}(k, \mathrm{NS}(\bar{Y}))$ is killed by 2.

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\mathrm{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {êt }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\text {êt }}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.
(v) $g>2 \Rightarrow K_{\bar{\chi}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
(vi) The group $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X}))$ is finite.
(vii) The kernel of $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X})) \rightarrow \mathrm{H}^{1}(k, \mathrm{NS}(\bar{Y}))$ is killed by 2.
(viii) If $\mathrm{NS}(\bar{A})$ is a trivial Γ-module, then

Generalization, k is an arbitrary field, $\operatorname{char}(k) \neq 2$

Proposition (S-Z, 2016). X a Kummer variety chark $\neq 2 \Rightarrow$
(i) $\operatorname{Pic}^{0}(\bar{X})=0$.
(ii) $\operatorname{Pic}(\bar{X})=\mathrm{NS}(\bar{X})$ is torsion-free of rank $2^{2 g}+\operatorname{rk}(\operatorname{NS}(\bar{A}))$.
(iii) $\mathrm{H}_{\text {êt }}^{1}\left(\bar{X}, \mathbb{Z}_{\ell}\right)=0 \forall \ell \neq \operatorname{char}(k)$.
(iv) $\mathrm{H}_{\text {ett }}^{2}\left(\bar{X}, \mathbb{Z}_{\ell}\right)$ is torsion-free for any prime $\ell \neq \operatorname{char}(k)$.
(v) $g>2 \Rightarrow K_{\overline{\bar{x}}} \neq 0$ and contains an effective divisor.(In particular, \bar{X} is not Calabi-Yau!)
(vi) The group $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X}))$ is finite.
(vii) The kernel of $\mathrm{H}^{1}(k, \operatorname{Pic}(\bar{X})) \rightarrow \mathrm{H}^{1}(k, \mathrm{NS}(\bar{Y}))$ is killed by 2.
(viii) If $\mathrm{NS}(\bar{A})$ is a trivial Γ-module, then every element of odd order in $\operatorname{Br}_{1}(X)$ is contained in $\operatorname{Br}_{0}(X)$.

Theorem (S-Z, 2016). X a Kummer variety,

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$. Comments. Right isomorphism:

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$,

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $\operatorname{Br}(\bar{A})[n]$,

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite. Middle isomorphism:

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group $\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.
Left isomorphism:

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$,
-the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group
$\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.
Left isomorphism:
- Grothendieck's results about Brauer groups (including a certain exact sequence)

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$,
-the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group
$\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

- Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E}.

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$,
-the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group
$\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

- Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E}.
Theorem (S-Z, 2016). X Kummer,

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group
$\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

- Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E}.
Theorem (S-Z, 2016). X Kummer, k finitely generated/ $\mathbb{Q} \Rightarrow$

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group
$\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

- Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E}.
Theorem (S-Z, 2016). X Kummer, k finitely generated/ $\mathbb{Q} \Rightarrow$ the groups $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ and $\operatorname{Br}(\bar{X})^{\ulcorner }$are finite.

Theorem (S-Z, 2016). X a Kummer variety, $\operatorname{char}(k)=0 \Rightarrow$ morphisms $\pi: Y^{\prime} \rightarrow X$ and $\sigma: Y^{\prime} \rightarrow Y$ induce isomorphisms of Γ-modules $\operatorname{Br}(\bar{X}) \xrightarrow{\sim} \operatorname{Br}\left(\bar{Y}^{\prime}\right) \stackrel{\sim}{\sim} \operatorname{Br}(\bar{Y}) \cong \operatorname{Br}(\bar{A})$.
Comments. Right isomorphism:
$-Y$ is the twist of A by a 1-cocycle with coefficients in $A[2]$, -the induced action of $A[2]$ on $\operatorname{Br}(\bar{A})$ is trivial.
$-\forall n$ the whole group $A(\bar{k})$ acts trivially on the finite group
$\operatorname{Br}(\bar{A})[n]$, since $A(\bar{k})$ is divisible and $\operatorname{Aut}(\operatorname{Br}(\bar{A})[n])$ is finite.

Middle isomorphism:

- the birational invariance of the Brauer group of a smooth and projective variety over a field of characteristic zero.

Left isomorphism:

- Grothendieck's results about Brauer groups (including a certain exact sequence) and the structure of the branch divisor \bar{E}.
Theorem (S-Z, 2016). X Kummer, k finitely generated/ $\mathbb{Q} \Rightarrow$ the groups $\operatorname{Br}(X) / \operatorname{Br}_{0}(X)$ and $\operatorname{Br}(\bar{X})^{\ulcorner }$are finite.

Cohomology and Brauer groups of abelian varieties

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

- $\mu_{n} \subset k(A[n])$ (Serre);

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

- $\mu_{n} \subset k(A[n])$ (Serre);
-「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms

Cohomology and Brauer groups of abelian varieties

■ $k(A[n])$ - the field of definition of all points of order n on A;

- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
-「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
-「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$ it is actually a $\tilde{G}_{n, A}$-module;

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
-「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$ it is actually a $\tilde{G}_{n, A}$-module;
■ $0 \rightarrow \mathrm{NS}(\bar{A}) / n \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{A})[n] \rightarrow 0$.

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$ it is actually a $\tilde{G}_{n, A}$-module;
■ $0 \rightarrow \mathrm{NS}(\bar{A}) / n \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\wedge_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{A})[n] \rightarrow 0$.
If $\mathrm{NS}(\bar{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
-「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$ it is actually a $\tilde{G}_{n, A}$-module;
■ $0 \rightarrow \mathrm{NS}(\bar{A}) / n \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\wedge_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{A})[n] \rightarrow 0$.
If $\mathrm{NS}(\bar{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially on $\operatorname{NS}(\bar{A}))$

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$ it is actually a $\tilde{G}_{n, A}$-module;
■ $0 \rightarrow \mathrm{NS}(\bar{A}) / n \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\wedge_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{A})[n] \rightarrow 0$.
If $\mathrm{NS}(\bar{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially on $\mathrm{NS}(\bar{A})) \Rightarrow$
$0 \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)^{\Gamma} /(\mathrm{NS}(\bar{A}) / n) \rightarrow(\operatorname{Br}(\bar{A})[n])^{\Gamma} \rightarrow$

Cohomology and Brauer groups of abelian varieties

- $k(A[n])$ - the field of definition of all points of order n on A;
- $\mu_{n} \subset k(A[n])$ (Serre);
- 「 acts on $A[n]$ through finite $\tilde{G}_{n, A}:=\operatorname{Gal}(k(A[n]) / k)$;
- the Γ-module $H_{\text {ét }}^{2}(\bar{A}, \mathbb{Z} / n)=\operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)$ is the (free) \mathbb{Z} / n-module of alternating bilinear forms on $A[n]$ with values in $\mu_{n} ; \Rightarrow$ it is actually a $\tilde{G}_{n, A}$-module;
■ $0 \rightarrow \mathrm{NS}(\bar{A}) / n \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\wedge_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right) \rightarrow \operatorname{Br}(\bar{A})[n] \rightarrow 0$.
If $\mathrm{NS}(\bar{A}) \cong \mathbb{Z} \Rightarrow \Gamma$ acts trivially on $\mathrm{NS}(\bar{A})) \Rightarrow$
$0 \rightarrow \operatorname{Hom}_{\mathbb{Z} / n}\left(\Lambda_{\mathbb{Z} / n}^{2} A[n], \mu_{n}\right)^{\Gamma} /(\operatorname{NS}(\bar{A}) / n) \rightarrow(\operatorname{Br}(\bar{A})[n])^{\Gamma} \rightarrow$
$H^{1}\left(\tilde{G}_{n, A}, \operatorname{NS}(\bar{A}) / n\right) \cong \operatorname{Hom}\left(\tilde{G}_{n, A}, \mathbb{Z} / n\right)$.

Assume that

- $n=\ell$ is a prime;

Assume that

- $n=\ell$ is a prime;
- $\mathrm{NS}(\bar{A}) \cong Z$;

Assume that

- $n=\ell$ is a prime;
- $\mathrm{NS}(\bar{A}) \cong Z$;
- the $\tilde{G}_{\ell, A^{-}}$module

Assume that

- $n=\ell$ is a prime;
- $\mathrm{NS}(\bar{A}) \cong Z$;
- the $\tilde{G}_{\ell, A^{-}}$module $A[\ell]$ is absolutely simple;

Assume that

■ $n=\ell$ is a prime;
■ $\operatorname{NS}(\bar{A}) \cong Z$;

- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ.

Assume that

- $n=\ell$ is a prime;
- $\operatorname{NS}(\bar{A}) \cong Z$;
- the $\tilde{G}_{\ell, A^{-}}$module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ.

Then
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\Lambda_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}}=\mathbb{Z} / \ell$

Assume that

- $n=\ell$ is a prime;
- $\operatorname{NS}(\bar{A}) \cong Z$;
- the $\tilde{G}_{\ell, A^{-}}$module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ.

Then
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\Lambda_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}}=\mathbb{Z} / \ell \Rightarrow$
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\Lambda_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}} /(\operatorname{NS}(\bar{A}) / \ell)=0$.

Assume that

- $n=\ell$ is a prime;
- $\mathrm{NS}(\bar{A}) \cong Z$;
- the $\tilde{G}_{\ell, A^{-}}$module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ.

Then
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\Lambda_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}}=\mathbb{Z} / \ell \Rightarrow$
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\wedge_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}} /(\operatorname{NS}(\bar{A}) / \ell)=0$.
$-\operatorname{Hom}\left(\tilde{G}_{\ell, A}, \mathbb{Z} / \ell\right)=0$

Assume that

- $n=\ell$ is a prime;
- $\operatorname{NS}(\bar{A}) \cong Z$;
- the $\tilde{G}_{\ell, A^{-}}$module $A[\ell]$ is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ.

Then
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\Lambda_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}}=\mathbb{Z} / \ell \Rightarrow$
$-\operatorname{Hom}_{\mathbb{F}_{\ell}}\left(\wedge_{\mathbb{F}_{\ell}}^{2} A[\ell], \mu_{\ell}\right)^{\tilde{G}_{\ell, A}} /(\operatorname{NS}(\bar{A}) / \ell)=0$.
$-\operatorname{Hom}\left(\tilde{G}_{\ell, A}, \mathbb{Z} / \ell\right)=0$
Therefore $\operatorname{Br}(\bar{A})[\ell]^{\Gamma}=0$.

Proposition（S－Z，2016）．

Proposition (S-Z, 2016).
Assume that

Proposition (S-Z, 2016).
Assume that

- $\operatorname{NS}(\bar{A}) \cong \mathbb{Z}$;

Proposition (S-Z, 2016).
Assume that

- $\operatorname{NS}(\bar{A}) \cong \mathbb{Z}$;
- ℓ is a prime;

Proposition (S-Z, 2016).
Assume that

- $\mathrm{NS}(\bar{A}) \cong \mathbb{Z}$;
- ℓ is a prime; ,
- the $\tilde{G}_{\ell, A^{-}}$module is absolutely simple;

Proposition (S-Z, 2016).
Assume that

- $\mathrm{NS}(\bar{A}) \cong \mathbb{Z}$;
- ℓ is a prime; ,
- the $\tilde{G}_{\ell, A^{-}}$module is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ;

Proposition (S-Z, 2016).
Assume that

- $\operatorname{NS}(\bar{A}) \cong \mathbb{Z}$;
- ℓ is a prime; ,
- the $\tilde{G}_{\ell, A^{-}}$module is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ;

Then $\left|\operatorname{Br}(\bar{A})^{\Gamma}\right|=\left|\operatorname{Br}(\bar{X})^{\Gamma}\right|$ is prime to ℓ.

Proposition (S-Z, 2016).
Assume that

- $\mathrm{NS}(\bar{A}) \cong \mathbb{Z}$;
- ℓ is a prime; ,
- the $\tilde{G}_{\ell, A^{-}}$module is absolutely simple;
- $\tilde{G}_{\ell, A}$ does not contain a normal subgroup of index ℓ;

Then $\left|\operatorname{Br}(\bar{A})^{\Gamma}\right|=\left|\operatorname{Br}(\bar{X})^{\Gamma}\right|$ is prime to ℓ.
Here is a more elaborated version.

Theorem (S-Z, 2016).

Theorem (S-Z, 2016). Let $\operatorname{char}(k)=0$,

Theorem (S-Z, 2016). Let $\operatorname{char}(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

■ H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1 ;$

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

- H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;
■ $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

- H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;
- $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Let $A=\prod_{i=1}^{n} A_{i}$.

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

- H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;
- $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Let $A=\prod_{i=1}^{n} A_{i}$. Then

$$
\operatorname{Br}(\bar{A})[\ell]^{\ulcorner }=0
$$

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

- H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;
- $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Let $A=\prod_{i=1}^{n} A_{i}$. Then

$$
\operatorname{Br}(\bar{A})[\ell]^{\ulcorner }=0
$$

Moreover, if $\operatorname{dim}(A) \geq 2$,

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

- H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;
- $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Let $A=\prod_{i=1}^{n} A_{i}$. Then

$$
\operatorname{Br}(\bar{A})[\ell]^{\ulcorner }=0
$$

Moreover, if $\operatorname{dim}(A) \geq 2, X$ is a Kummer, attached to a 2-covering of $A \Rightarrow$

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

■ H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;

- $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Let $A=\prod_{i=1}^{n} A_{i}$. Then

$$
\operatorname{Br}(\bar{A})[\ell]^{\ulcorner }=0
$$

Moreover, if $\operatorname{dim}(A) \geq 2, X$ is a Kummer, attached to a 2-covering of $A \Rightarrow$

$$
\operatorname{Br}(\bar{X})[\ell]^{\ulcorner }=0 .
$$

Theorem (S-Z, 2016). Let char $(k)=0, A_{1}, \ldots, A_{n}$ be abelian varieties over k satisfying the following conditions for each $i=1, \ldots, n$.
(a) The fields $k\left(A_{i}[\ell]\right)$ are linearly disjoint over k;
(b) The Γ-module $A_{i}[\ell]$ is absolutely simple;
(c) $\operatorname{NS}\left(\bar{A}_{i}\right) \cong \mathbb{Z}$;
(d) $\exists H_{i} \subset \operatorname{Gal}\left(k\left(A_{i}[\ell]\right) / k\right)$ such that

■ H_{i}-module $A_{i}[\ell]$ is simple, and absolutely simple when $\operatorname{dim}\left(A_{i}\right)>1$;

- $\nexists F_{i} \leq H_{i}$ with $\left[H_{i}: F_{i}\right]=\ell$.

Let $A=\prod_{i=1}^{n} A_{i}$. Then

$$
\operatorname{Br}(\bar{A})[\ell]^{\ulcorner }=0
$$

Moreover, if $\operatorname{dim}(A) \geq 2, X$ is a Kummer, attached to a 2-covering of $A \Rightarrow$

$$
\operatorname{Br}(\bar{X})[\ell]^{\ulcorner }=0 .
$$

A non-example for this Theorem, $\ell=2$

A non-example for this Theorem, $\ell=2$
$-\mathbf{S}_{m}$ - the symmetric group on m letters,

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012).

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \mathrm{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \operatorname{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \operatorname{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.
Then $\operatorname{Gal}(k(A[2]) / k)=\operatorname{Gal}(k(E[2]) / k)$

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \operatorname{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.
Then $\operatorname{Gal}(k(A[2]) / k)=\operatorname{Gal}(k(E[2]) / k)$ and

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \mathrm{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.
Then $\operatorname{Gal}(k(A[2]) / k)=\operatorname{Gal}(k(E[2]) / k)$ and there is a Galois-invariant element in $\operatorname{Br}(\bar{A})[2]$

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \mathrm{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.
Then $\operatorname{Gal}(k(A[2]) / k)=\operatorname{Gal}(k(E[2]) / k)$ and
there is a Galois-invariant element in $\operatorname{Br}(\bar{A})[2]$
that does not come from a Galois-invariant element of $\mathrm{H}^{2}\left(\bar{A}, \mu_{2}\right)$.

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \mathrm{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.
Then $\operatorname{Gal}(k(A[2]) / k)=\operatorname{Gal}(k(E[2]) / k)$ and
there is a Galois-invariant element in $\operatorname{Br}(\bar{A})[2]$
that does not come from a Galois-invariant element of $\mathrm{H}^{2}\left(\bar{A}, \mu_{2}\right)$.
-Here $H=\operatorname{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$.

A non-example for this Theorem, $\ell=2$

$-\mathbf{S}_{m}$ - the symmetric group on m letters,
$-\mathbf{A}_{m} \subset \mathbf{S}_{m}$ - the alternating group on m letters.
Ex. I. Condition (d) does not hold. (S-Z, 2012). If

- E-elliptic curve over k without CM with
$\operatorname{Gal}(k(E[2]) / k) \cong \mathrm{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$;
$-A=E \times E$.
Then $\operatorname{Gal}(k(A[2]) / k)=\operatorname{Gal}(k(E[2]) / k)$ and
there is a Galois-invariant element in $\operatorname{Br}(\bar{A})[2]$
that does not come from a Galois-invariant element of $\mathrm{H}^{2}\left(\bar{A}, \mu_{2}\right)$.
-Here $H=\operatorname{GL}\left(2, \mathbb{F}_{2}\right)=\mathbf{S}_{3}$.
So, the condition that H has no normal subgroup of index ℓ cannot be removed.

Examples of $A_{i}, \ell=2$

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004).

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
$1 \operatorname{char}(k) \neq 2,3$;

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
$1 \operatorname{char}(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
1 char $(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
1 char $(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve,

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
1 char $(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve, $g=\frac{d-1}{2}$;

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
$1 \operatorname{char}(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve, $g=\frac{d-1}{2}$;
$4 J\left(C_{f}\right)$ its jacobian, a g-dimensional abelian variety over k.

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
$1 \operatorname{char}(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve, $g=\frac{d-1}{2}$;
$4 J\left(C_{f}\right)$ its jacobian, a g-dimensional abelian variety over k.
Then

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
1 char $(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve, $g=\frac{d-1}{2}$;
$4 J\left(C_{f}\right)$ its jacobian, a g-dimensional abelian variety over k.
Then the Galois module $J\left(C_{f}\right)_{2}$ is absolutely simple,

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
1 char $(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve, $g=\frac{d-1}{2}$;
$4 J\left(C_{f}\right)$ its jacobian, a g-dimensional abelian variety over k.
Then the Galois module $J\left(C_{f}\right)_{2}$ is absolutely simple,
$\operatorname{End}\left(\overline{J\left(C_{f}\right)}\right)=\mathbb{Z}$,

Examples of $A_{i}, \ell=2$

Examples of A_{i} that meet conditions of the Theorem.
Ex. II. (Z, 1999-2004). If
1 char $(k) \neq 2,3$;
$2 f(x) \in K[x]$ is an irreducible separable polynomial of degree $d \geq 5$ such that $\operatorname{Gal}(f)$ is either \mathbf{S}_{d} or \mathbf{A}_{d};
$3 C_{f}:=\left\{y^{2}=f(x)\right\} \subset \mathbb{A}^{2}$ - hyperelliptic curve, $g=\frac{d-1}{2}$;
$4 J\left(C_{f}\right)$ its jacobian, a g-dimensional abelian variety over k.
Then the Galois module $J\left(C_{f}\right)_{2}$ is absolutely simple,
$\operatorname{End}\left(\overline{J\left(C_{f}\right)}\right)=\mathbb{Z}$, and $\operatorname{NS}\left(\overline{J\left(C_{f}\right)}\right) \cong \mathbb{Z}$.

Generalization of this example

Generalization of this example

Theorem (S-Z, 2016).

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero.
Let A be the product of Jacobians

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x]$,

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$,

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}.

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}.
Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}.
Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$,

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}.
Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$, are linearly disjoint over k.

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}. Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$, are linearly disjoint over k. If X is the Kummer variety attached to a 2-covering of A,

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}.
Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$, are linearly disjoint over k.
If X is the Kummer variety attached to a 2-covering of A, then

$$
\operatorname{Br}(\bar{X})[2]^{\Gamma}=0
$$

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}.
Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$, are linearly disjoint over k.
If X is the Kummer variety attached to a 2-covering of A, then

$$
\operatorname{Br}(\bar{X})[2]^{\Gamma}=0
$$

More!!!

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}. Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$, are linearly disjoint over k.
If X is the Kummer variety attached to a 2 -covering of A, then

$$
\operatorname{Br}(\bar{X})[2]^{\Gamma}=0
$$

More!!! If k is a number field and X is everywhere locally soluble, then

Generalization of this example

Theorem (S-Z, 2016). Let k be a field of characteristic zero. Let A be the product of Jacobians of the hyperelliptic curves

$$
y^{2}=f_{i}(x)
$$

where $f_{i}(x) \in k[x], i=1, \ldots, n$, is a separable polynomial of either odd degree $d_{i} \geq 5$ with Galois group $\mathbf{S}_{d_{i}}$ or $\mathbf{A}_{d_{i}}$, or of degree 3 with Galois group \mathbf{S}_{3}. Assume that $g=\sum_{i=1}^{n}\left(d_{i}-1\right) / 2 \geq 2$ and the splitting fields of the polynomials $f_{i}(x), i=1, \ldots, n$, are linearly disjoint over k.
If X is the Kummer variety attached to a 2 -covering of A, then

$$
\operatorname{Br}(\bar{X})[2]^{\Gamma}=0
$$

More!!! If k is a number field and X is everywhere locally soluble, then

$$
X\left(\mathbb{A}_{k}\right)^{\mathrm{Br}} \neq \emptyset
$$

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.
■ If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$,

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.

- If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.

- If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.
- The Brauer-Manin pairing $X\left(\mathbb{A}_{k}\right) \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}$

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.

- If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.
- The Brauer-Manin pairing $X\left(\mathbb{A}_{k}\right) \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}$ is given by the sum of local invariants of class field theory.

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.

- If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.
- The Brauer-Manin pairing $X\left(\mathbb{A}_{k}\right) \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}$ is given by the sum of local invariants of class field theory.
- For a subgroup $B \subset \operatorname{Br}(X)$ we denote by $X\left(\mathbb{A}_{k}\right)^{B} \subset X\left(\mathbb{A}_{k}\right)$ the orthogonal complement to B under this pairing.

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.

- If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.
- The Brauer-Manin pairing $X\left(\mathbb{A}_{k}\right) \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}$ is given by the sum of local invariants of class field theory.
- For a subgroup $B \subset \operatorname{Br}(X)$ we denote by $X\left(\mathbb{A}_{k}\right)^{B} \subset X\left(\mathbb{A}_{k}\right)$ the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014).

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.
■ If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.

- The Brauer-Manin pairing $X\left(\mathbb{A}_{k}\right) \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}$ is given by the sum of local invariants of class field theory.
- For a subgroup $B \subset \operatorname{Br}(X)$ we denote by $X\left(\mathbb{A}_{k}\right)^{B} \subset X\left(\mathbb{A}_{k}\right)$ the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014). X and Y are absolutely irreducible smooth projective varieties $/ k$ \Rightarrow

Brauer-Manin sets, k is a number field.

■ We write \mathbb{A}_{k} for the ring of adèles of k.
■ If X is a projective variety over k we have $X\left(\mathbb{A}_{k}\right)=\prod X\left(k_{v}\right)$, where v ranges over all places of k.

- The Brauer-Manin pairing $X\left(\mathbb{A}_{k}\right) \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}$ is given by the sum of local invariants of class field theory.
■ For a subgroup $B \subset \operatorname{Br}(X)$ we denote by $X\left(\mathbb{A}_{k}\right)^{B} \subset X\left(\mathbb{A}_{k}\right)$ the orthogonal complement to B under this pairing.

The multiplicativity property of Brauer - Manin sets (S-Z, 2014). X and Y are absolutely irreducible smooth projective varieties $/ k$ $\Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)} \times Y\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(Y)}=(X \times Y)\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X \times Y)}$

Brauer-Manin sets, k is a number field.

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;

$$
\begin{aligned}
& 1(\mathrm{~S}-\mathrm{Z}, 2016) \\
& \quad X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow
\end{aligned}
$$

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;

```
1 (S-Z, 2016)
    X(\mp@subsup{\mathbb{A}}{k}{})\not=\emptyset=>X(\mp@subsup{\mathbb{A}}{k}{}\mp@subsup{)}{}{\operatorname{Br}(X)(\mathrm{ non-2) }}\not=\emptyset;
```


Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)
$X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset ;$
2 (B. Creutz - B. Viray, 2017)

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)
$X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset ;$
2 (B. Creutz - B. Viray, 2017) $X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow$

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)
$X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset ;$
2 (B. Creutz - B. Viray, 2017)

$$
X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)} \neq \emptyset ;
$$

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)
$X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset ;$
2 (B. Creutz - B. Viray, 2017) $X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)} \neq \emptyset ;$
$3(S, 2017)$

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)
$X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset ;$
2 (B. Creutz - B. Viray, 2017) $X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)} \neq \emptyset ;$
$3(S, 2017)$ Let B be a subgroup of $\operatorname{Br}(X)$ such that $X\left(\mathbb{A}_{k}\right)^{B} \neq \emptyset \Rightarrow$

Brauer-Manin sets, k is a number field.

Let A be an abelian variety of dimension $g \geq 2$;
Let X be the Kummer variety attached to a 2 -covering of A;
1 (S-Z, 2016)
$X\left(\mathbb{A}_{k}\right) \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset ;$
2 (B. Creutz - B. Viray, 2017) $X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)\{2\}} \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{\operatorname{Br}(X)} \neq \emptyset ;$
$3(S, 2017)$ Let B be a subgroup of $\operatorname{Br}(X)$ such that $X\left(\mathbb{A}_{k}\right)^{B} \neq \emptyset \Rightarrow X\left(\mathbb{A}_{k}\right)^{B+\operatorname{Br}(X)(\text { non }-2)} \neq \emptyset$.

Degeneration of a spectral sequence at $H \leq 2$

Our calculation uses the following fact.

Degeneration of a spectral sequence at $H \leq 2$

Our calculation uses the following fact.
Let n be an odd integer. Then there is a canonical decomposition of abelian groups

$$
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)=H^{2}(k, \mathbb{Z} / n) \oplus H^{1}\left(k, H_{\text {êt }}^{1}(\bar{Y}, \mathbb{Z} / n)\right) \oplus H_{\text {êt }}^{2}(\bar{Y}, \mathbb{Z} / n)^{\Gamma}
$$

Degeneration of a spectral sequence at $H^{\leq 2}$

Our calculation uses the following fact.
Let n be an odd integer. Then there is a canonical decomposition of abelian groups

$$
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)=H^{2}(k, \mathbb{Z} / n) \oplus H^{1}\left(k, H_{\text {êt }}^{1}(\bar{Y}, \mathbb{Z} / n)\right) \oplus H_{\text {êt }}^{2}(\bar{Y}, \mathbb{Z} / n)^{\ulcorner }
$$

compatible with the natural action of the involution, so that

$$
\begin{gathered}
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)^{+}=H^{2}(k, \mathbb{Z} / n) \oplus H_{\text {êt }}^{2}(\bar{Y}, \mathbb{Z} / n)^{\ulcorner }, \\
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)^{-}=H^{1}\left(k, H^{1}(\bar{Y}, \mathbb{Z} / n)\right) .
\end{gathered}
$$

Degeneration of a spectral sequence at $H \leq 2$

Our calculation uses the following fact.
Let n be an odd integer. Then there is a canonical decomposition of abelian groups

$$
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)=H^{2}(k, \mathbb{Z} / n) \oplus H^{1}\left(k, H_{\text {êt }}^{1}(\bar{Y}, \mathbb{Z} / n)\right) \oplus H_{\text {êt }}^{2}(\bar{Y}, \mathbb{Z} / n)^{\ulcorner }
$$

compatible with the natural action of the involution, so that

$$
\begin{gathered}
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)^{+}=H^{2}(k, \mathbb{Z} / n) \oplus H_{\text {ett }}^{2}(\bar{Y}, \mathbb{Z} / n)^{\Gamma}, \\
H_{\text {êt }}^{2}(Y, \mathbb{Z} / n)^{-}=H^{1}\left(k, H^{1}(\bar{Y}, \mathbb{Z} / n)\right) .
\end{gathered}
$$

This allows one to represent elements of $\operatorname{Br}(X)($ non -2$)$ by explicit cup-products, and so evaluate them at local points.

