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Introduction

Definition
Let X/C be a (projective) K3 surface. We say that X has CM if its
Mumford-Tate group is abelian.

Or equivalently [Zarhin]:

Definition
X/C has CM if E(X) := EndHdg(T(X)Q) is a CM field (where complex
conjugation is given by the adjunction with respect to the intersection pairing)
and dimE(X) T(X)Q = 1.
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Introduction

There are many examples of K3 surfaces with CM appearing in nature, the
most common can be grouped into two classes:

1. K3 surfaces X with maximal Picard rank ρ(X) = 20 (In this case E(X) is
an immaginary quadratic field).

2. Kummer surfaces X = Km(A) associated to an abelian surface A with
CM. If A is simple, then E(X) is a CM quartic field.

Fact:
One can show [Taelman] that for every CM number field E with the “right”
dimension, i.e. [E : Q] ≤ 20, there exists a K3 surface X with CM by E.
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Introduction

If X/C has CM, Piatetski-Shapiro and Shafarevich showed that it can be
defined over Q.

In our work, we find a systematic way to address the
following two questions about the arithmetic of CM K3 surfaces:

1. Suppose X is defined over a number field K. Which groups can appear as
Br(X)ΓK ?

2. Is there a field of definition for X which is nicer than the others? If yes,
how can we find / characterise it?

Remarks

Skorobogatov and Zarhin showed that the groups Br(X)ΓK are always finite.
Question 1 was studied in detail by Skorobogatov and Ieronymou when X is a
diagonal quartic surface and K = Q(i). Other particular CM cases were
studied / solved by Newton, Bright, and others..
Question 2 was studied by Schütt when ρ(X) = 20, who gave an upper and
lower bound for a field of definition.

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 4 / 21



Introduction

If X/C has CM, Piatetski-Shapiro and Shafarevich showed that it can be
defined over Q. In our work, we find a systematic way to address the
following two questions about the arithmetic of CM K3 surfaces:

1. Suppose X is defined over a number field K. Which groups can appear as
Br(X)ΓK ?

2. Is there a field of definition for X which is nicer than the others? If yes,
how can we find / characterise it?

Remarks

Skorobogatov and Zarhin showed that the groups Br(X)ΓK are always finite.
Question 1 was studied in detail by Skorobogatov and Ieronymou when X is a
diagonal quartic surface and K = Q(i). Other particular CM cases were
studied / solved by Newton, Bright, and others..
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Question 2 was studied by Schütt when ρ(X) = 20, who gave an upper and
lower bound for a field of definition.

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 4 / 21



Some basic definitions and facts

Facts:
I Every K3 surface X/C with CM comes equipped with a canonical

embedding σX : E(X) ↪→ C. Its image E ⊂ C is the reflex field of T(X)Q.

I Mukai: all the cycles in E(X) are algebraic. For every τ ∈ Aut(C) we
denote by τ ad : E(X)→ E(Xτ ) the pullback under τ : Xτ → X.

I If X is defined over a number field K ⊂ C, we say that X has CM over K
if all the cohomology classes of E(XC) are defined over K.

I X has CM over K if and only if E ⊂ K.
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Principal K3 surfaces

Let O(X) := EndHdg(T(X)) be the ring of integral Hodge endomorphisms. It
is an order in E(X).

Definition
We say that X is principal if O(X) is the maximal order.

Remark
This definiton is of transcendental nature: if τ ∈ Aut(C), then usually T(X)
and T(Xτ ) are not isomorphic as Hodge structures. However, we prove that
the map τ ad : E(X)→ E(Xτ ) sends O(X) isomorphically to O(Xτ ). This
allows us to define principal K3 surfaces over every field that can be
embedded into C.
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Main theorem of CM

[Torelli]: Studying projective K3 surfaces is essentially the same as studying
polarised Hodge strucures on the K3 lattice Λ, with the condition
dim Λ2,0 = 1.

Let d > 0 an integer and K ⊂ SO(2, 19)(Af ) a compact open
subgroup (with some additional technical properties..).

I Geometry: one can construct the moduli space F2d,K of primitively
polarised K3 surfaces with a K-level structure. These are algebraic
spaces defined over Q.

I Hodge theory: one can construct a Shimura variety ShK(SO(2, 19),Ω±).
These varieties also have a “canonical” model over Q [Deligne].

The period map connect these two objects, over C:

P : F2d,K(C)→ ShK(SO(2, 19),Ω±)(C).

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 7 / 21



Main theorem of CM

[Torelli]: Studying projective K3 surfaces is essentially the same as studying
polarised Hodge strucures on the K3 lattice Λ, with the condition
dim Λ2,0 = 1. Let d > 0 an integer and K ⊂ SO(2, 19)(Af ) a compact open
subgroup (with some additional technical properties..).

I Geometry: one can construct the moduli space F2d,K of primitively
polarised K3 surfaces with a K-level structure. These are algebraic
spaces defined over Q.

I Hodge theory: one can construct a Shimura variety ShK(SO(2, 19),Ω±).
These varieties also have a “canonical” model over Q [Deligne].

The period map connect these two objects, over C:

P : F2d,K(C)→ ShK(SO(2, 19),Ω±)(C).

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 7 / 21



Main theorem of CM

[Torelli]: Studying projective K3 surfaces is essentially the same as studying
polarised Hodge strucures on the K3 lattice Λ, with the condition
dim Λ2,0 = 1. Let d > 0 an integer and K ⊂ SO(2, 19)(Af ) a compact open
subgroup (with some additional technical properties..).

I Geometry: one can construct the moduli space F2d,K of primitively
polarised K3 surfaces with a K-level structure. These are algebraic
spaces defined over Q.

I Hodge theory: one can construct a Shimura variety ShK(SO(2, 19),Ω±).
These varieties also have a “canonical” model over Q [Deligne].

The period map connect these two objects, over C:

P : F2d,K(C)→ ShK(SO(2, 19),Ω±)(C).

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 7 / 21



Main theorem of CM

[Torelli]: Studying projective K3 surfaces is essentially the same as studying
polarised Hodge strucures on the K3 lattice Λ, with the condition
dim Λ2,0 = 1. Let d > 0 an integer and K ⊂ SO(2, 19)(Af ) a compact open
subgroup (with some additional technical properties..).

I Geometry: one can construct the moduli space F2d,K of primitively
polarised K3 surfaces with a K-level structure. These are algebraic
spaces defined over Q.

I Hodge theory: one can construct a Shimura variety ShK(SO(2, 19),Ω±).
These varieties also have a “canonical” model over Q [Deligne].

The period map connect these two objects, over C:

P : F2d,K(C)→ ShK(SO(2, 19),Ω±)(C).

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 7 / 21



Main theorem of CM

[Torelli]: Studying projective K3 surfaces is essentially the same as studying
polarised Hodge strucures on the K3 lattice Λ, with the condition
dim Λ2,0 = 1. Let d > 0 an integer and K ⊂ SO(2, 19)(Af ) a compact open
subgroup (with some additional technical properties..).

I Geometry: one can construct the moduli space F2d,K of primitively
polarised K3 surfaces with a K-level structure. These are algebraic
spaces defined over Q.

I Hodge theory: one can construct a Shimura variety ShK(SO(2, 19),Ω±).
These varieties also have a “canonical” model over Q [Deligne].

The period map connect these two objects, over C:

P : F2d,K(C)→ ShK(SO(2, 19),Ω±)(C).

Domenico Valloni The theory of CM for K3 surfaces May 2, 2018 7 / 21



Main theorem of CM

Theorem (Rizov)
The morphism P is defined over Q.

Since the canonical model of ShK(SO(2, 19),Ω±) defined by Deligne is
constructed by specifying the Aut(C)-action on special points, the above
Theorem is equivalent to the following (once we compute the reciprocity
map..)
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Corollary (Main theorem of CM)

Let X/C be a K3 surface with CM and let E ⊂ C be its reflex field. Let
τ ∈ Aut(C/E) and s ∈ A×E be an idèle such that art(s) = τ|Eab . There exists a
unique Hodge isometry η : T(X)Q → T(Xτ )Q such that the following triangle
commutes

T(X)Af T(Xτ )Af

T(X)Af

η⊗Af

sf
sf

τ∗
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Type

Let us fix a CM field E. Types are needed to parametrise tuples of the form
(T(X),B, ι), where T(X) is the transcendental lattice of a principal K3 with
CM, B ⊂ Br(X) a finite subgroup invariant under the action of O(X) and
ι : E → E(X) an isomorphism.

Definition
A type is a tuple (I, α, J, σ) where

1. I is a fractional ideal of E;

2. α ∈ E× is an element with α = α and such that the form trE/Q(αxy)
takes values in Z when restricted to I;

3. J a fractional ideal of E satisfying I∗ ⊂ J, where I∗ denotes the dual of I
with respect to the quadratic form induced by α;

4. σ : E ↪→ C an emdedding.
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Type

Definition
We say that (T(X),B, ι) is of type (I, α, J, σ) if there exists an OE-linear
isomorphism Φ: T(X)→ I realising the following ‘correspondence’:

trE/Q(αxy) ! (−,−)X;

I∗ ⊗Q/Z ∼= E/I∗ ⊇ J/I∗ ! B ⊂ Br(X) ∼= T(X)∗ ⊗Q/Z;

T(X)⊗ C ⊇ T1,−1(X) ! Cσ ⊂ E ⊗ C =
⊕

τ : E↪→C
Cτ .
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K3 class fields and K3 class groups

The last objects we need to introduce before stating our main results are some
abelian extensions of E which naturally appear when studying K3 with CM.

To every ideal I ⊂ OE such that I = I we associate a field extension
FK3,I(E)/E with abelian Galois group GK3,I(E). FK3,I(E) fits into the
following picture:

KI(E)

FK3,I(E)

K′I(E)

E,

I KI(E) denotes the ray class group
of E modulo I,
Gal(KI(E)/E) ∼= ClI(E);

I K′I(E) is the fixed field of
{x ∈ ClI(E) : x = x} ⊂ ClI(E);

I Gal(FK3,I(E)/K′I(E)) ∼=
O×

F ∩N(EI,1)

N(OI
E)

.
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K3 class fields and K3 class groups

We compute the cardinality of the Galois group GK3,I(E) as well:

|GK3,I(E)| =
hE · φE(I) · [O×F : N(OI

E)] · [E : F]

hF · φF(J) · [O×E : OI
E] · e(E/F, J) · |H1(EI,1)|

.
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What is a field of moduli?

Let (T(X),B, ι) be as before, and let τ ∈ Aut(C).

Suppose we can find a
Hodge isometry f : T(X)→ T(Xτ ) such that

f ∗τ∗ : Br(X)→ Br(X)

restricts to the identity on B.

Definition
The field of moduli of (T(X),B, ι) is the fixed field of

{τ ∈ Aut(C) : such an f exists}.
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Main results

After having translated the main theorem of CM into the language of types,
we prove:

Theorem (A)

Let (T(X),B, ι) be of type (I, α, J, σ). Then the field of moduli of (T(X),B, ι)
corresponds to FK3,I∗J−1(E), the K3 class field of E modulo the ideal
I∗J−1 ⊂ OE.

Theorem (B)

Let X/K be a principal K3 surface with CM over a number field K. There
exists an ideal IB ⊂ OE such that

OE/IB ∼= Br(X)ΓK

as OE-modules and
|GK3,IB(E)|

∣∣ [K : E].
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Applications

Algorithm!

Input: a number field K and a CM field E.
Output: a finite set of groups Br(E,K) such that for every principal CM K3
surfaces X/K with reflex field E one has

Br(X)ΓK ∈ Br(E,K).

It works as follows:

1. Replace K by KE;

2. Use the formula for |GK3,I(E)| to find all the ideals I ⊂ OE such that
|GK3,I(E)| divides [K : E]. Denote them I1, · · · In.

3. Now employ Theorem B, which says that Br(XK)ΓK ∼= OE/IB, with
IB ⊂ OE a fractional ideal dividing one of the Ii’s.
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Applications

We apply the algorithm above to sort out the possible Brauer groups when E
is either Q(i) or has odd discriminant and K is the smallest possible field, i.e.
K = FK3(E).

Example

X/Q(i) with CM by Q(i) (e.g., a diagonal quartic surface). Then the
possibilities for Br(X)ΓQ(i) are

0, Z/3×Z/3, Z/5, Z/5×Z/5, Z/2, Z/2×Z/2, Z/4×Z/2, Z/4×Z/4

Z/8× Z/4, Z/8× Z/8, Z/3× Z/3× Z/2, Z/3× Z/3× Z/2× Z/2,

Z/5×Z/2, Z/5×Z/5×Z/2, Z/5×Z/2×Z/2, Z/5×Z/5×Z/2×Z/2.
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Applications

Let E be an immaginary quadratic field with odd discriminant and
µ(E) = {±1}, K = FK3(E) and X/K a K3 surface with CM by E.

I If 2 splits and 3 is inert, the only possibilities for Br(X)ΓK are
0, Z/2, Z/2× Z/2, Z/4, Z/4× Z/2, Z/4× Z/4.

I If 2 is inert and 3 ramifies, the only possibilities for Br(X)ΓK are 0, Z/3.
I If both 2 and 3 are inert, the Br(X)ΓK = 0.
I ...and we deal with all the other cases as well.

Remark
Notice how the behaviour of the rational primes in E influences the groups
Br(X)ΓK .
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Field of definition

Let X/C be a principal K3 surface with CM, and let (I, α, σ) be its type. Put

D(X) := (α)IIDE,

where DE is the different ideal of E. D(X) ⊂ OE is a well defined invariant of
X, and the type map induces an isomorphism disc(T(X)) ∼= OE/D(X).

Theorem
Let X/C be as above, and suppose that the natural map µ(E)→ OE/D(X) is
injective. Then X admits a model X̃ over FK3,D(X)(E), which is uniquely
determined by the two following properties:

I ρ(X̃) = ρ(X);
I (Universal property) let Y be a K3 surface over a number field L with

CM over L and suppose that YC ∼= X and that ρ(Y) = ρ(X). Then
FK3,D(X)(E) ⊂ L and X̃L ∼= Y.
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Final remarks

Remarks

I The condition ρ(X̃) = ρ(X) prevents, in general, FK3,D(X)(E) from being
the ‘smallest’ field of definition for X.

On the other hand, the difference
between an optimal field of definition of X and FK3,D(X)(E) can be
universally bounded: there exists a universal, effectively computable
constant C such that for every K3 surface X over a number field L, there
is a field extension K/L with ρ(XK) = ρ(X) and [K : L] ≤ C. Hence, the
constant C represents the price we have to pay if we wish to construct a
model of X that is somehow canonical, as in the theorem.

I If the map µ(E)→ OE/D(X) is not injective, we can still produce a
similar result, but we have to impose some condition on the Hecke
character associated to X...
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between an optimal field of definition of X and FK3,D(X)(E) can be
universally bounded: there exists a universal, effectively computable
constant C such that for every K3 surface X over a number field L, there
is a field extension K/L with ρ(XK) = ρ(X) and [K : L] ≤ C.

Hence, the
constant C represents the price we have to pay if we wish to construct a
model of X that is somehow canonical, as in the theorem.

I If the map µ(E)→ OE/D(X) is not injective, we can still produce a
similar result, but we have to impose some condition on the Hecke
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THE END

Thank you for your attention!
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