The theory of CM for K3 surfaces

Domenico Valloni

May 2, 2018

Domenico Valloni

The theory of CM for K3 surfaces

May 2, 2018 1 / 21

э

Definition

Let X/\mathbb{C} be a (projective) K3 surface. We say that X has CM if its Mumford-Tate group is abelian.

Definition

Let X/\mathbb{C} be a (projective) K3 surface. We say that X has CM if its Mumford-Tate group is abelian.

Or equivalently [Zarhin]:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

Let X/\mathbb{C} be a (projective) K3 surface. We say that X has CM if its Mumford-Tate group is abelian.

Or equivalently [Zarhin]:

Definition

 X/\mathbb{C} has CM if $E(X) := \operatorname{End}_{\operatorname{Hdg}}(T(X)_{\mathbb{Q}})$ is a CM field (where complex conjugation is given by the adjunction with respect to the intersection pairing) and $\dim_{E(X)} T(X)_{\mathbb{Q}} = 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There are many examples of K3 surfaces with CM appearing in nature, the most common can be grouped into two classes:

イロン イロン イヨン イヨン

There are many examples of K3 surfaces with CM appearing in nature, the most common can be grouped into two classes:

1. K3 surfaces X with maximal Picard rank $\rho(X) = 20$ (In this case E(X) is an immaginary quadratic field).

・ロト ・ 四ト ・ ヨト ・ ヨト

There are many examples of K3 surfaces with CM appearing in nature, the most common can be grouped into two classes:

- 1. K3 surfaces X with maximal Picard rank $\rho(X) = 20$ (In this case E(X) is an immaginary quadratic field).
- 2. Kummer surfaces X = Km(A) associated to an abelian surface A with CM. If A is simple, then E(X) is a CM quartic field.

There are many examples of K3 surfaces with CM appearing in nature, the most common can be grouped into two classes:

- 1. K3 surfaces X with maximal Picard rank $\rho(X) = 20$ (In this case E(X) is an immaginary quadratic field).
- 2. Kummer surfaces X = Km(A) associated to an abelian surface A with CM. If A is simple, then E(X) is a CM quartic field.

Fact:

One can show [Taelman] that for every CM number field *E* with the "right" dimension, i.e. $[E: \mathbb{Q}] \leq 20$, there exists a K3 surface *X* with CM by *E*.

・ロン ・四 と ・ ヨン ・ ヨ

If X/\mathbb{C} has CM, Piatetski-Shapiro and Shafarevich showed that it can be defined over $\overline{\mathbb{Q}}$.

(日)

If X/\mathbb{C} has CM, Piatetski-Shapiro and Shafarevich showed that it can be defined over $\overline{\mathbb{Q}}$. In our work, we find a systematic way to address the following two questions about the arithmetic of CM K3 surfaces:

・ロト ・聞 ト ・ ヨト ・ ヨト

If X/\mathbb{C} has CM, Piatetski-Shapiro and Shafarevich showed that it can be defined over $\overline{\mathbb{Q}}$. In our work, we find a systematic way to address the following two questions about the arithmetic of CM K3 surfaces:

1. Suppose *X* is defined over a number field *K*. Which groups can appear as $Br(\overline{X})^{\Gamma_K}$?

・ロト ・聞 ト ・ ヨト ・ ヨト

If X/\mathbb{C} has CM, Piatetski-Shapiro and Shafarevich showed that it can be defined over $\overline{\mathbb{Q}}$. In our work, we find a systematic way to address the following two questions about the arithmetic of CM K3 surfaces:

- 1. Suppose *X* is defined over a number field *K*. Which groups can appear as $Br(\overline{X})^{\Gamma_K}$?
- 2. Is there a field of definition for *X* which is *nicer* than the others? If yes, how can we find / characterise it?

If X/\mathbb{C} has CM, Piatetski-Shapiro and Shafarevich showed that it can be defined over $\overline{\mathbb{Q}}$. In our work, we find a systematic way to address the following two questions about the arithmetic of CM K3 surfaces:

- 1. Suppose *X* is defined over a number field *K*. Which groups can appear as $Br(\overline{X})^{\Gamma_K}$?
- 2. Is there a field of definition for *X* which is *nicer* than the others? If yes, how can we find / characterise it?

Remarks

Skorobogatov and Zarhin showed that the groups $Br(\overline{X})^{\Gamma_K}$ are always finite. Question 1 was studied in detail by Skorobogatov and Ieronymou when *X* is a diagonal quartic surface and $K = \mathbb{Q}(i)$. Other particular CM cases were studied / solved by Newton, Bright, and others..

If X/\mathbb{C} has CM, Piatetski-Shapiro and Shafarevich showed that it can be defined over $\overline{\mathbb{Q}}$. In our work, we find a systematic way to address the following two questions about the arithmetic of CM K3 surfaces:

- 1. Suppose *X* is defined over a number field *K*. Which groups can appear as $Br(\overline{X})^{\Gamma_K}$?
- 2. Is there a field of definition for *X* which is *nicer* than the others? If yes, how can we find / characterise it?

Remarks

Skorobogatov and Zarhin showed that the groups $Br(\overline{X})^{\Gamma_K}$ are always finite. Question 1 was studied in detail by Skorobogatov and Ieronymou when *X* is a diagonal quartic surface and $K = \mathbb{Q}(i)$. Other particular CM cases were studied / solved by Newton, Bright, and others.. Question 2 was studied by Schütt when $\rho(X) = 20$, who gave an upper and

Question 2 was studied by Schütt when $\rho(X) = 20$, who gave an upper and lower bound for a field of definition.

Facts:

Every K3 surface X/C with CM comes equipped with a canonical embedding σ_X: E(X) → C. Its image E ⊂ C is the reflex field of T(X)_Q.

Facts:

- Every K3 surface X/C with CM comes equipped with a canonical embedding σ_X: E(X) → C. Its image E ⊂ C is the reflex field of T(X)_Q.
- Mukai: all the cycles in E(X) are algebraic. For every τ ∈ Aut(ℂ) we denote by τ^{ad}: E(X) → E(X^τ) the pullback under τ: X^τ → X.

Facts:

- Every K3 surface X/C with CM comes equipped with a canonical embedding σ_X: E(X) → C. Its image E ⊂ C is the reflex field of T(X)_Q.
- Mukai: all the cycles in E(X) are algebraic. For every τ ∈ Aut(ℂ) we denote by τ^{ad}: E(X) → E(X^τ) the pullback under τ: X^τ → X.
- ▶ If *X* is defined over a number field $K \subset \mathbb{C}$, we say that *X* has CM over *K* if all the cohomology classes of $E(X_{\mathbb{C}})$ are defined over *K*.

Facts:

- Every K3 surface X/C with CM comes equipped with a canonical embedding σ_X: E(X) → C. Its image E ⊂ C is the reflex field of T(X)_Q.
- Mukai: all the cycles in E(X) are algebraic. For every τ ∈ Aut(ℂ) we denote by τ^{ad}: E(X) → E(X^τ) the pullback under τ: X^τ → X.
- ▶ If *X* is defined over a number field $K \subset \mathbb{C}$, we say that *X* has CM over *K* if all the cohomology classes of $E(X_{\mathbb{C}})$ are defined over *K*.
- *X* has CM over *K* if and only if $E \subset K$.

▲ 同 ▶ → 三 ▶

Principal K3 surfaces

Let $\mathcal{O}(X) := \text{End}_{\text{Hdg}}(T(X))$ be the ring of integral Hodge endomorphisms. It is an order in E(X).

イロト イポト イヨト イヨト

Principal K3 surfaces

Let $\mathcal{O}(X) := \text{End}_{\text{Hdg}}(T(X))$ be the ring of integral Hodge endomorphisms. It is an order in E(X).

Definition

We say that *X* is principal if O(X) is the maximal order.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Principal K3 surfaces

Let $\mathcal{O}(X) := \text{End}_{\text{Hdg}}(T(X))$ be the ring of integral Hodge endomorphisms. It is an order in E(X).

Definition

We say that *X* is principal if O(X) is the maximal order.

Remark

This definiton is of transcendental nature: if $\tau \in \operatorname{Aut}(\mathbb{C})$, then usually T(X) and $T(X^{\tau})$ are not isomorphic as Hodge structures. However, we prove that the map $\tau^{ad} : E(X) \to E(X^{\tau})$ sends $\mathcal{O}(X)$ isomorphically to $\mathcal{O}(X^{\tau})$. This allows us to define principal K3 surfaces over every field that can be embedded into \mathbb{C} .

[Torelli]: Studying projective K3 surfaces is essentially the same as studying polarised Hodge strucures on the K3 lattice Λ , with the condition dim $\Lambda^{2,0} = 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[Torelli]: Studying projective K3 surfaces is essentially the same as studying polarised Hodge strucures on the K3 lattice Λ , with the condition dim $\Lambda^{2,0} = 1$. Let d > 0 an integer and $\mathbb{K} \subset SO(2, 19)(\mathbb{A}_f)$ a compact open subgroup (with some additional technical properties..).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

[Torelli]: Studying projective K3 surfaces is essentially the same as studying polarised Hodge strucures on the K3 lattice Λ , with the condition dim $\Lambda^{2,0} = 1$. Let d > 0 an integer and $\mathbb{K} \subset SO(2, 19)(\mathbb{A}_f)$ a compact open subgroup (with some additional technical properties..).

► Geometry: one can construct the moduli space \$\mathcal{F}_{2d,K}\$ of primitively polarised K3 surfaces with a K-level structure. These are algebraic spaces defined over \$\mathbb{Q}\$.

・ロン ・四 と ・ ヨン ・ ヨ

[Torelli]: Studying projective K3 surfaces is essentially the same as studying polarised Hodge strucures on the K3 lattice Λ , with the condition dim $\Lambda^{2,0} = 1$. Let d > 0 an integer and $\mathbb{K} \subset SO(2, 19)(\mathbb{A}_f)$ a compact open subgroup (with some additional technical properties..).

- ► Geometry: one can construct the moduli space \$\mathcal{F}_{2d,K}\$ of primitively polarised K3 surfaces with a K-level structure. These are algebraic spaces defined over \$\mathbb{Q}\$.
- ► Hodge theory: one can construct a Shimura variety Sh_K(SO(2, 19), Ω[±]). These varieties also have a "canonical" model over Q [Deligne].

イロト 不得 とくき とくき とうき

[Torelli]: Studying projective K3 surfaces is essentially the same as studying polarised Hodge strucures on the K3 lattice Λ , with the condition dim $\Lambda^{2,0} = 1$. Let d > 0 an integer and $\mathbb{K} \subset SO(2, 19)(\mathbb{A}_f)$ a compact open subgroup (with some additional technical properties..).

- ► Geometry: one can construct the moduli space \$\mathcal{F}_{2d,K}\$ of primitively polarised K3 surfaces with a K-level structure. These are algebraic spaces defined over \$\mathbb{Q}\$.
- ► Hodge theory: one can construct a Shimura variety Sh_K(SO(2, 19), Ω[±]). These varieties also have a "canonical" model over Q [Deligne].

The period map connect these two objects, over \mathbb{C} :

$$\mathcal{P}\colon \mathcal{F}_{2d,\mathbb{K}}(\mathbb{C})\to Sh_{\mathbb{K}}(\mathrm{SO}(2,19),\Omega^{\pm})(\mathbb{C}).$$

イロト 不得 とくき とくき とうき

Theorem (Rizov) The morphism \mathcal{P} is defined over \mathbb{Q} .

< □ > < 同 > < 回 > < 回 > < 回

Theorem (Rizov)

The morphism \mathcal{P} is defined over \mathbb{Q} .

Since the canonical model of $Sh_{\mathbb{K}}(SO(2, 19), \Omega^{\pm})$ defined by Deligne is constructed by specifying the Aut(\mathbb{C})-action on special points, the above Theorem is equivalent to the following (once we compute the reciprocity map..)

Corollary (Main theorem of CM)

Let X/\mathbb{C} be a K3 surface with CM and let $E \subset \mathbb{C}$ be its reflex field. Let $\tau \in \operatorname{Aut}(\mathbb{C}/E)$ and $s \in \mathbb{A}_E^{\times}$ be an idèle such that $\operatorname{art}(s) = \tau_{|E^{ab}}$. There exists a unique Hodge isometry $\eta \colon T(X)_{\mathbb{Q}} \to T(X^{\tau})_{\mathbb{Q}}$ such that the following triangle commutes

$$egin{aligned} T(X)_{\mathbb{A}_f} & \stackrel{\eta \otimes \mathbb{A}_f}{\longrightarrow} T(X^{ au})_{\mathbb{A}_f} \ & \stackrel{s_f}{\stackrel{s_f}{\longrightarrow}} & \stackrel{ au^*}{\longrightarrow} & T(X)_{\mathbb{A}_f} \ & T(X)_{\mathbb{A}_f} \end{aligned}$$

And and the set of the	100	100.00
TRAILIPHICA .		
Domenieo		

Let us fix a CM field *E*. Types are needed to parametrise tuples of the form $(T(X), B, \iota)$, where T(X) is the transcendental lattice of a principal K3 with CM, $B \subset Br(X)$ a finite subgroup invariant under the action of O(X) and $\iota: E \to E(X)$ an isomorphism.

< ロ > < 同 > < 回 > < 回 > < 回 >

Let us fix a CM field *E*. Types are needed to parametrise tuples of the form $(T(X), B, \iota)$, where T(X) is the transcendental lattice of a principal K3 with CM, $B \subset Br(X)$ a finite subgroup invariant under the action of O(X) and $\iota: E \to E(X)$ an isomorphism.

Definition

A type is a tuple (I, α, J, σ) where

Let us fix a CM field *E*. Types are needed to parametrise tuples of the form $(T(X), B, \iota)$, where T(X) is the transcendental lattice of a principal K3 with CM, $B \subset Br(X)$ a finite subgroup invariant under the action of O(X) and $\iota: E \to E(X)$ an isomorphism.

Definition

A type is a tuple (I, α, J, σ) where

1. *I* is a fractional ideal of *E*;

Type

Let us fix a CM field *E*. Types are needed to parametrise tuples of the form $(T(X), B, \iota)$, where T(X) is the transcendental lattice of a principal K3 with CM, $B \subset Br(X)$ a finite subgroup invariant under the action of O(X) and $\iota: E \to E(X)$ an isomorphism.

Definition

A type is a tuple (I, α, J, σ) where

- 1. *I* is a fractional ideal of *E*;
- 2. $\alpha \in E^{\times}$ is an element with $\alpha = \overline{\alpha}$ and such that the form $\operatorname{tr}_{E/\mathbb{Q}}(\alpha x \overline{y})$ takes values in \mathbb{Z} when restricted to *I*;

Let us fix a CM field *E*. Types are needed to parametrise tuples of the form $(T(X), B, \iota)$, where T(X) is the transcendental lattice of a principal K3 with CM, $B \subset Br(X)$ a finite subgroup invariant under the action of O(X) and $\iota: E \to E(X)$ an isomorphism.

Definition

A type is a tuple (I, α, J, σ) where

- 1. *I* is a fractional ideal of *E*;
- 2. $\alpha \in E^{\times}$ is an element with $\alpha = \overline{\alpha}$ and such that the form $\operatorname{tr}_{E/\mathbb{Q}}(\alpha x \overline{y})$ takes values in \mathbb{Z} when restricted to *I*;
- J a fractional ideal of E satisfying I^{*} ⊂ J, where I^{*} denotes the dual of I with respect to the quadratic form induced by α;

-		***	
	omenico	-Val	ODI
	omemeo	v au	10 III

• • • • • • • • • • • • •

Type

Let us fix a CM field *E*. Types are needed to parametrise tuples of the form $(T(X), B, \iota)$, where T(X) is the transcendental lattice of a principal K3 with CM, $B \subset Br(X)$ a finite subgroup invariant under the action of O(X) and $\iota: E \to E(X)$ an isomorphism.

Definition

- A type is a tuple (I, α, J, σ) where
 - 1. *I* is a fractional ideal of *E*;
 - 2. $\alpha \in E^{\times}$ is an element with $\alpha = \overline{\alpha}$ and such that the form $\operatorname{tr}_{E/\mathbb{Q}}(\alpha x \overline{y})$ takes values in \mathbb{Z} when restricted to *I*;
 - J a fractional ideal of E satisfying I^{*} ⊂ J, where I^{*} denotes the dual of I with respect to the quadratic form induced by α;
 - 4. $\sigma: E \hookrightarrow \mathbb{C}$ an emdedding.

Definition

We say that $(T(X), B, \iota)$ is of type (I, α, J, σ) if there exists an \mathcal{O}_E -linear isomorphism $\Phi: T(X) \to I$ realising the following 'correspondence':

-

• • • • • • • • • • • • •
Туре

Definition

We say that $(T(X), B, \iota)$ is of type (I, α, J, σ) if there exists an \mathcal{O}_E -linear isomorphism $\Phi: T(X) \to I$ realising the following 'correspondence':

$$\operatorname{tr}_{E/\mathbb{Q}}(\alpha x \overline{y}) \nleftrightarrow (-,-)_X;$$

-

• • • • • • • • • • • • •

Туре

Definition

We say that $(T(X), B, \iota)$ is of type (I, α, J, σ) if there exists an \mathcal{O}_E -linear isomorphism $\Phi: T(X) \to I$ realising the following 'correspondence':

$$\operatorname{tr}_{E/\mathbb{Q}}(\alpha x \overline{y}) \longleftrightarrow (-, -)_X;$$
$$I^* \otimes \mathbb{Q}/\mathbb{Z} \cong E/I^* \supseteq J/I^* \longleftrightarrow B \subset \operatorname{Br}(X) \cong T(X)^* \otimes \mathbb{Q}/\mathbb{Z};$$

< □ > < 同 > < 回 > < 回 > < 回

Туре

Definition

We say that $(T(X), B, \iota)$ is of type (I, α, J, σ) if there exists an \mathcal{O}_E -linear isomorphism $\Phi: T(X) \to I$ realising the following 'correspondence':

$$\operatorname{tr}_{E/\mathbb{Q}}(\alpha x \overline{y}) \longleftrightarrow (-,-)_X;$$

$$I^* \otimes \mathbb{Q}/\mathbb{Z} \cong E/I^* \supseteq J/I^* \longleftrightarrow B \subset \operatorname{Br}(X) \cong T(X)^* \otimes \mathbb{Q}/\mathbb{Z};$$

$$T(X) \otimes \mathbb{C} \supseteq T^{1,-1}(X) \longleftrightarrow \mathbb{C}_{\sigma} \subset E \otimes \mathbb{C} = \bigoplus_{\tau : E \hookrightarrow \mathbb{C}} \mathbb{C}_{\tau}.$$

< □ > < 同 > < 回 > < 回 > < 回

The last objects we need to introduce before stating our main results are some abelian extensions of E which naturally appear when studying K3 with CM.

The last objects we need to introduce before stating our main results are some abelian extensions of *E* which naturally appear when studying K3 with CM. To every ideal $I \subset \mathcal{O}_E$ such that $I = \overline{I}$ we associate a field extension $F_{K3,I}(E)/E$ with abelian Galois group $G_{K3,I}(E)$.

The last objects we need to introduce before stating our main results are some abelian extensions of *E* which naturally appear when studying K3 with CM. To every ideal $I \subset O_E$ such that $I = \overline{I}$ we associate a field extension $F_{K3,I}(E)/E$ with abelian Galois group $G_{K3,I}(E)$. $F_{K3,I}(E)$ fits into the following picture:

The last objects we need to introduce before stating our main results are some abelian extensions of *E* which naturally appear when studying K3 with CM. To every ideal $I \subset O_E$ such that $I = \overline{I}$ we associate a field extension $F_{K3,I}(E)/E$ with abelian Galois group $G_{K3,I}(E)$. $F_{K3,I}(E)$ fits into the following picture:

► $K_I(E)$ denotes the ray class group of *E* modulo *I*, $\operatorname{Gal}(K_I(E)/E) \cong \operatorname{Cl}_I(E);$

The last objects we need to introduce before stating our main results are some abelian extensions of *E* which naturally appear when studying K3 with CM. To every ideal $I \subset O_E$ such that $I = \overline{I}$ we associate a field extension $F_{K3,I}(E)/E$ with abelian Galois group $G_{K3,I}(E)$. $F_{K3,I}(E)$ fits into the following picture:

- ► $K_I(E)$ denotes the ray class group of *E* modulo *I*, $Gal(K_I(E)/E) \cong Cl_I(E);$
- ► $K'_I(E)$ is the fixed field of $\{x \in \operatorname{Cl}_I(E) : x = \overline{x}\} \subset \operatorname{Cl}_I(E);$

< (1) > < (2) > <

The last objects we need to introduce before stating our main results are some abelian extensions of *E* which naturally appear when studying K3 with CM. To every ideal $I \subset O_E$ such that $I = \overline{I}$ we associate a field extension $F_{K3,I}(E)/E$ with abelian Galois group $G_{K3,I}(E)$. $F_{K3,I}(E)$ fits into the following picture:

- ► $K_I(E)$ denotes the ray class group of *E* modulo *I*, $\operatorname{Gal}(K_I(E)/E) \cong \operatorname{Cl}_I(E);$
- ► $K'_I(E)$ is the fixed field of $\{x \in \operatorname{Cl}_I(E) : x = \overline{x}\} \subset \operatorname{Cl}_I(E);$

 $\bullet \ \operatorname{Gal}(F_{K3,I}(E)/K'_{I}(E)) \cong \\ \frac{\mathcal{O}_{F}^{\times} \cap N(E^{I,1})}{N(\mathcal{O}_{E}^{I})}.$

We compute the cardinality of the Galois group $G_{K3,I}(E)$ as well:

< □ > < □ > < □ > < □ >

We compute the cardinality of the Galois group $G_{K3,I}(E)$ as well:

$$|G_{K3,I}(E)| = \frac{h_E \cdot \phi_E(I) \cdot [\mathbb{O}_F^{\times} : N(\mathbb{O}_E^I)] \cdot [E : F]}{h_F \cdot \phi_F(J) \cdot [\mathbb{O}_E^{\times} : \mathbb{O}_E^I] \cdot e(E/F, J) \cdot |H^1(E^{I,1})|}.$$

The theory of CM for K3 surfaces

< □ > < □ > < □ > < □ >

What is a field of moduli?

Let $(T(X), B, \iota)$ be as before, and let $\tau \in Aut(\mathbb{C})$.

イロト イロト イヨト イヨ

Let $(T(X), B, \iota)$ be as before, and let $\tau \in Aut(\mathbb{C})$. Suppose we can find a Hodge isometry $f: T(X) \to T(X^{\tau})$ such that

$$f^*\tau_*\colon \operatorname{Br}(X) \to \operatorname{Br}(X)$$

restricts to the identity on *B*.

Let $(T(X), B, \iota)$ be as before, and let $\tau \in Aut(\mathbb{C})$. Suppose we can find a Hodge isometry $f: T(X) \to T(X^{\tau})$ such that

$$f^*\tau_*\colon \operatorname{Br}(X) \to \operatorname{Br}(X)$$

restricts to the identity on B.

Definition

The field of moduli of $(T(X), B, \iota)$ is the fixed field of

 $\{\tau \in \operatorname{Aut}(\mathbb{C}) \colon \operatorname{such} \operatorname{an} f \operatorname{exists} \}.$

		* * *	
Dom	mino	Mal	lone
		- V / I I	
Donn			

Main results

After having translated the main theorem of CM into the language of types, we prove:

イロト イポト イヨト イヨト

Main results

After having translated the main theorem of CM into the language of types, we prove:

Theorem (A)

Let $(T(X), B, \iota)$ be of type (I, α, J, σ) . Then the field of moduli of $(T(X), B, \iota)$ corresponds to $F_{K3, I^*J^{-1}}(E)$, the K3 class field of E modulo the ideal $I^*J^{-1} \subset \mathcal{O}_E$.

Main results

After having translated the main theorem of CM into the language of types, we prove:

Theorem (A)

Let $(T(X), B, \iota)$ be of type (I, α, J, σ) . Then the field of moduli of $(T(X), B, \iota)$ corresponds to $F_{K3, I^*J^{-1}}(E)$, the K3 class field of E modulo the ideal $I^*J^{-1} \subset \mathcal{O}_E$.

Theorem (B)

Let X/K be a principal K3 surface with CM over a number field K. There exists an ideal $I_B \subset \mathcal{O}_E$ such that

$$\mathcal{O}_E/I_B \cong \operatorname{Br}(\overline{X})^{\Gamma_K}$$

as \mathcal{O}_E -modules and

 $|G_{K3,I_B}(E)| \mid [K:E].$

Algorithm!

<ロ> <四> <四> <四> <四> <四> <四</p>

Algorithm! Input: a number field K and a CM field E.

<ロト < 四ト < 三ト < 三ト

Algorithm! Input: a number field *K* and a CM field *E*. Output: a finite set of groups Br(E, K) such that for every principal CM K3 surfaces X/K with reflex field *E* one has

 $\operatorname{Br}(\overline{X})^{\Gamma_K} \in \operatorname{Br}(E,K).$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm! Input: a number field *K* and a CM field *E*. Output: a finite set of groups Br(E, K) such that for every principal CM K3 surfaces X/K with reflex field *E* one has

 $\operatorname{Br}(\overline{X})^{\Gamma_K} \in \operatorname{Br}(E,K).$

It works as follows:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm! Input: a number field *K* and a CM field *E*. Output: a finite set of groups Br(E, K) such that for every principal CM K3 surfaces X/K with reflex field *E* one has

 $\operatorname{Br}(\overline{X})^{\Gamma_K} \in \operatorname{Br}(E,K).$

It works as follows:

1. Replace K by KE;

Algorithm! Input: a number field *K* and a CM field *E*. Output: a finite set of groups Br(E, K) such that for every principal CM K3 surfaces X/K with reflex field *E* one has

 $\operatorname{Br}(\overline{X})^{\Gamma_K} \in \operatorname{Br}(E,K).$

It works as follows:

- 1. Replace *K* by *KE*;
- 2. Use the formula for $|G_{K3,I}(E)|$ to find all the ideals $I \subset \mathcal{O}_E$ such that $|G_{K3,I}(E)|$ divides [K: E]. Denote them $I_1, \dots I_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm! Input: a number field *K* and a CM field *E*. Output: a finite set of groups Br(E, K) such that for every principal CM K3 surfaces X/K with reflex field *E* one has

 $\operatorname{Br}(\overline{X})^{\Gamma_K} \in \operatorname{Br}(E,K).$

It works as follows:

- 1. Replace *K* by *KE*;
- 2. Use the formula for $|G_{K3,I}(E)|$ to find all the ideals $I \subset \mathcal{O}_E$ such that $|G_{K3,I}(E)|$ divides [K: E]. Denote them $I_1, \dots I_n$.
- 3. Now employ Theorem B, which says that $Br(\overline{X_K})^{\Gamma_K} \cong \mathcal{O}_E/I_B$, with $I_B \subset \mathcal{O}_E$ a fractional ideal dividing one of the I_i 's.

We apply the algorithm above to sort out the possible Brauer groups when *E* is either $\mathbb{Q}(i)$ or has odd discriminant and *K* is the smallest possible field, i.e. $K = F_{K3}(E)$.

We apply the algorithm above to sort out the possible Brauer groups when *E* is either $\mathbb{Q}(i)$ or has odd discriminant and *K* is the smallest possible field, i.e. $K = F_{K3}(E)$.

Example

 $X/\mathbb{Q}(i)$ with CM by $\mathbb{Q}(i)$ (e.g., a diagonal quartic surface). Then the possibilities for $Br(\overline{X})^{\Gamma_{\mathbb{Q}}(i)}$ are

• • • • • • • • • • • • • •

We apply the algorithm above to sort out the possible Brauer groups when *E* is either $\mathbb{Q}(i)$ or has odd discriminant and *K* is the smallest possible field, i.e. $K = F_{K3}(E)$.

Example

 $X/\mathbb{Q}(i)$ with CM by $\mathbb{Q}(i)$ (e.g., a diagonal quartic surface). Then the possibilities for $Br(\overline{X})^{\Gamma_{\mathbb{Q}}(i)}$ are

 $0, \ \mathbb{Z}/3 \times \mathbb{Z}/3, \ \mathbb{Z}/5, \ \mathbb{Z}/5 \times \mathbb{Z}/5, \ \mathbb{Z}/2, \ \mathbb{Z}/2 \times \mathbb{Z}/2, \ \mathbb{Z}/4 \times \mathbb{Z}/2, \ \mathbb{Z}/4 \times \mathbb{Z}/4$

 $\mathbb{Z}/8 \times \mathbb{Z}/4, \ \mathbb{Z}/8 \times \mathbb{Z}/8, \ \mathbb{Z}/3 \times \mathbb{Z}/3 \times \mathbb{Z}/2, \ \mathbb{Z}/3 \times \mathbb{Z}/3 \times \mathbb{Z}/2 \times \mathbb{Z}/2, \\ \mathbb{Z}/5 \times \mathbb{Z}/2, \ \mathbb{Z}/5 \times \mathbb{Z}/5 \times \mathbb{Z}/2, \ \mathbb{Z}/5 \times \mathbb{Z}/2 \times \mathbb{Z}/2, \ \mathbb{Z}/5 \times \mathbb{Z}/2 \times \mathbb{Z}/2.$

(日)

Let *E* be an immaginary quadratic field with odd discriminant and $\mu(E) = \{\pm 1\}, K = F_{K3}(E)$ and X/K a K3 surface with CM by *E*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *E* be an immaginary quadratic field with odd discriminant and $\mu(E) = \{\pm 1\}, K = F_{K3}(E)$ and X/K a K3 surface with CM by *E*.

If 2 splits and 3 is inert, the only possibilities for Br(X̄)^{Γ_K} are 0, Z/2, Z/2 × Z/2, Z/4, Z/4 × Z/2, Z/4 × Z/4.

イロト イポト イヨト イヨト

Let *E* be an immaginary quadratic field with odd discriminant and $\mu(E) = \{\pm 1\}, K = F_{K3}(E)$ and X/K a K3 surface with CM by *E*.

- If 2 splits and 3 is inert, the only possibilities for Br(X̄)^{Γκ} are 0, Z/2, Z/2 × Z/2, Z/4, Z/4 × Z/2, Z/4 × Z/4.
- If 2 is inert and 3 ramifies, the only possibilities for $Br(\overline{X})^{\Gamma_K}$ are 0, $\mathbb{Z}/3$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Let *E* be an immaginary quadratic field with odd discriminant and $\mu(E) = \{\pm 1\}, K = F_{K3}(E)$ and X/K a K3 surface with CM by *E*.

- If 2 splits and 3 is inert, the only possibilities for Br(X̄)^{Γκ} are 0, Z/2, Z/2×Z/2, Z/4, Z/4×Z/2, Z/4×Z/4.
- If 2 is inert and 3 ramifies, the only possibilities for $Br(\overline{X})^{\Gamma_K}$ are 0, $\mathbb{Z}/3$.
- If both 2 and 3 are inert, the $Br(\overline{X})^{\Gamma_K} = 0$.

Let *E* be an immaginary quadratic field with odd discriminant and $\mu(E) = \{\pm 1\}, K = F_{K3}(E)$ and X/K a K3 surface with CM by *E*.

- If 2 splits and 3 is inert, the only possibilities for Br(X̄)^{Γκ} are 0, Z/2, Z/2×Z/2, Z/4, Z/4×Z/2, Z/4×Z/4.
- If 2 is inert and 3 ramifies, the only possibilities for $Br(\overline{X})^{\Gamma_K}$ are 0, $\mathbb{Z}/3$.
- If both 2 and 3 are inert, the $Br(\overline{X})^{\Gamma_{K}} = 0$.
- ...and we deal with all the other cases as well.

• • • • • • • • • • • • • •

Let *E* be an immaginary quadratic field with odd discriminant and $\mu(E) = \{\pm 1\}, K = F_{K3}(E)$ and X/K a K3 surface with CM by *E*.

- If 2 splits and 3 is inert, the only possibilities for Br(X̄)^{Γκ} are 0, Z/2, Z/2 × Z/2, Z/4, Z/4 × Z/2, Z/4 × Z/4.
- If 2 is inert and 3 ramifies, the only possibilities for $Br(\overline{X})^{\Gamma_K}$ are 0, $\mathbb{Z}/3$.
- If both 2 and 3 are inert, the $Br(\overline{X})^{\Gamma_K} = 0$.
- ...and we deal with all the other cases as well.

Remark

Notice how the behaviour of the rational primes in *E* influences the groups $Br(\overline{X})^{\Gamma_K}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Field of definition

Let X/\mathbb{C} be a principal K3 surface with CM, and let (I, α, σ) be its type. Put

$$\mathcal{D}(X) := (\alpha) I \overline{I} \mathcal{D}_E,$$

where \mathcal{D}_E is the different ideal of E. $\mathcal{D}(X) \subset \mathcal{O}_E$ is a well defined invariant of X, and the type map induces an isomorphism $\operatorname{disc}(T(X)) \cong \mathcal{O}_E/\mathcal{D}(X)$.

Field of definition

Let X/\mathbb{C} be a principal K3 surface with CM, and let (I, α, σ) be its type. Put

 $\mathcal{D}(X) := (\alpha) I \overline{I} \mathcal{D}_E,$

where \mathcal{D}_E is the different ideal of E. $\mathcal{D}(X) \subset \mathcal{O}_E$ is a well defined invariant of X, and the type map induces an isomorphism $\operatorname{disc}(T(X)) \cong \mathcal{O}_E/\mathcal{D}(X)$.

Theorem

Let X/\mathbb{C} be as above, and suppose that the natural map $\mu(E) \to \mathcal{O}_E/\mathcal{D}(X)$ is injective. Then X admits a model \tilde{X} over $F_{K3,\mathcal{D}(X)}(E)$, which is uniquely determined by the two following properties:

Field of definition

Let X/\mathbb{C} be a principal K3 surface with CM, and let (I, α, σ) be its type. Put

 $\mathcal{D}(X) := (\alpha) I \overline{I} \mathcal{D}_E,$

where \mathcal{D}_E is the different ideal of E. $\mathcal{D}(X) \subset \mathcal{O}_E$ is a well defined invariant of X, and the type map induces an isomorphism $\operatorname{disc}(T(X)) \cong \mathcal{O}_E/\mathcal{D}(X)$.

Theorem

Let X/\mathbb{C} be as above, and suppose that the natural map $\mu(E) \to \mathcal{O}_E/\mathcal{D}(X)$ is injective. Then X admits a model \tilde{X} over $F_{K3,\mathcal{D}(X)}(E)$, which is uniquely determined by the two following properties:

$$\blacktriangleright \ \rho(\tilde{X}) = \rho(X);$$
Field of definition

Let X/\mathbb{C} be a principal K3 surface with CM, and let (I, α, σ) be its type. Put

$$\mathcal{D}(X) := (\alpha) I \overline{I} \mathcal{D}_E,$$

where \mathcal{D}_E is the different ideal of E. $\mathcal{D}(X) \subset \mathcal{O}_E$ is a well defined invariant of X, and the type map induces an isomorphism $\operatorname{disc}(T(X)) \cong \mathcal{O}_E/\mathcal{D}(X)$.

Theorem

Let X/\mathbb{C} be as above, and suppose that the natural map $\mu(E) \to \mathcal{O}_E/\mathcal{D}(X)$ is injective. Then X admits a model \tilde{X} over $F_{K3,\mathcal{D}(X)}(E)$, which is uniquely determined by the two following properties:

•
$$\rho(\tilde{X}) = \rho(X);$$

• (Universal property) let Y be a K3 surface over a number field L with CM over L and suppose that $Y_{\mathbb{C}} \cong X$ and that $\rho(Y) = \rho(X)$. Then $F_{K3,\mathcal{D}(X)}(E) \subset L$ and $\tilde{X}_L \cong Y$.

Remarks

► The condition $\rho(\tilde{X}) = \rho(X)$ prevents, in general, $F_{K3, \mathcal{D}(X)}(E)$ from being the 'smallest' field of definition for *X*.

Remarks

► The condition \(\rho(\tilde{X}) = \(\rho(X)\) prevents, in general, \(F_{K3,D(X)}(E)\) from being the 'smallest' field of definition for \(X). On the other hand, the difference between an optimal field of definition of \(X) and \(F_{K3,D(X)}(E)\) can be universally bounded:

Remarks

The condition ρ(X̃) = ρ(X) prevents, in general, F_{K3,D(X)}(E) from being the 'smallest' field of definition for X. On the other hand, the difference between an *optimal* field of definition of X and F_{K3,D(X)}(E) can be universally bounded: there exists a universal, effectively computable constant C such that for every K3 surface X over a number field L, there is a field extension K/L with ρ(X_K) = ρ(X̄) and [K : L] ≤ C.

Remarks

The condition ρ(X̃) = ρ(X) prevents, in general, F_{K3,D(X)}(E) from being the 'smallest' field of definition for X. On the other hand, the difference between an *optimal* field of definition of X and F_{K3,D(X)}(E) can be universally bounded: there exists a universal, effectively computable constant C such that for every K3 surface X over a number field L, there is a field extension K/L with ρ(X_K) = ρ(X̄) and [K : L] ≤ C. Hence, the constant C represents the price we have to pay if we wish to construct a model of X that is somehow canonical, as in the theorem.

Remarks

- The condition ρ(X̃) = ρ(X) prevents, in general, F_{K3,D(X)}(E) from being the 'smallest' field of definition for X. On the other hand, the difference between an *optimal* field of definition of X and F_{K3,D(X)}(E) can be universally bounded: there exists a universal, effectively computable constant C such that for every K3 surface X over a number field L, there is a field extension K/L with ρ(X_K) = ρ(X̄) and [K : L] ≤ C. Hence, the constant C represents the price we have to pay if we wish to construct a model of X that is somehow canonical, as in the theorem.
- If the map µ(E) → O_E/D(X) is not injective, we can still produce a similar result, but we have to impose some condition on the Hecke character associated to X...

・ロト ・回ト ・回ト ・回

THE END

Thank you for your attention!

The theory of CM for K3 surfaces

▲ ■ ▶ ■ つへの May 2, 2018 21 / 21

<ロト < 四ト < 三ト < 三ト