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CM elliptic curves

Elliptic curve E = C/(Z + Zτ), im(τ) > 0

E has complex multiplication (CM) ⇔ End(E ) ) Z
⇔ τ quadratic over Q

Consequence: infinitely many CM elliptic curves, dense in
moduli

Examples:
Elliptic curves with extra automorphisms (j-invariant
j = 0, 123), and without, e.g. j = −3315, 2333113

More precisely: End(E ) = O is an order in K = Q(τ)

Examples: first three have End = OK , last has End = Z[2i ].

Notation: dK discriminant of (ring of integers OK of) K
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Class group theory

Write O = Z + fOK (f ∈ N), then there are class groups

Cl(O) = {fractional O-ideals of K}/(principal O-ideals)

l 1 : 1 d = f 2dK

Cl(d) = {primitive positive-definite even binary

quadratic forms of discriminant d}/SL2(Z)

with elements

Q =

(
2a b
b 2c

)
, a, c ∈ N, b ∈ Z, b2 − 4ac = f 2dK .

Unique reduced form: −a ≤ b ≤ a ≤ c ,
with b ≥ 0 if a = c or |b| = a.

Follows: Cl(d) finite, class number h(d) = #Cl(d).



Singular K3
surfaces of class

number two

Matthias Schütt
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CM theory

1. Deuring: CM elliptic curves are modular, i.e. related to
Hecke characters

2. ring class field H(d) = K (j(E )) for any E with End= O,

Corollary: E is defined over H(d), and at best over degree
two subfield Q(j)

3. Shimura: Gal(H(d)/K ) ∼= Cl(d) acts faithfully and
transitively on all such E (so there are h(d) in number)

Corollary: Exactly 13 CM elliptic curves over Q

4. ∀L number field: #{CM E/L} <∞, or even

∀N ∈ N : #{CM E/L; [L : Q] ≤ N} <∞.

Similar problem in higher dimension?
−→ singular K3 surfaces (more fruitful than abelian surfaces)
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Singular K3 surfaces

K3 surface X : smooth, projective surface with

h1(X ,OX ) = 0, ωX = OX .

Examples: double sextics, smooth quartics in P3, ...

Here: work over C, so Picard number

ρ(X ) = rkNS(X ) ≤ h1,1(X ) = 20 (Lefschetz)

Much of arithmetic concentrated in isolated case ρ = 20:
singular K3 surfaces (in the sense of exceptional)

Example: Fermat quartic

X = {x4
0 + x4

1 + x4
2 + x4

4 = 0} ⊂ P3.

48 lines have intersection matrix of rank 20 and determinant
−64; hence they generate NS(X ) up to finite index.
[Non-trivial: showing that the lines generate NS(X )...]
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Transcendental lattice
Transcendental lattice T (X ) = NS(X )⊥ ⊂ H2(X ,Z)

identified with positive-definite, even, binary quadratic form

Q(X ) =

(
2a b
b 2c

)
.

(unique up to conjugation in SL(2,Z))
as before – except that Q(X ) need not be primitive!

Example: Given that the Fermat has NS of discriminant
−64 generated by lines, one can compute the discriminant
group

NS∨/NS ∼= (Z/8Z)2 ∼= T∨/T (Nikulin)

By inspection of Cl(−4),Cl(−16) and Cl(−64), this implies

Q =

(
8 0
0 8

)
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Torelli for singular K3 surfaces

Torelli: X ∼= Y ⇐⇒ T (X ) ∼= T (Y )

Follows: Fermat quartic, up to isomorphism, uniquely
determined by T = . . ..

Funny side-remark: there is another model as smooth
quartic, this time with 56 lines! (Degtyarev–Itenberg–Sertöz,
Shimada–Shioda)

History: Same result first proved and used for singular
abelian surfaces, i.e. with ρ = 4 (Shioda–Mitani)

Discriminant d = detNS(X ) = b2 − 4ac < 0.

Application: if any, then there is a unique K3 surface of each
discriminant

d = −3,−4,−7,−8,−11,−19,−43,−67,−163.

[since h(d) = 1, and Q(X ) is automatically primitive as an
even quadratic form.]
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CM elliptic curves

Singular K3
surfaces

Old obstructions

Class number two

New obstruction

Singular K3 surfaces of class number one

Class number of singular K3 X : h(d)

Have seen: at most 9 singular K3 surfaces with class number
one and fundamental discriminant (i.e. d = dK for some
imaginary quadratic K )

Cheap examples: Vinberg’s most algebraic K3 surfaces
X3,X4, for instance as (isotrivial) elliptic surfaces

X3 : y2 + t2(t − 1)2y = x3

X4 : y2 = x3 − t3(t − 1)2x

Compute ρ, d : trivial lattice spanned by zero section and
fiber components in NS: Here U + E 3

6 resp. U + D4 + E 2
7 .

Follows ρ = 20, and obtain d = −3,−4 from finite index
overlattice generated by torsion section (0, 0).

[Fun features: unirational in char p ≡ −1 mod |d |, explicit
dynamics, ...]



Singular K3
surfaces of class

number two

Matthias Schütt
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Non-fundamental discriminants

Recall non-fundamental discriminants of class number one:

d = −12,−16,−27,−28

For each d , there are thus two possible quadratic forms
Q(X ) on a singular K3 surface of discriminant d . E.g.

d = 12 =⇒ Q(X ) =

(
4 2
2 4

)
,

(
2 0
0 6

)
(exactly one of which is divisible).

In practice: distinguish forms by divisibility/degree of
primitivity/discriminant groups/discriminant forms... (works
and applies in general)

Problem: General construction?! (over C/over Q/...)
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Kummer surfaces

Classical construction (accounting for one ’K’ in K3):
A abelian surface =⇒

A/〈−1〉 has 16 A1 sing =⇒ Km(A) = Ã/〈−1〉 K3

(converse also (Nikulin): 16 nodal curves =⇒ Kummer)

Properties: ρ(Km(A)) = ρ(A) + 16
T (Km(A)) = T (A)[2] (scaled inters. form)

Follows: Fermat quartic, singular K3 with Q(X ) =

(
4 2
2 4

)
could be Kummer, but other K3’s like X3,X4 not (compare
attempt at proving subjectivity of period map for K3’s...)
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Singular abelian surfaces

Shioda–Mitani: Any positive-definite even binary quadratic
form Q is attained by some singular abelian surface A

Proof: Write Q =

(
2a b
b 2c

)
as before. Set

τ =
−b +

√
d

2a
, τ ′ =

b +
√
d

2
,

and consider
A = Eτ × Eτ ′

for complex tori Eτ = C/(Z + τZ).

Application: Fermat = Km(Ei × E2i ),

ω ∈ µ3 primitive =⇒ Km(E 2
ω) has Q =

(
4 2
2 4

)
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Surjectivity of period map

Shioda–Inose: Any positive-definite even binary quadratic
form Q is attained by some singular K3 surface X

Proof: Consider associated singular abelian surface A
=⇒ Km(A) has wrong quadratic form 2Q, but classical
configuration of 24 nodal curves:

Km(A)→ P1

↓

P1
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(Fibre components (I∗0) and torsion sections of isotrivial
elliptic fibrations induced from projections onto factors of A)
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Auxilliary elliptic fibration

Key feature of K3 surfaces: may admit several different
elliptic (or genus one) fibrations (like the two before)

Here: blue divisor (with multiplicities) has Kodaira type
II∗ ⇒ induces elliptic fibration

Km(A)

↘

P1
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yellow curve = section; red curves contained in two different
reducible fibres F1,F2 (Kodaira types I∗0 or I∗1)
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Shioda–Inose structure

Consider quadratic base change ramified at F1,F2

=⇒ gives another K3 surface X

Check: T (A) = T (X )

Terminology: Shioda–Inose structure

A X = SI(A)
↘ ↙

Km(A)

(Extended to certain K3 surfaces of Picard number ρ ≥ 17
by Morrison.)

Corollary: Every singular K3 surface is defined over some
number field, and it is modular (⇒ Hecke character)

Livne: singular K3 over Q, discriminant d ⇒
∃ associated wt 3 modular form with CM in K = Q(

√
d)

(converse by Elkies-S.)
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Fields of definition

Inose +ε : Singular K3 X admits model over
Q(j + j ′, jj ′) ⊂ H(d) (Inose’s pencil: elliptic fibration with
two fibres of type II∗)

Corollary: h(d) = 1 =⇒ X over Q

[all elliptic curves involved have CM with class number one]

Problem: can we do better in general?

Example: Fermat quartic: Q(X ) =

(
8 0
0 8

)
.

0. original quartic in P3;

1. X = Km(Ei × E2i );

2. X = SI(Ei × E4i ).

3. smooth quartic in P3 with 56 lines (Shimada–Shioda)
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Fields of definition

Inose +ε : Singular K3 X admits model over
Q(j + j ′, jj ′) ⊂ H(d) (Inose’s pencil: elliptic fibration with
two fibres of type II∗)

Corollary: h(d) = 1 =⇒ X over Q

[all elliptic curves involved have CM with class number one]

Problem: can we do better in general?

Example: Fermat quartic: Q(X ) =

(
8 0
0 8

)
.

0. original quartic in P3 – over Q;

1. X = Km(Ei × E2i ) – over Q;

2. X = SI(Ei × E4i ) – over Q(
√

2)

3. smooth quartic in P3 with 56 lines (Shimada–Shioda) –
over Q(

√
−2)
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Long-term goal – classification

Goal: Classify all singular K3 surfaces over Q

Comment: # >> 13 (but finite, see below)

Today: Any singular K3 surface of class number two is
defined over Q (Schulze–S.)

Example: Fermat!

Bigger framework: arithmetic Torelli Theorem
(conjectural)

Input needed: obstructions against being defined over Q

Will see: two old obstructions, one new

Intertwined: proof of prototypical cases of today’s theorem
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First obstruction: genus

Theorem 1 (Shimada, S.).
X singular K3. Then

{T (X σ);σ ∈ Aut(C)} = genus of T (X ).

Corollary:
X/Q =⇒ the genus of T (X ) consists of a single class

Equivalently: let m denote the degree of primitivity of T (X ).
Then Cl(d/m2) is only 2-torsion.

Consequences: ok for class number two, but not if T (X ) is
primitive of class number three
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Second obstruction: Galois action

Theorem 2 (Elkies, S.).
X singular K3 of discriminant d with NS defined over L.
Then

H(d) ⊆ L(
√
d)

Meaning: X/Q⇒ Galois action of ’size’ h(d) on NS(X )

Proof combines modularity, Artin–Tate conjecture (details to
follow), class group theory

Consequence: NS /Q⇒ h(d) = 1.

Example: Vinberg’s X3,X4

Indeed: X admits model over Q with NS /Q⇔
Q(X ) primitive of class number one (# = 13)

Easy to see: Q as above −→ τ = τ(Q) −→ E = Eτ (CM,
h = 1) −→ X = SI(E 2)/Q
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Use Inose’s pencil on X from Shioda–Inose structure:

essential data presently: 2 fibres of type II∗, 1 fibre of type I2,
1 section P of ht |d |/2 (d < −4)

fibres automatically over Q (by construction), no Galois
action, so if Galois acts non-trivially on NS, then on
MW = ZP. Only possibility

Pσ = −P.

Hence P defined over quadratic extension, and
corresponding quadratic twist has all of NS defined over Q.

If Q is not primitive, say 2-divisible, then
X = Km(A)⇒ NS(A) not over Q (because H2 = ∧2H1 as
Galois module) ⇒ same for NS(X )

Consequence: for singular K3 of class number two to be
defined over Q, need order 2 Galois action on NS which
cannot be twisted away!
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Finiteness

Just like for CM elliptic curves, we derive:

Corollary (Shafarevich):

∀N ∈ N : #{singular K3/L; [L : Q] ≤ N} <∞.

Proof: X/L, H very ample ⇒ Galois acts on H⊥ ⊂ NS(X );
this is negative-definite, hence has finite isometry group; in
fact, size can be bounded a priori.

Problem: Could it suffice for a singular K3 to be defined
over Q to ensure that the two obstructions are met?
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CM elliptic curves

Singular K3
surfaces

Old obstructions

Class number two

New obstruction

Class number two – recap

Recall: want to show that all singular K3 of class number 2
are defined over Q

What’s available?

1. Inose’s pencil over Q(j + j ′, jj ′)

for h = 2,Q primitive, get:

I Q principal form (identity in Cl(d)) ⇔ a = 1⇔ τ = τ ′,
Q(j + j ′, jj ′) 6= Q, no Galois action up to twist as before

I Q non-principal ⇒ j ′ = jσ ⇒ Q(j + j ′, jj ′) = Q.

2. imprimitive Q, say Q = mQ ′, 1 < m < 7

Kuwata: cyclic degree m base changes of Inose’s pencil lead
to elliptic K3’s X ′ with all Mordell–Weil ranks from 1 to 18
except for 15 (gap closed by Kloosterman)

Shioda: T (X ′) = T (X )[m] ⇒ reduction to case 1. for
several imprimitive Q (including Kummer case m = 2)
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3. Extremal elliptic K3 surfaces (ρ = 20, but MW finite)

Shimada-Zhang: lattice theoretical classification

Beukers–Montanus: equations (and designs d’enfant) for all
semi-stable fibrations

S.: many non-semi-stable cases

4. Isolated examples: E.g.

Peters–Top–van der Vlugt: K3 quartic associated to Melas
code

Degtyarev–Itenberg–Sertöz: smooth quartic/Q with 56 lines
over Q(

√
2) [not isomorphic to the Fermat]
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Approach: elliptic fibrations

Idea (for theoretical and practical reasons): use elliptic
fibration (with section) on X ; implies

NS(X ) = U + M

−→ have to impose Galois action on M.

Kneser–Nishiyama method: Determine all possible M by
embedding ’partner lattice’ M⊥ into Niemeier lattices (M⊥

negative definite of rank 26− ρ(X ) with same discriminant
form as T (X ), exists by Nishiyama)

In practice: try out suitable M, ideally with small MW-rank
[Note: ’fibre rank’ read off from roots of M by theory of
Mordell–Weil lattices (Shioda)]
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First example

Take Q =

(
2 0
0 56

)
.

Partner lattice: M⊥ = 〈−8〉+ 〈A4, v〉, v2 = −4, v only
meeting the second component of A4 (looks like section of
ht 14/5)

Consider
M⊥ ↪→ N(E7 + A17) =⇒ M = A7 + 〈E7,A3, u〉, u2 = −4, u
meeting outer (simple) components of E7,A3

MWL: A7,E7,A3 correspond to reducible fibres,
u corresponds to section P of ht 4− 3/2− 3/4 = 7/4.

Galois: may act independently as inversion on first fiber (I8),
and on second set of divisors (I4,P) ⇒ cannot be twisted
away a priori
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Parametrization

1. Work out family of elliptic K3 surfaces with

NS ⊇ U + A7 + E7 + A3

Start with U + A2 + A4 + E7 = easy to write down by hand
as 5-dimensional family

y2 = x3 + (t2u + at + 1)(t − 1)2x2 + t4(t − 1)5(tuv2 − r2)

−(2(−t2uv + bt + r))t2(t − 1)3x ;

then promote = easy enough, though a bit complicated to
write down; e.g., with parameter s,

u =
1

(s − 1)5s2
, a = −s3 − s2 + s + 2

(s − 1)3
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2. Search for member in family with section P of ht 7/4
= small enough to solve directly. Find

s = 8, x(P) = −3319

2475
(t − 1)2(7t + 31).

In more complicated cases:

I use structure of parameter space as modular curve or
Shimura curve, or

I win a parameter by ’guessing’ s from point counts over
various Fp using modularity and/or

I search for solution to system of equations in some Fp

and then apply p-adic Newton iteration.
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Second example

Take Q = 7

(
2 1
1 2

)
. Try, e.g.,

M = A6 + 〈A4 + D7,P〉, h(P) = 4− 6

5
− 7

4
= 21/20.

Result: nice elliptic K3, but not over Q.

Similar outcome for other M – why?
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Artin–Tate conjecture

X/Fp K3 surface, ` 6= p ⇒ reciprocal characteristic
polynomial of Frobenius

P(X ,T ) = det(1− Frob∗p T ;H2
ét(X̄ ,Q`)).

Artin–Tate conjecture: (equivalent to Tate conjecture
(Milne))

p
P(X ,T )

(1− pT )ρ(X )

∣∣∣
T= 1

p

= |Br(X )| · | det(NS(X ))|

Note: |Br(X )| always a square ⇒ control over (square class
of) detNS(X )
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Situation: X/Q singular K3, p split in K = Q(
√
d) ⇒

P(X ⊗ Fp,T ) = (1− apT + p2T 2) · (cyclotomic factors)

where ap = coefficient of wt 3 eigenform with CM by K

In particular, p - ap, so ρ(X ⊗ F̄p) = 20 and Artin–Tate
applies unconditionally

Presently X with Q given, d = −147; assume elliptic
fibration with M defined over Q⇒ Galois action by
L = Q(

√
−7) or Q(

√
21) on I7 fiber (after quadratic twist)

Take p split in K , but not in L⇒ I7 not over Fp ⇒

ρ(X⊗Fp) = 17, detNS(X⊗Fp) = 2521⇒ RHS = 42 mod Q2

LHS: P(X ⊗ Fp,T ) = (1− apT + p2T 2)(1− T )17(1 + T )3

where ap = ±(α2 + ᾱ2), α ∈ K = Q(
√
−3), αᾱ = p

LHS evaluates at T = 1
p as ±8(α± ᾱ)2 = 2 or 6 mod Q2

— not compatible w/ RHS
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Compatible elliptic fibration

Solution: ’synchronize’ orthogonal summands in M with
determinant divisible by 7; e.g.

M = A2 + A6 + 〈D9,P〉, h(P) = 4− 9

4
=

7

4
.

Approach:

1. Family with NS ⊇ U + A2 + A6 + D9 obtained from
previous work with Elkies: 2-dim’l family in λ, µ with

NS ⊇ U + A2 + A4 + A6 + D4 ⇒ merge A4,D4 (λ = 0).

2. Impose section P of ht h(P) = 7/4: easy enough:

µ =
63

10
, x(P) = −1008

125
(7t − 5)t3
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Equations

Two-dimensional family with parameters λ ∈ P1, µ 6= 0:

Xλ,µ : y2 = x3 + (t − λ)Ax2 + t2(t − 1)(t − λ)2B x

+t4(t − 1)2(t − λ)3C ,

A =
1

24

(1

9
(2µ+ 9)3t3 − (22µ− 9)(2µ− 27)t2

−27(14µ− 9)t − 81
)
,

B = µ
(1

9
(2µ+ 9)3t2 − 2(10µ− 9)(2µ− 9)t

−27(2µ− 3)
)
,

C =
2

3
µ2((2µ+ 9)3t − 81(2µ− 3)2).

Singular fibers:

cusp 0 1 ∞ λ cubic with coefficients in µ
fiber I5 I3 I7 I ∗0 I1, I1, I1
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