Singular K3 surfaces of class number two
 (joint with Frithjof Schulze)

Matthias Schütt

Institut für Algebraische Geometrie
Leibniz Universität Hannover

K3 surfaces and Galois representations, May 3, 2018

CM elliptic curves

Elliptic curve $E=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau), \operatorname{im}(\tau)>0$
E has complex multiplication $(\mathrm{CM}) \Leftrightarrow \operatorname{End}(E) \supsetneq \mathbb{Z}$ $\Leftrightarrow \tau$ quadratic over \mathbb{Q}

Consequence: infinitely many CM elliptic curves, dense in moduli

Examples:

Elliptic curves with extra automorphisms (j -invariant $j=0,12^{3}$), and without, e.g. $j=-3315,2^{3} 3^{3} 11^{3}$

More precisely: $\operatorname{End}(E)=\mathcal{O}$ is an order in $K=\mathbb{Q}(\tau)$
Examples: first three have End $=\mathcal{O}_{K}$, last has End $=\mathbb{Z}[2 i]$.
Notation: d_{K} discriminant of (ring of integers \mathcal{O}_{K} of) K

Class group theory

Write $\mathcal{O}=\mathbb{Z}+f \mathcal{O}_{K}(f \in \mathbb{N})$, then there are class groups
$\mathrm{Cl}(\mathcal{O})=\{$ fractional \mathcal{O}-ideals of $K\} /($ principal \mathcal{O}-ideals)

$$
\downarrow \quad 1: 1 \quad d=f^{2} d_{K}
$$

$C l(d)=\{$ primitive positive-definite even binary quadratic forms of discriminant $d\} / S L_{2}(\mathbb{Z})$
with elements

$$
Q=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right), a, c \in \mathbb{N}, b \in \mathbb{Z}, \quad b^{2}-4 a c=f^{2} d_{K}
$$

Unique reduced form: $-a \leq b \leq a \leq c$, with $b \geq 0$ if $a=c$ or $|b|=a$.
Follows: $C l(d)$ finite, class number $h(d)=\# C l(d)$.

CM theory

1. Deuring: CM elliptic curves are modular, i.e. related to Hecke characters
2. ring class field $H(d)=K(j(E))$ for any E with $E n d=\mathcal{O}$,

Corollary: E is defined over $H(d)$, and at best over degree two subfield $\mathbb{Q}(j)$
3. Shimura: $\operatorname{Gal}(H(d) / K) \cong C l(d)$ acts faithfully and transitively on all such E (so there are $h(d)$ in number)

Corollary: Exactly 13 CM elliptic curves over \mathbb{Q}
4. $\forall L$ number field: $\#\{C M E / L\}<\infty$, or even

$$
\forall N \in \mathbb{N}: \quad \#\{C M E / L ;[L: \mathbb{Q}] \leq N\}<\infty .
$$

Similar problem in higher dimension?
\longrightarrow singular K3 surfaces (more fruitful than abelian surfaces)

Singular K3 surfaces

K3 surface X : smooth, projective surface with

$$
h^{1}\left(X, \mathcal{O}_{X}\right)=0, \quad \omega_{X}=\mathcal{O}_{X}
$$

Examples: double sextics, smooth quartics in \mathbb{P}^{3}, \ldots Here: work over \mathbb{C}, so Picard number

$$
\rho(X)=\operatorname{rk} \mathrm{NS}(X) \leq h^{1,1}(X)=20 \quad(\text { Lefschetz })
$$

Much of arithmetic concentrated in isolated case $\rho=20$: singular K3 surfaces (in the sense of exceptional)

Example: Fermat quartic

$$
X=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}
$$

48 lines have intersection matrix of rank 20 and determinant -64 ; hence they generate $\operatorname{NS}(X)$ up to finite index.
[Non-trivial: showing that the lines generate NS $(X) \ldots$...]

Transcendental lattice

Transcendental lattice $T(X)=\mathrm{NS}(X)^{\perp} \subset H^{2}(X, \mathbb{Z})$ identified with positive-definite, even, binary quadratic form

$$
Q(X)=\left(\begin{array}{cc}
2 a & b \\
b & 2 c
\end{array}\right)
$$

(unique up to conjugation in $\operatorname{SL}(2, \mathbb{Z})$)
as before - except that $Q(X)$ need not be primitive!
Example: Given that the Fermat has NS of discriminant -64 generated by lines, one can compute the discriminant group

$$
\mathrm{NS}^{\vee} / \mathrm{NS} \cong(\mathbb{Z} / 8 \mathbb{Z})^{2} \cong T^{\vee} / T \quad(\text { Nikulin })
$$

By inspection of $C l(-4), C l(-16)$ and $C l(-64)$, this implies

$$
Q=\left(\begin{array}{ll}
8 & 0 \\
0 & 8
\end{array}\right)
$$

Torelli: $X \cong Y \Longleftrightarrow T(X) \cong T(Y)$
Follows: Fermat quartic, up to isomorphism, uniquely determined by $T=\ldots$.

Funny side-remark: there is another model as smooth quartic, this time with 56 lines! (Degtyarev-Itenberg-Sertöz, Shimada-Shioda)

History: Same result first proved and used for singular abelian surfaces, i.e. with $\rho=4$ (Shioda-Mitani)
Discriminant $d=\operatorname{det} \operatorname{NS}(X)=b^{2}-4 a c<0$.
Application: if any, then there is a unique K 3 surface of each discriminant

$$
d=-3,-4,-7,-8,-11,-19,-43,-67,-163 .
$$

[since $h(d)=1$, and $Q(X)$ is automatically primitive as an even quadratic form.]

Singular K3 surfaces of class number one

Class number of singular $\mathrm{K} 3 \mathrm{X}: h(d)$
Have seen: at most 9 singular K3 surfaces with class number one and fundamental discriminant (i.e. $d=d_{K}$ for some imaginary quadratic K)

Cheap examples: Vinberg's most algebraic K3 surfaces X_{3}, X_{4}, for instance as (isotrivial) elliptic surfaces

$$
\begin{array}{ll}
X_{3}: & y^{2}+t^{2}(t-1)^{2} y=x^{3} \\
X_{4}: & y^{2}=x^{3}-t^{3}(t-1)^{2} x
\end{array}
$$

Compute ρ, d : trivial lattice spanned by zero section and fiber components in NS: Here $U+E_{6}^{3}$ resp. $U+D_{4}+E_{7}^{2}$. Follows $\rho=20$, and obtain $d=-3,-4$ from finite index overlattice generated by torsion section (0,0).
[Fun features: unirational in char $p \equiv-1 \bmod |d|$, explicit dynamics, ...]

Non-fundamental discriminants

Recall non-fundamental discriminants of class number one:

$$
d=-12,-16,-27,-28
$$

For each d, there are thus two possible quadratic forms $Q(X)$ on a singular K3 surface of discriminant d. E.g.

$$
d=12 \Longrightarrow Q(X)=\left(\begin{array}{ll}
4 & 2 \\
2 & 4
\end{array}\right),\left(\begin{array}{ll}
2 & 0 \\
0 & 6
\end{array}\right)
$$

(exactly one of which is divisible).
In practice: distinguish forms by divisibility/degree of primitivity/discriminant groups/discriminant forms... (works
In practice: distinguish
primitivity/discriminant
and applies in general)
Problem: General construction?! (over $\mathbb{C} /$ over \mathbb{Q} / \ldots)

Kummer surfaces

Classical construction (accounting for one ' K ' in K 3): A abelian surface \Longrightarrow

$$
A /\langle-1\rangle \text { has } 16 A_{1} \text { sing } \Longrightarrow \operatorname{Km}(A)=\widetilde{A /\langle-1\rangle} K 3
$$

(converse also (Nikulin): 16 nodal curves \Longrightarrow Kummer)
Properties: $\quad \rho(\operatorname{Km}(A))=\rho(A)+16$

$$
T(\operatorname{Km}(A))=T(A)[2] \text { (scaled inters. form) }
$$

Follows: Fermat quartic, singular K3 with $Q(X)=\left(\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right)$
could be Kummer, but other K3's like X_{3}, X_{4} not (compare attempt at proving subjectivity of period map for K3's...)

Singular abelian surfaces

Shioda-Mitani: Any positive-definite even binary quadratic form Q is attained by some singular abelian surface A
Proof: Write $Q=\left(\begin{array}{cc}2 a & b \\ b & 2 c\end{array}\right)$ as before. Set

$$
\tau=\frac{-b+\sqrt{d}}{2 a}, \quad \tau^{\prime}=\frac{b+\sqrt{d}}{2}
$$

and consider

$$
A=E_{\tau} \times E_{\tau^{\prime}}
$$

for complex tori $E_{\tau}=\mathbb{C} /(\mathbb{Z}+\tau \mathbb{Z})$.
Application: Fermat $=\operatorname{Km}\left(E_{i} \times E_{2 i}\right)$,
$\omega \in \mu_{3}$ primitive $\Longrightarrow \operatorname{Km}\left(E_{\omega}^{2}\right)$ has $Q=\left(\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right)$

Surjectivity of period map

Shioda-Inose: Any positive-definite even binary quadratic form Q is attained by some singular K 3 surface X

Proof: Consider associated singular abelian surface A $\Longrightarrow \operatorname{Km}(A)$ has wrong quadratic form $2 Q$, but classical configuration of 24 nodal curves:

$\operatorname{Km}(A) \rightarrow \mathbb{P}^{1}$

\mathbb{P}^{1}
(Fibre components (l_{0}^{*}) and torsion sections of isotrivial elliptic fibrations induced from projections onto factors of A)

Auxilliary elliptic fibration

Key feature of K3 surfaces: may admit several different elliptic (or genus one) fibrations (like the two before)

Here: blue divisor (with multiplicities) has Kodaira type II* \Rightarrow induces elliptic fibration

$\operatorname{Km}(A)$
yellow curve $=$ section; red curves contained in two different reducible fibres F_{1}, F_{2} (Kodaira types I_{0}^{*} or $\left.I_{1}^{*}\right)$

Shioda-Inose structure

Consider quadratic base change ramified at F_{1}, F_{2} \Longrightarrow gives another K3 surface X
Check: $T(A)=T(X)$
Terminology: Shioda-Inose structure
A

$$
X=\operatorname{SI}(A)
$$

$\mathrm{Km}(A)$
(Extended to certain K3 surfaces of Picard number $\rho \geq 17$ by Morrison.)

Corollary: Every singular K3 surface is defined over some number field, and it is modular (\Rightarrow Hecke character)

Livne: singular K3 over \mathbb{Q}, discriminant $d \Rightarrow$
\exists associated wt 3 modular form with CM in $K=\mathbb{Q}(\sqrt{d})$ (converse by Elkies-S.)

Fields of definition

Inose $+\varepsilon$: Singular K3 X admits model over $\mathbb{Q}\left(j+j^{\prime}, j j^{\prime}\right) \subset H(d)$ (Inose's pencil: elliptic fibration with two fibres of type II^{*})

Corollary: $h(d)=1 \Longrightarrow X$ over \mathbb{Q}
[all elliptic curves involved have CM with class number one]
Problem: can we do better in general?
Example: Fermat quartic: $Q(X)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$.
0 . original quartic in \mathbb{P}^{3};

1. $X=\operatorname{Km}\left(E_{i} \times E_{2 i}\right)$;
2. $X=\operatorname{SI}\left(E_{i} \times E_{4 i}\right)$.
3. smooth quartic in \mathbb{P}^{3} with 56 lines (Shimada-Shioda)

Fields of definition

Inose $+\varepsilon$: Singular K3 X admits model over $\mathbb{Q}\left(j+j^{\prime}, j j^{\prime}\right) \subset H(d)$ (Inose's pencil: elliptic fibration with two fibres of type II^{*})

Corollary: $h(d)=1 \Longrightarrow X$ over \mathbb{Q}
[all elliptic curves involved have CM with class number one] Problem: can we do better in general?
Example: Fermat quartic: $Q(X)=\left(\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right)$.
0 . original quartic in \mathbb{P}^{3} - over \mathbb{Q};

1. $X=\operatorname{Km}\left(E_{i} \times E_{2 i}\right)-$ over \mathbb{Q};
2. $X=\operatorname{SI}\left(E_{i} \times E_{4 i}\right)-\operatorname{over} \mathbb{Q}(\sqrt{2})$
3. smooth quartic in \mathbb{P}^{3} with 56 lines (Shimada-Shioda) over $\mathbb{Q}(\sqrt{-2})$

Long-term goal - classification

Goal: Classify all singular K3 surfaces over \mathbb{Q}
Comment: \# >> 13 (but finite, see below)
Today: Any singular K3 surface of class number two is defined over \mathbb{Q} (Schulze-S.)

Example: Fermat!

Bigger framework: arithmetic Torelli Theorem (conjectural)

Input needed: obstructions against being defined over \mathbb{Q}
Will see: two old obstructions, one new
Intertwined: proof of prototypical cases of today's theorem

First obstruction: genus

Theorem 1 (Shimada, S.).
X singular K3. Then

$$
\left\{T\left(X^{\sigma}\right) ; \sigma \in \operatorname{Aut}(\mathbb{C})\right\}=\text { genus of } T(X)
$$

Corollary:
$X / \mathbb{Q} \Longrightarrow$ the genus of $T(X)$ consists of a single class
Equivalently: let m denote the degree of primitivity of $T(X)$. Then $C l\left(d / m^{2}\right)$ is only 2-torsion.

Consequences: ok for class number two, but not if $T(X)$ is primitive of class number three

Second obstruction: Galois action

Theorem 2 (Elkies, S.).
X singular K3 of discriminant d with NS defined over L.
Then

$$
H(d) \subseteq L(\sqrt{d})
$$

Meaning: $X / \mathbb{Q} \Rightarrow$ Galois action of 'size' $h(d)$ on $\operatorname{NS}(X)$
Proof combines modularity, Artin-Tate conjecture (details to follow), class group theory

Consequence: NS $/ \mathbb{Q} \Rightarrow h(d)=1$.
Example: Vinberg's X_{3}, X_{4}
Indeed: X admits model over \mathbb{Q} with $\mathrm{NS} / \mathbb{Q} \Leftrightarrow$ $Q(X)$ primitive of class number one $(\#=13)$
Easy to see: Q as above $\longrightarrow \tau=\tau(Q) \longrightarrow E=E_{\tau}(\mathrm{CM}$, $h=1) \longrightarrow X=\operatorname{SI}\left(E^{2}\right) / \mathbb{Q}$

Use Inose's pencil on X from Shioda-Inose structure:
essential data presently: 2 fibres of type $\mathrm{II}^{*}, 1$ fibre of type I_{2}, 1 section P of ht $|d| / 2(d<-4)$
fibres automatically over \mathbb{Q} (by construction), no Galois action, so if Galois acts non-trivially on NS, then on $\mathrm{MW}=\mathbb{Z} P$. Only possibility

$$
P^{\sigma}=-P .
$$

Hence P defined over quadratic extension, and corresponding quadratic twist has all of NS defined over \mathbb{Q}.

If Q is not primitive, say 2 -divisible, then
$X=\operatorname{Km}(A) \Rightarrow \mathrm{NS}(A)$ not over \mathbb{Q} (because $H^{2}=\wedge^{2} H^{1}$ as Galois module) \Rightarrow same for $\operatorname{NS}(X)$

Consequence: for singular K3 of class number two to be defined over \mathbb{Q}, need order 2 Galois action on NS which cannot be twisted away!

Finiteness

Just like for CM elliptic curves, we derive:
Corollary (Shafarevich):

$$
\forall N \in \mathbb{N}: \quad \#\{\text { singular } \mathrm{K} 3 / L ;[L: \mathbb{Q}] \leq N\}<\infty .
$$

Proof: $X / L, H$ very ample \Rightarrow Galois acts on $H^{\perp} \subset \mathrm{NS}(X)$; this is negative-definite, hence has finite isometry group; in fact, size can be bounded a priori.

Problem: Could it suffice for a singular K3 to be defined over \mathbb{Q} to ensure that the two obstructions are met?

Class number two - recap

Recall: want to show that all singular K 3 of class number 2 are defined over \mathbb{Q}

What's available?

1. Inose's pencil over $\mathbb{Q}\left(j+j^{\prime}, j j^{\prime}\right)$
for $h=2, Q$ primitive, get:
$\begin{aligned}- & Q \text { principal form (identity in } C l(d)) \Leftrightarrow a=1 \Leftrightarrow \tau=\tau^{\prime}, \\ & \mathbb{Q}\left(j+j^{\prime}, j j^{\prime}\right) \neq \mathbb{Q} \text {, no Galois action up to twist as before }\end{aligned}$
$\begin{aligned}- & Q \text { principal form (identity in } C l(d)) \Leftrightarrow a=1 \Leftrightarrow \tau=\tau^{\prime}, \\ & \mathbb{Q}\left(j+j^{\prime}, j j^{\prime}\right) \neq \mathbb{Q} \text {, no Galois action up to twist as before }\end{aligned}$

- Q non-principal $\Rightarrow j^{\prime}=j^{\sigma} \Rightarrow \mathbb{Q}\left(j+j^{\prime}, j j^{\prime}\right)=\mathbb{Q}$.

2. imprimitive Q, say $Q=m Q^{\prime}, 1<m<7$

Kuwata: cyclic degree m base changes of Inose's pencil lead to elliptic K3's X^{\prime} with all Mordell-Weil ranks from 1 to 18 except for 15 (gap closed by Kloosterman)

Shioda: $T\left(X^{\prime}\right)=T(X)[m] \Rightarrow$ reduction to case 1 . for
several imprimitive Q (including Kummer case $m=2$)
Shioda: $T\left(X^{\prime}\right)=T(X)[m] \Rightarrow$ reduction to case 1 . for
several imprimitive Q (including Kummer case $m=2$)
3. Extremal elliptic K3 surfaces ($\rho=20$, but MW finite)

Shimada-Zhang: lattice theoretical classification
Beukers-Montanus: equations (and designs d'enfant) for all semi-stable fibrations
S.: many non-semi-stable cases
4. Isolated examples: E.g.

Peters-Top-van der Vlugt: K3 quartic associated to Melas code

Degtyarev-Itenberg-Sertöz: smooth quartic/ \mathbb{Q} with 56 lines over $\mathbb{Q}(\sqrt{2})$ [not isomorphic to the Fermat]

Approach: elliptic fibrations

Idea (for theoretical and practical reasons): use elliptic fibration (with section) on X; implies

$$
\operatorname{NS}(X)=U+M
$$

\longrightarrow have to impose Galois action on M.
Kneser-Nishiyama method: Determine all possible M by embedding 'partner lattice' M^{\perp} into Niemeier lattices (M^{\perp} negative definite of rank $26-\rho(X)$ with same discriminant form as $T(X)$, exists by Nishiyama)

In practice: try out suitable M, ideally with small MW-rank [Note: 'fibre rank' read off from roots of M by theory of Mordell-Weil lattices (Shioda)]

First example

Take $Q=\left(\begin{array}{cc}2 & 0 \\ 0 & 56\end{array}\right)$.
Partner lattice: $M^{\perp}=\langle-8\rangle+\left\langle A_{4}, v\right\rangle, v^{2}=-4, v$ only meeting the second component of A_{4} (looks like section of ht $14 / 5$)
Consider $M^{\perp} \hookrightarrow N\left(E_{7}+A_{17}\right) \Longrightarrow M=A_{7}+\left\langle E_{7}, A_{3}, u\right\rangle, u^{2}=-4, u$ meeting outer (simple) components of E_{7}, A_{3}
MWL: A_{7}, E_{7}, A_{3} correspond to reducible fibres, u corresponds to section P of ht $4-3 / 2-3 / 4=7 / 4$.

Galois: may act independently as inversion on first fiber $\left(\mathrm{I}_{8}\right)$, and on second set of divisors $\left(I_{4}, P\right) \Rightarrow$ cannot be twisted away a priori

Parametrization

1. Work out family of elliptic K3 surfaces with

$$
\mathrm{NS} \supseteq U+A_{7}+E_{7}+A_{3}
$$

Start with $U+A_{2}+A_{4}+E_{7}=$ easy to write down by hand as 5-dimensional family

$$
\begin{gathered}
y^{2}=x^{3}+\left(t^{2} u+a t+1\right)(t-1)^{2} x^{2}+t^{4}(t-1)^{5}\left(t u v^{2}-r^{2}\right) \\
-\left(2\left(-t^{2} u v+b t+r\right)\right) t^{2}(t-1)^{3} x
\end{gathered}
$$

then promote $=$ easy enough, though a bit complicated to write down; e.g., with parameter s,

$$
u=\frac{1}{(s-1)^{5} s^{2}}, \quad a=-\frac{s^{3}-s^{2}+s+2}{(s-1)^{3}}
$$

2. Search for member in family with section P of ht $7 / 4$
$=$ small enough to solve directly. Find

$$
s=8, \quad x(P)=-\frac{3^{3} 19}{2^{4} 7^{5}}(t-1)^{2}(7 t+31)
$$

In more complicated cases:

- use structure of parameter space as modular curve or Shimura curve, or
- win a parameter by 'guessing' s from point counts over various \mathbb{F}_{p} using modularity and/or
- search for solution to system of equations in some \mathbb{F}_{p} and then apply p-adic Newton iteration.

Second example

Take $Q=7\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Try, e.g.,

$$
M=A_{6}+\left\langle A_{4}+D_{7}, P\right\rangle, \quad h(P)=4-\frac{6}{5}-\frac{7}{4}=21 / 20
$$

Result: nice elliptic K3, but not over \mathbb{Q}.
Similar outcome for other M - why?

Artin-Tate conjecture

$X / \mathbb{F}_{p} \mathrm{~K} 3$ surface, $\ell \neq p \Rightarrow$ reciprocal characteristic polynomial of Frobenius

$$
P(X, T)=\operatorname{det}\left(1-\operatorname{Frob}_{p}^{*} T ; H_{e t}^{2}\left(\bar{X}, \mathbb{Q}_{\ell}\right)\right) .
$$

Artin-Tate conjecture: (equivalent to Tate conjecture (Milne))

$$
\left.p \frac{P(X, T)}{(1-p T)^{\rho(X)}}\right|_{T=\frac{1}{p}}=|\operatorname{Br}(X)| \cdot|\operatorname{det}(\mathrm{NS}(X))|
$$

Note: $|\operatorname{Br}(X)|$ always a square \Rightarrow control over (square class of) $\operatorname{det} \operatorname{NS}(X)$

Situation: X / \mathbb{Q} singular $\mathrm{K} 3, p$ split in $K=\mathbb{Q}(\sqrt{d}) \Rightarrow$

$$
P\left(X \otimes \mathbb{F}_{p}, T\right)=\left(1-a_{p} T+p^{2} T^{2}\right) \cdot(\text { cyclotomic factors })
$$

where $a_{p}=$ coefficient of wt 3 eigenform with CM by K In particular, $p \nmid a_{p}$, so $\rho\left(X \otimes \overline{\mathbb{F}}_{p}\right)=20$ and Artin-Tate applies unconditionally
Presently X with Q given, $d=-147$; assume elliptic fibration with M defined over $\mathbb{Q} \Rightarrow$ Galois action by $L=\mathbb{Q}(\sqrt{-7})$ or $\mathbb{Q}(\sqrt{21})$ on I_{7} fiber (after quadratic twist) Take p split in K, but not in $L \Rightarrow I_{7}$ not over $\mathbb{F}_{p} \Rightarrow$
$\rho\left(X \otimes \mathbb{F}_{p}\right)=17, \quad \operatorname{det} \operatorname{NS}\left(X \otimes \mathbb{F}_{p}\right)=2^{5} 21 \Rightarrow R H S=42 \bmod \mathbb{Q}^{2}$
LHS: $P\left(X \otimes \mathbb{F}_{p}, T\right)=\left(1-a_{p} T+p^{2} T^{2}\right)(1-T)^{17}(1+T)^{3}$ where $a_{p}= \pm\left(\alpha^{2}+\bar{\alpha}^{2}\right), \quad \alpha \in K=\mathbb{Q}(\sqrt{-3}), \quad \alpha \bar{\alpha}=p$
LHS evaluates at $T=\frac{1}{p}$ as $\pm 8(\alpha \pm \bar{\alpha})^{2}=2$ or $6 \bmod \mathbb{Q}^{2}$
— not compatible w/ RHS

Compatible elliptic fibration

Solution: 'synchronize' orthogonal summands in M with determinant divisible by 7; e.g.

$$
M=A_{2}+A_{6}+\left\langle D_{9}, P\right\rangle, \quad h(P)=4-\frac{9}{4}=\frac{7}{4} .
$$

Approach:

1. Family with $\mathrm{NS} \supseteq U+A_{2}+A_{6}+D_{9}$ obtained from previous work with Elkies: 2-dim'l family in λ, μ with

$$
\mathrm{NS} \supseteq U+A_{2}+A_{4}+A_{6}+D_{4} \Rightarrow \text { merge } A_{4}, D_{4}(\lambda=0) .
$$

2. Impose section P of ht $h(P)=7 / 4$: easy enough:

$$
\mu=\frac{63}{10}, \quad x(P)=-\frac{1008}{125}(7 t-5) t^{3}
$$

Thank you!

Matthias Schütt

CM elliptic curves

Singular K3

surfaces

Old obstructions
Class number two
New obstruction

Equations

Two-dimensional family with parameters $\lambda \in \mathbb{P}^{1}, \mu \neq 0$:

$$
\begin{aligned}
X_{\lambda, \mu}: \quad y^{2}= & x^{3}+(t-\lambda) A x^{2}+t^{2}(t-1)(t-\lambda)^{2} B x \\
& +t^{4}(t-1)^{2}(t-\lambda)^{3} C \\
A= & \frac{1}{24}\left(\frac{1}{9}(2 \mu+9)^{3} t^{3}-(22 \mu-9)(2 \mu-27) t^{2}\right. \\
& -27(14 \mu-9) t-81), \\
B= & \mu\left(\frac{1}{9}(2 \mu+9)^{3} t^{2}-2(10 \mu-9)(2 \mu-9) t\right. \\
C= & -27(2 \mu-3)), \\
C= & \mu^{2}\left((2 \mu+9)^{3} t-81(2 \mu-3)^{2}\right) .
\end{aligned}
$$

Singular fibers:

$$
\begin{array}{c||c|c|c|c|c|}
\text { cusp } & 0 & 1 & \infty & \lambda & \text { cubic with coefficients in } \mu \\
\text { fiber } & I_{5} & I_{3} & I_{7} & I_{0}^{*} & I_{1}, I_{1}, I_{1}
\end{array}
$$

