IMAGES OF GALOIS REPRESENTATIONS AND THE MUMFORD–TATE CONJECTURE

Ben Moonen

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

JOINT WORK WITH

ANNA CADORET

1

THE MUMFORD–TATE CONJECTURE

General setting:

- $F \subset \mathbb{C}$ is a finitely generated field of characteristic 0
- Y/F is smooth projective (more generally: a pure motive)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

General setting:

- $\blacktriangleright\ F \subset \mathbb{C}$ is a finitely generated field of characteristic 0
- Y/F is smooth projective (more generally: a pure motive)

We want to study $H^n(Y)(m)$ for some n, m.

- ► H_B := Hⁿ(Y_C, Q(m)): polarizable Hodge structure
- $H_{\ell} := H^n(Y_{\bar{F}}, \mathbb{Q}_{\ell}(m))$: Galois representation

Hodge-theoretic side

▶ QHS := category of polarizable Q-Hodge structures

Hodge-theoretic side

- ▶ QHS := category of polarizable Q-Hodge structures
- ▶ $\mathbb{Q}HS \supset \langle H_B \rangle$:= tensor subcategory generated by H_B

This means: $\langle H_B \rangle$ is the smallest subcategory that contains H_B and is stable under \oplus , \otimes , ()^{\vee} and taking subquotients.

Hodge-theoretic side

- ▶ QHS := category of polarizable Q-Hodge structures
- ▶ $\mathbb{Q}HS \supset \langle H_B \rangle$:= tensor subcategory generated by H_B

This means: $\langle H_B \rangle$ is the smallest subcategory that contains H_B and is stable under \oplus , \otimes , ()^{\vee} and taking subquotients.

Mumford-Tate group: algebraic group

 $G_{\mathsf{B}} \subset \mathsf{GL}(H_{\mathsf{B}})$

(over \mathbb{Q}) with the property that

 $\langle H_{\mathsf{B}} \rangle \simeq \mathsf{Rep}(G_{\mathsf{B}}; \mathbb{Q})$

For $T \in \langle H_{\mathsf{B}} \rangle$ and $t \in T$:

t is a Hodge class $\iff t$ is invariant under the action of G_B (Hodge class = rational class of Hodge type (0,0))

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Galois side

We have $\rho_\ell \colon {\sf Gal}(\bar{F}/F) o {\sf GL}(H_\ell)$ and define

$$G_{\ell} := \left[\mathsf{Im}(\rho_{\ell}) \right]^{Z_{ar}}$$

Galois side

We have $\rho_\ell \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H_\ell)$ and define

$$\mathcal{G}_\ell := ig[\mathsf{Im}(
ho_\ell) ig]^{Zar}$$

Let

$$\langle H_\ell
angle \subset \left(\ell ext{-adic representations of } \operatorname{Gal}(ar{F}/F)
ight)$$

be the tensor subcategory generated by H_{ℓ} . Then

 $\langle H_\ell \rangle \simeq \operatorname{Rep}(G_\ell; \mathbb{Q}_\ell).$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▶ G_B is a connected reductive group over \mathbb{Q}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ G_B is a connected reductive group over \mathbb{Q}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}

- ▶ G_B is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}
- G_{ℓ} is not connected in general; however, after replacing F with a finite extension, G_{ℓ} becomes connected, and then G_{ℓ} does not change if we replace F with a finitely generated field extension.

- ▶ G_B is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}
- G_{ℓ} is not connected in general; however, after replacing F with a finite extension, G_{ℓ} becomes connected, and then G_{ℓ} does not change if we replace F with a finitely generated field extension.

From now on we assume F is such that G_{ℓ} is connected.

- G_B is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}
- G_{ℓ} is not connected in general; however, after replacing F with a finite extension, G_{ℓ} becomes connected, and then G_{ℓ} does not change if we replace F with a finitely generated field extension.
- From now on we assume F is such that G_{ℓ} is connected.
- ► Conjecturally G_ℓ is reductive; this is not known in general (OK for abelian motives)

If $T_\ell \in \langle H_\ell \rangle$ and $t \in T_\ell$ then

t is a Tate class := t is invariant under G_{ℓ}

MUMFORD-TATE CONJECTURE:

Under the comparison isomorphism $H_{\mathsf{B}} \otimes \mathbb{Q}_{\ell} \xrightarrow{\sim} H_{\ell}$ we have

$$G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell} \stackrel{?}{=} G_{\ell}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

as algebraic subgroups of $GL(H_{\ell})$.

Why believe the MTC?

► [Hodge Conjecture + Tate Conjecture] ⇒ MTC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\blacktriangleright \mathsf{MTC} \implies [\mathsf{HC} \iff \mathsf{TC}]$

Why believe the MTC?

► [Hodge Conjecture + Tate Conjecture] ⇒ MTC

$$\blacktriangleright \mathsf{MTC} \implies [\mathsf{HC} \iff \mathsf{TC}]$$

Remark: if we take $H = H^2(Y)(1)$ then the Hodge conjecture is known (Lefschetz theorem on divisor classes); in this case

$$\mathsf{MTC} \implies \mathsf{TC}$$
 for divisor classes

 For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

 For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

MTC known for K3 surfaces (Tankeev, André)

 For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_g = 1$ (BM)

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_g = 1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_g = 1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

For abelian varieties (more generally: abelian motives):

▶ $G_{\ell} \subset G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell}$ (Borovoi, Piatetski-Shapiro, Deligne)

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_g = 1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

For abelian varieties (more generally: abelian motives):

- ▶ $G_{\ell} \subset G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell}$ (Borovoi, Piatetski-Shapiro, Deligne)
- ▶ If MTC true for one ℓ then for all ℓ (Larsen–Pink)

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_g = 1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

For abelian varieties (more generally: abelian motives):

- ▶ $G_{\ell} \subset G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell}$ (Borovoi, Piatetski-Shapiro, Deligne)
- ► If MTC true for one ℓ then for all ℓ (Larsen-Pink)
- MTC is "true on centers" (Vasiu, Ullmo–Yafaev)

 $\mathbf{2}$

MAIN RESULTS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \blacktriangleright $F \subset \mathbb{C}$ a finitely generated field of characteristic 0

• $F \subset \mathbb{C}$ a finitely generated field of characteristic 0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Y/F smooth projective (mainly: AV or K3)

- \blacktriangleright $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y/F smooth projective (mainly: AV or K3)
- $H = H^i(Y(\mathbb{C}), \mathbb{Z}(m))$ and $H_\ell = H^i(Y_{\bar{F}}, \mathbb{Z}_\ell(m))$

- \blacktriangleright $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y/F smooth projective (mainly: AV or K3)
- $H = H^i(Y(\mathbb{C}), \mathbb{Z}(m))$ and $H_\ell = H^i(Y_{\bar{F}}, \mathbb{Z}_\ell(m))$

$$\rho_{\mathbf{Y}} \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H)(\hat{\mathbb{Z}})$$

the Galois representation on $H\otimes \hat{\mathbb{Z}} = \prod_{\ell} H_{\ell}$

- $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y/F smooth projective (mainly: AV or K3)
- ► $H = H^i(Y(\mathbb{C}), \mathbb{Z}(m))$ and $H_\ell = H^i(Y_{\bar{F}}, \mathbb{Z}_\ell(m))$

$$\rho_{\mathbf{Y}} \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H)(\hat{\mathbb{Z}})$$

the Galois representation on $H\otimes \hat{\mathbb{Z}} = \prod_{\ell} H_{\ell}$

$$\rho_{Y,\ell} \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H)(\mathbb{Z}_{\ell})$$

the $\ell\text{-component}$ of $\rho_{\it Y}$

Suppose the MTC is true: $G_B \otimes \mathbb{Q}_{\ell} = G_{\ell}$. This means:

the image of $\rho_{Y,\ell}$ is Zariski-dense in $G_B(\mathbb{Q}_\ell)$

Bogomolov + Faltings (*p*-adic Hodge theory) in fact gives:

the image of $\rho_{Y,\ell}$ is ℓ -adically open in $G_{\mathsf{B}}(\mathbb{Q}_{\ell})$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose the MTC is true: $G_B \otimes \mathbb{Q}_{\ell} = G_{\ell}$. This means:

the image of $\rho_{Y,\ell}$ is Zariski-dense in $G_B(\mathbb{Q}_\ell)$

Bogomolov + Faltings (*p*-adic Hodge theory) in fact gives:

the image of $\rho_{Y,\ell}$ is ℓ -adically open in $G_{\mathsf{B}}(\mathbb{Q}_{\ell})$

Question: Can we make this more precise, also varying ℓ ?

Example (Serre, Inventiones 1972):

 ${\it E}/{\it F}$ elliptic curve with ${\rm End}({\it E}_{\bar{\it F}})=\mathbb{Z}$ then the image of

$$\rho_E \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}\left(\varprojlim E[n](\bar{F})\right) \cong \operatorname{GL}_2(\hat{\mathbb{Z}})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is open in $GL_2(\hat{\mathbb{Z}})$.

MAIN THEOREM (ABELIAN VARIETIES)

• Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$

- Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$
- $\mathscr{G}_{B} := Zariski closure of G_{B} in GL(H)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\mathscr{G}_{B} :=$ Zariski closure of G_{B} in GL(H)
- $\rho = \rho_Y \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H)(\hat{\mathbb{Z}})$

• Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\mathscr{G}_{B} :=$ Zariski closure of G_{B} in GL(H)

•
$$\rho = \rho_{\mathbf{Y}} \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H)(\hat{\mathbb{Z}})$$

• ρ_ℓ is the ℓ -adic component of ρ

- Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$
- $\mathscr{G}_{B} :=$ Zariski closure of G_{B} in GL(H)
- $\rho = \rho_{\mathbf{Y}} \colon \operatorname{Gal}(\bar{F}/F) \to \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_ℓ is the ℓ -adic component of ρ
- Assumption: the MTC is true for Y

- Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$
- $\mathscr{G}_{B} := Zariski closure of G_{B} in GL(H)$
- $\rho = \rho_{\mathbf{Y}} \colon \mathsf{Gal}(\bar{F}/F) \to \mathsf{GL}(H)(\hat{\mathbb{Z}})$
- ρ_ℓ is the ℓ -adic component of ρ
- Assumption: the MTC is true for Y

(1) The index $[\mathscr{G}_{\mathsf{B}}(\mathbb{Z}_{\ell}) : \mathsf{Im}(\rho_{\ell})]$ is bounded when ℓ varies.

- Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathsf{B}} := \mathsf{Zariski}$ closure of G_{B} in $\mathsf{GL}(H)$
- $\rho = \rho_{\mathbf{Y}} \colon \mathsf{Gal}(\bar{F}/F) \to \mathsf{GL}(H)(\hat{\mathbb{Z}})$
- ρ_ℓ is the ℓ -adic component of ρ
- Assumption: the MTC is true for Y

The index [𝔅_B(ℤ_ℓ) : Im(ρ_ℓ)] is bounded when ℓ varies.
 For almost all ℓ the image of ρ_ℓ contains (ℤ[×]_ℓ · id) · [𝔅_B(ℤ_ℓ), 𝔅_B(ℤ_ℓ)].

- Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$
- $\mathscr{G}_{B} := Zariski closure of G_{B} in GL(H)$
- $\rho = \rho_{\mathbf{Y}} \colon \mathsf{Gal}(\bar{F}/F) \to \mathsf{GL}(H)(\hat{\mathbb{Z}})$
- ρ_ℓ is the ℓ -adic component of ρ
- Assumption: the MTC is true for Y

The index [𝔅_B(ℤ_ℓ) : Im(ρ_ℓ)] is bounded when ℓ varies.
 For almost all ℓ the image of ρ_ℓ contains (ℤ_ℓ[×] · id) · [𝔅_B(ℤ_ℓ), 𝔅_B(ℤ_ℓ)].
 If H_□ is Hodge-maximal, Im(ρ) is open in 𝔅_B(𝔅_f).

- Y/F an abelian variety, $H = H_1(Y, \mathbb{Z})$
- $\mathscr{G}_{B} := Zariski closure of G_{B} in GL(H)$
- $\rho = \rho_{\mathbf{Y}} \colon \mathsf{Gal}(\bar{F}/F) \to \mathsf{GL}(H)(\hat{\mathbb{Z}})$
- ρ_ℓ is the ℓ -adic component of ρ
- Assumption: the MTC is true for Y

The index [𝔅_B(ℤ_ℓ) : Im(ρ_ℓ)] is bounded when ℓ varies.
 For almost all ℓ the image of ρ_ℓ contains (ℤ[×]_ℓ · id) · [𝔅_B(ℤ_ℓ), 𝔅_B(ℤ_ℓ)].
 If H_ℚ is Hodge-maximal, Im(ρ) is open in G_B(A_f).

This confirms a conjecture of Serre (1976). Parts (1), (2) have independently been obtained by Hindry and Ratazzi.

Hodge-maximality

Definition. — Let V be a \mathbb{Q} -Hodge structure, given by

$$h: \mathbb{S} \to \mathrm{GL}(V)_{\mathbb{R}},$$

and

 $M \subset \operatorname{GL}(V)$

the Mumford–Tate group. Then V is Hodge-maximal if there does **not** exist a non-trivial isogeny $M' \to M$ of connected \mathbb{Q} -groups such that $h: \mathbb{S} \to M_{\mathbb{R}}$ lifts to $h': \mathbb{S} \to M'_{\mathbb{R}}$.

Sketch: Suppose we do have an isogeny $M' \rightarrow M$ with h lifting to h'.

▶ Wintenberger: the ℓ -adic Galois representations ρ_{ℓ} lift to ρ'_{ℓ} : Gal $(\bar{F}/F) \rightarrow M'(\mathbb{Q}_{\ell})$

Sketch: Suppose we do have an isogeny $M' \rightarrow M$ with h lifting to h'.

- ▶ Wintenberger: the ℓ -adic Galois representations ρ_{ℓ} lift to ρ'_{ℓ} : Gal $(\bar{F}/F) \rightarrow M'(\mathbb{Q}_{\ell})$
- For almost all ℓ: using Galois cohomology one sees that M'(Q_ℓ) → M(Q_ℓ) is not surjective

Sketch: Suppose we do have an isogeny $M' \rightarrow M$ with h lifting to h'.

- ▶ Wintenberger: the ℓ -adic Galois representations ρ_{ℓ} lift to ρ'_{ℓ} : Gal $(\bar{F}/F) \rightarrow M'(\mathbb{Q}_{\ell})$
- ▶ For almost all ℓ : using Galois cohomology one sees that $M'(\mathbb{Q}_{\ell}) \to M(\mathbb{Q}_{\ell})$ is not surjective
- ▶ We find: $Im(\rho)$ is contained in the image of $M'(\mathbb{A}_f) \to M(\mathbb{A}_f)$, which is not open in $M(\mathbb{A}_f)$.

Sketch: Suppose we do have an isogeny $M' \rightarrow M$ with h lifting to h'.

- ▶ Wintenberger: the ℓ -adic Galois representations ρ_{ℓ} lift to ρ'_{ℓ} : Gal $(\bar{F}/F) \rightarrow M'(\mathbb{Q}_{\ell})$
- ▶ For almost all ℓ : using Galois cohomology one sees that $M'(\mathbb{Q}_{\ell}) \to M(\mathbb{Q}_{\ell})$ is not surjective
- ▶ We find: $Im(\rho)$ is contained in the image of $M'(\mathbb{A}_f) \to M(\mathbb{A}_f)$, which is not open in $M(\mathbb{A}_f)$.

For abelian varieties: H_1 is not always Hodge-maximal

COROLLARY OF THE MAIN THEOREM FOR ABELIAN VARIETIES

For n > 0 let $F \subset F[n]$ be the field extension generated by the coordinates of the points in $Y[n](\overline{F})$. Assume the MTC for Y is true. Then:

・ロト・日本・モート モー うへぐ

COROLLARY OF THE MAIN THEOREM FOR ABELIAN VARIETIES

For n > 0 let $F \subset F[n]$ be the field extension generated by the coordinates of the points in $Y[n](\overline{F})$. Assume the MTC for Y is true. Then:

(1) Given ℓ there is a constant $C(\ell) = C(Y, \ell)$ such that

$$[F[\ell^i]:F] = C(\ell) \cdot \ell^{i \cdot \dim(G_{\mathsf{B}})}$$

for all *i* big enough.

(2) If H_1 is Hodge-maximal then there is a constant C = C(Y) such that

$$[F[n]:F] = C \cdot n^{\dim(G_{\mathsf{B}})}$$

for all *n* divisible enough.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

► Y/F is a K3 surface

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Y/F is a K3 surface
- $\blacktriangleright H = H^2(Y(\mathbb{C}), \mathbb{Q}(1))$

- ► Y/F is a K3 surface
- $\blacktriangleright H = H^2 \big(Y(\mathbb{C}), \mathbb{Q}(1) \big)$
- $\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}(H)(\mathbb{A}_{\mathsf{f}})$

- ► Y/F is a K3 surface
- $H = H^2(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}(H)(\mathbb{A}_{\mathsf{f}})$

Then $Im(\rho)$ is open in $G_B(\mathbb{A}_f)$.

- ► Y/F is a K3 surface
- $H = H^2(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}(H)(\mathbb{A}_{\mathsf{f}})$

Then $Im(\rho)$ is open in $G_B(\mathbb{A}_f)$.

Note:

▶ The MTC is known for K3's.

- ► Y/F is a K3 surface
- $H = H^2(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}(H)(\mathbb{A}_{\mathrm{f}})$

Then $Im(\rho)$ is open in $G_B(\mathbb{A}_f)$.

Note:

- ▶ The MTC is known for K3's.
- $H^2(Y(\mathbb{C}), \mathbb{Q}(1))$ is Hodge-maximal (!)

- ► Y/F is a K3 surface
- $H = H^2(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\overline{F}/F) \to \operatorname{GL}(H)(\mathbb{A}_{\mathrm{f}})$

Then $Im(\rho)$ is open in $G_B(\mathbb{A}_f)$.

Note:

- The MTC is known for K3's.
- $H^2(Y(\mathbb{C}), \mathbb{Q}(1))$ is Hodge-maximal (!)

• $H^2(Y(\mathbb{C}), \mathbb{Q})$ is *not* Hodge-maximal.

3

The Galois representation associated with a Shimura variety

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

OUTLINE OF THE PROOF OF THE MAIN THEOREMS

► To a component of a Shimura variety S₀ ⊂ Sh_K(G, X) we are going to associate a representation

$$\phi \colon \pi_1(S_0) \to K \subset G(\mathbb{A}_{\mathsf{f}})$$

of the étale fundamental group.

- Main technical result: the image of ϕ is "big".
- We deduce the main theorems about AV and K3's by using that their moduli spaces (essentially) are Shimura varieties, and by using a result of Cadoret-Kret about Galois generic points.

Let (G, X) be a Shimura datum, and let $E \subset \mathbb{C}$ be its reflex field. We assume: G is the generic Mumford–Tate group on X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let (G, X) be a Shimura datum, and let $E \subset \mathbb{C}$ be its reflex field. We assume: G is the generic Mumford–Tate group on X.

For $\mathcal{K} \subset \mathcal{G}(\mathbb{A}_{\mathrm{f}})$ a compact open subgroup we have the associated scheme

 $Sh_{K}(G,X)$ over E

with

$$\mathsf{Sh}_{\mathcal{K}}(G,X)(\mathbb{C}) = G(\mathbb{Q}) \setminus [X \times G(\mathbb{A}_{\mathsf{f}})/\mathcal{K}].$$

Let (G, X) be a Shimura datum, and let $E \subset \mathbb{C}$ be its reflex field. We assume: G is the generic Mumford–Tate group on X.

For $\mathcal{K} \subset \mathcal{G}(\mathbb{A}_{\mathrm{f}})$ a compact open subgroup we have the associated scheme

$$Sh_{\mathcal{K}}(G,X)$$
 over E

with

$$\operatorname{Sh}_{\mathcal{K}}(G,X)(\mathbb{C}) = G(\mathbb{Q}) \setminus [X \times G(\mathbb{A}_{f})/\mathcal{K}].$$

If $K_1 \subset K_2$ then we have an associated morphism

$$\operatorname{Sh}_{K_1,K_2} \colon \operatorname{Sh}_{K_1}(G,X) \to \operatorname{Sh}_{K_2}(G,X)$$

and if K_1 is normal in K_2 this is a Galois cover with group K_2/K_1 . (Assume K_2 is neat.)

• Fix: $K_0 \subset G(\mathbb{A}_f)$ neat compact open subgroup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Fix: $K_0 \subset G(\mathbb{A}_f)$ neat compact open subgroup
- ▶ Fix: $S_{0,\mathbb{C}} \subset Sh_{K_0}(G,X)_{\mathbb{C}}$ irreducible component

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

- Fix: $K_0 \subset G(\mathbb{A}_f)$ neat compact open subgroup
- ▶ Fix: $S_{0,\mathbb{C}} \subset Sh_{K_0}(G,X)_{\mathbb{C}}$ irreducible component
- Let F ⊂ C be the field of definition of S_{0,C}, so that we have a geometrically integral S₀ over F

- Fix: $K_0 \subset G(\mathbb{A}_f)$ neat compact open subgroup
- ▶ Fix: $S_{0,\mathbb{C}} \subset Sh_{K_0}(G,X)_{\mathbb{C}}$ irreducible component
- Let F ⊂ C be the field of definition of S_{0,C}, so that we have a geometrically integral S₀ over F
- For K ⊂ K₀ compact open, let S_K ⊂ Sh_K(G, X)_F be the inverse image of S₀ under Sh_{K,K₀}.

- ▶ Fix: $K_0 \subset G(\mathbb{A}_f)$ neat compact open subgroup
- ▶ Fix: $S_{0,\mathbb{C}} \subset Sh_{K_0}(G,X)_{\mathbb{C}}$ irreducible component
- Let F ⊂ C be the field of definition of S_{0,C}, so that we have a geometrically integral S₀ over F
- For K ⊂ K₀ compact open, let S_K ⊂ Sh_K(G, X)_F be the inverse image of S₀ under Sh_{K,K₀}.

By construction, for $\mathcal{K} \subset \mathcal{K}_0$ compact open we then have an étale cover

$$S_K \rightarrow S_0$$

and if $K \triangleleft K_0$ then this is Galois with group K_0/K .

For $K \triangleleft K_0$, let

$$\phi_{\mathsf{K}} \colon \pi_1(S_0) \to \mathsf{K}_0/\mathsf{K}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

be the homomorphism corresponding with the Galois cover $S_K o S_0$.

For $K \triangleleft K_0$, let

$$\phi_{\mathsf{K}} \colon \pi_1(S_0) \to \mathsf{K}_0/\mathsf{K}$$

be the homomorphism corresponding with the Galois cover $S_K o S_0$.

Taking the limit over all K we obtain

$$\phi \colon \pi_1(S_0) \to K_0$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Example:

$$(G, X) = \left(\mathsf{CSp}_{2g,\mathbb{Q}}, \mathfrak{H}_g^{\pm} \right),$$

<□ > < @ > < E > < E > E のQ @

Example:

$$(G, X) = \left(\mathsf{CSp}_{2g,\mathbb{Q}} \,,\, \mathfrak{H}_g^{\pm}
ight),$$

 $\mathcal{K}_n = \left\{ g \in \mathsf{CSp}_{2g}(\hat{\mathbb{Z}}) \mid g \equiv 1 mod n
ight\}$

Example:

$$(G,X) = \left(\mathsf{CSp}_{2g,\mathbb{Q}}, \mathfrak{H}_g^{\pm} \right),$$

$$\mathcal{K}_n = \left\{ g \in \mathsf{CSp}_{2g}(\hat{\mathbb{Z}}) \mid g \equiv 1 \bmod n \right\}$$

then

$$\operatorname{Sh}_{K_n}(G,X) = A_{g,n}$$

moduli space of ppav with Jacobi level *n* structure.

Example:

$$(G, X) = \left(\mathsf{CSp}_{2g,\mathbb{Q}}, \mathfrak{H}_g^{\pm} \right),$$

$$\mathcal{K}_n = \left\{ g \in \mathsf{CSp}_{2g}(\hat{\mathbb{Z}}) \mid g \equiv 1 \bmod n \right\}$$

then

$$\operatorname{Sh}_{K_n}(G,X) = A_{g,n}$$

moduli space of ppav with Jacobi level n structure.

What does this actually mean?

 (Y, λ) principally polarized abelian variety, dim(Y) = g, Weil pairing:

$$e_n^{\lambda} \colon Y[n] \times Y[n] \to \mu_n$$

 (Y, λ) principally polarized abelian variety, dim(Y) = g, Weil pairing:

$$e_n^{\lambda} \colon Y[n] \times Y[n] \to \mu_n$$

We want to compare this with the standard symplectic pairing

$$\psi_n \colon (\mathbb{Z}/n\mathbb{Z})^{2g} \times (\mathbb{Z}/n\mathbb{Z})^{2g} \to (\mathbb{Z}/n\mathbb{Z})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition. — A Jacobi level n structure on (Y, λ) is a pair (α, ζ) consisting of isomorphisms of group schemes

$$\alpha\colon (\mathbb{Z}/n\mathbb{Z})^{2g} \xrightarrow{\sim} Y[n], \qquad \zeta\colon (\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\sim} \mu_n$$

such that the diagram

$$(\mathbb{Z}/n\mathbb{Z})^{2g} \times (\mathbb{Z}/n\mathbb{Z})^{2g} \xrightarrow{\psi_n} (\mathbb{Z}/n\mathbb{Z})$$

$$\downarrow^{\alpha \times \alpha} \qquad \downarrow^{\zeta}$$

$$Y[n] \times Y[n] \xrightarrow{e_n^{\lambda}} \mu_n$$

is commutative.

The scheme $A_{g,n}$ is irreducible over \mathbb{Q} .

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The scheme $A_{g,n}$ is irreducible over \mathbb{Q} .

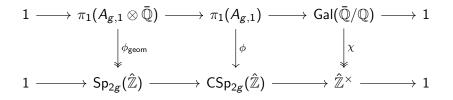
Over $\mathbb{Q}(e^{2\pi i/n})$ it splits up into $\varphi(n)$ geometrically irreducible components, corresponding to the various choices of the isomorphism $\zeta: (\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\sim} \mu_n$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The scheme $A_{g,n}$ is irreducible over \mathbb{Q} .

Over $\mathbb{Q}(e^{2\pi i/n})$ it splits up into $\varphi(n)$ geometrically irreducible components, corresponding to the various choices of the isomorphism $\zeta : (\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\sim} \mu_n$.

We have a diagram



The homomorphism

$$\chi\colon \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to \hat{\mathbb{Z}}^{\times}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(in this case the cyclotomic character) describes the action of Galois on the set of irreducible components of $\lim_{n} A_{g,n} \otimes \overline{\mathbb{Q}}$.

The homomorphism

$$\chi\colon \mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) o \hat{\mathbb{Z}}^{ imes}$$

(in this case the cyclotomic character) describes the action of Galois on the set of irreducible components of $\lim_{n \to \infty} A_{g,n} \otimes \overline{\mathbb{Q}}$.

If we choose roots of unity ζ_n for all n in a compatible manner, we have a tower of irreducible moduli schemes $A_{g,(n)} \otimes \overline{\mathbb{Q}}$ parametrizing ppav with symplectic level n structure, and $A_{g,(n),\overline{\mathbb{Q}}} \to A_{g,(1),\overline{\mathbb{Q}}}$ is Galois with group $\operatorname{Sp}_{2g}(\mathbb{Z}/n\mathbb{Z})$.

This tower corresponds with the homomorphism

$$\phi_{\mathsf{geom}} \colon \pi_1(A_{g,1} \otimes \bar{\mathbb{Q}}) \twoheadrightarrow \mathsf{Sp}_{2g}(\hat{\mathbb{Z}}),$$

which is surjective because the $A_{g,(n),\overline{\mathbb{Q}}}$ are all irreducible.

Back to the general case: to the Shimura datum (G, X) and the geometrically irreducible component

$$S_0 \subset \operatorname{Sh}_{K_0}(G,X)_F$$

over the number field F we have associated the homomorphism

$$\phi \colon \pi_1(S_0) \to K_0 \subset G(\mathbb{A}_{\mathsf{f}})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Back to the general case: to the Shimura datum (G, X) and the geometrically irreducible component

$$S_0 \subset \operatorname{Sh}_{K_0}(G,X)_F$$

over the number field F we have associated the homomorphism

$$\phi \colon \pi_1(S_0) \to K_0 \subset G(\mathbb{A}_{\mathsf{f}})$$

Using Deligne's description of the action of Galois on the set of geometric irreducible components of the tower of Shimura varieties, we prove:

Main Theorem about the homomorphism ϕ

Let \mathscr{G} be an integral model of G such that $K_0 \subset \mathscr{G}(\hat{\mathbb{Z}})$.

(1) The index $[\mathscr{G}(\mathbb{Z}_{\ell}) : \operatorname{Im}(\phi_{\ell})]$ is bounded when ℓ varies. ($\phi_{\ell} = \ell$ -adic component of ϕ)

Main Theorem about the homomorphism ϕ

Let \mathscr{G} be an integral model of G such that $K_0 \subset \mathscr{G}(\hat{\mathbb{Z}})$.

(1) The index $[\mathscr{G}(\mathbb{Z}_{\ell}) : \operatorname{Im}(\phi_{\ell})]$ is bounded when ℓ varies. ($\phi_{\ell} = \ell$ -adic component of ϕ)

(2) For almost all ℓ the image of ϕ_{ℓ} contains $[\mathscr{G}(\mathbb{Z}_{\ell}), \mathscr{G}(\mathbb{Z}_{\ell})]$.

Main Theorem about the homomorphism ϕ

Let \mathscr{G} be an integral model of G such that $K_0 \subset \mathscr{G}(\hat{\mathbb{Z}})$.

(1) The index $[\mathscr{G}(\mathbb{Z}_{\ell}) : \operatorname{Im}(\phi_{\ell})]$ is bounded when ℓ varies. ($\phi_{\ell} = \ell$ -adic component of ϕ)

(2) For almost all ℓ the image of ϕ_{ℓ} contains $[\mathscr{G}(\mathbb{Z}_{\ell}), \mathscr{G}(\mathbb{Z}_{\ell})]$.

(3) If (G, X) is maximal, $Im(\phi) \subset G(\mathbb{A}_f)$ is open.

Some technical details on the proof.

Set

$$\operatorname{Sh}(G,X) = \varprojlim_{K} \operatorname{Sh}_{K}(G,X).$$

The set of geometric irreducible components together with the action of $Gal(\overline{E}/E)$ on it allows a purely group-theoretic description:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some technical details on the proof.

Set

$$\operatorname{Sh}(G,X) = \varprojlim_{K} \operatorname{Sh}_{K}(G,X).$$

The set of geometric irreducible components together with the action of $Gal(\overline{E}/E)$ on it allows a purely group-theoretic description:

Let ad: $G \to G^{ad}$ be the adjoint map, let $G^{ad}(\mathbb{R})^+ \subset G^{ad}(\mathbb{R})$ be the topological identity component, and let

$$G(\mathbb{Q})_+ := \left\{ g \in G(\mathbb{Q}) \mid \mathsf{ad}(g) \in G^{\mathsf{ad}}(\mathbb{R})^+
ight\}.$$

Some technical details on the proof.

Set

$$\operatorname{Sh}(G,X) = \varprojlim_{K} \operatorname{Sh}_{K}(G,X).$$

The set of geometric irreducible components together with the action of $Gal(\overline{E}/E)$ on it allows a purely group-theoretic description:

Let ad: $G \to G^{ad}$ be the adjoint map, let $G^{ad}(\mathbb{R})^+ \subset G^{ad}(\mathbb{R})$ be the topological identity component, and let

$$G(\mathbb{Q})_+ := \left\{ g \in G(\mathbb{Q}) \mid \mathsf{ad}(g) \in G^{\mathsf{ad}}(\mathbb{R})^+
ight\}.$$

Then $\pi_0(\mathsf{Sh}(G,X)_{\bar{\mathbb{Q}}})$ is a torsor under

$$G(\mathbb{A}_{\mathsf{f}})/G(\mathbb{Q})^{-}_{+}$$
.

This is an abelian profinite group.

The Galois group $Gal(\overline{E}/E)$ acts on the set of geometric irreducible components through its maximal abelian quotient, and the action is given by a reciprocity homomorphism

$$\mathsf{rec}\colon \mathsf{Gal}(E^{\mathsf{ab}}/E)\to G(\mathbb{A}_{\mathsf{f}})/G(\mathbb{Q})^-_+\,,$$

which is a continuous homomorphism of abelian profinite groups.

The Galois group $Gal(\overline{E}/E)$ acts on the set of geometric irreducible components through its maximal abelian quotient, and the action is given by a reciprocity homomorphism

$$\mathsf{rec}\colon \mathsf{Gal}(E^{\mathsf{ab}}/E)\to G(\mathbb{A}_\mathsf{f})/G(\mathbb{Q})^-_+\,,$$

which is a continuous homomorphism of abelian profinite groups.

We reduce our main theorem about the homomorphism ϕ to the following result about the reciprocity homomorphism:

The Galois group $Gal(\overline{E}/E)$ acts on the set of geometric irreducible components through its maximal abelian quotient, and the action is given by a reciprocity homomorphism

$$\mathsf{rec}\colon \mathsf{Gal}(E^{\mathsf{ab}}/E)\to G(\mathbb{A}_{\mathsf{f}})/G(\mathbb{Q})^-_+\,,$$

which is a continuous homomorphism of abelian profinite groups.

We reduce our main theorem about the homomorphism ϕ to the following result about the reciprocity homomorphism:

Theorem

The cokernel of the reciprocity map has finite exponent, and if (G, X) is maximal then it is a finite discrete group.

(日) (同) (三) (三) (三) (○) (○)

(1) The case of a Shimura datum (G, X) with G a torus.

(1) The case of a Shimura datum (G, X) with G a torus.

(2) The case of a Shimura variety (G, X) such that G^{der} is simply connected.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(1) The case of a Shimura datum (G, X) with G a torus.

(2) The case of a Shimura variety (G, X) such that G^{der} is simply connected.

・ロト・日本・モート モー うへぐ

(3) The general case.

Deducing the Main Theorems about AV and K3's

We focus on the result for abelian varieties; the case of K3 surfaces is analogous.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Deducing the Main Theorems about AV and K3's

We focus on the result for abelian varieties; the case of K3 surfaces is analogous.

Let (Y, λ) be a ppav over $F \subset \mathbb{C}$, let $G = G_B$ be the Mumford–Tate group. We obtain a Shimura datum (G, X) and, as before,

 $\phi \colon \pi_1(S_0) \to K_0 \subset G(\mathbb{A}_{\mathsf{f}})$

・ロト・日本・モート モー うへぐ

Deducing the Main Theorems about AV and K3's

We focus on the result for abelian varieties; the case of K3 surfaces is analogous.

Let (Y, λ) be a ppav over $F \subset \mathbb{C}$, let $G = G_B$ be the Mumford–Tate group. We obtain a Shimura datum (G, X) and, as before,

$$\phi \colon \pi_1(S_0) \to K_0 \subset G(\mathbb{A}_{\mathsf{f}})$$

We may arrange everything in such a way that (Y, λ) corresponds to a point $y \in S_0(F)$. This gives

$$1 \longrightarrow \pi_1(S_0 \otimes \bar{F}) \longrightarrow \pi_1(S_0) \longrightarrow \operatorname{Gal}(\bar{F}/F) \longrightarrow 1$$

(ロ)、(型)、(E)、(E)、 E) の(の)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(This gives an easy new proof of the fact that $G_{\ell} \subseteq G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell}$.)

(This gives an easy new proof of the fact that $G_{\ell} \subseteq G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell}$.)

In our main result we assume that the MTC for Y is true. By the result of Bogomolov mentioned earlier, it follows that the image of $\phi_{\ell} \circ y_*$ is open in the image of ϕ_{ℓ} .

(This gives an easy new proof of the fact that $G_{\ell} \subseteq G_{\mathsf{B}} \otimes \mathbb{Q}_{\ell}$.)

In our main result we assume that the MTC for Y is true. By the result of Bogomolov mentioned earlier, it follows that the image of $\phi_{\ell} \circ y_*$ is open in the image of ϕ_{ℓ} .

THEOREM (CADORET-KRET)

If, for some ℓ , the image of $\phi_{\ell} \circ y_*$ is open in the image of ϕ_{ℓ} then in fact the image of $\phi \circ y_*$ is open in the image of ϕ .

• Assumption that MTC is true + Bogomolov \Rightarrow

the image of $\phi_\ell \circ y_*$ is open in the image of ϕ_ℓ

 Assumption that MTC is true + Bogomolov ⇒ the image of φ_ℓ ∘ y_{*} is open in the image of φ_ℓ
 Cadoret-Kret ⇒

the image of $\phi \circ y_*$ is open in the image of ϕ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Assumption that MTC is true + Bogomolov \Rightarrow

the image of $\phi_{\ell} \circ y_*$ is open in the image of ϕ_{ℓ}

• Cadoret–Kret \Rightarrow

the image of $\phi \circ y_*$ is open in the image of ϕ

The representation φ ∘ y_{*} is (isomorphic to) the usual Galois representation ρ_Y on the adelic H₁ of Y.

• Assumption that MTC is true + Bogomolov \Rightarrow

the image of $\phi_{\ell} \circ y_*$ is open in the image of ϕ_{ℓ}

• Cadoret–Kret \Rightarrow

the image of $\phi \circ \textit{y}_{*}$ is open in the image of ϕ

- The representation φ ∘ y_{*} is (isomorphic to) the usual Galois representation ρ_Y on the adelic H₁ of Y.
- Our result on Shimura varieties: The image of ϕ is "big".

• Assumption that MTC is true + Bogomolov \Rightarrow

the image of $\phi_\ell \circ y_*$ is open in the image of ϕ_ℓ

• Cadoret–Kret \Rightarrow

the image of $\phi \circ \textit{y}_{*}$ is open in the image of ϕ

- The representation φ ∘ y_{*} is (isomorphic to) the usual Galois representation ρ_Y on the adelic H₁ of Y.
- Our result on Shimura varieties: The image of ϕ is "big".

Combining these we obtain that the image of ρ_Y is "big".

THANK YOU FOR

YOUR ATTENTION