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THE MUMFORD–TATE CONJECTURE



General setting:

I F ⊂ C is a finitely generated field of characteristic 0

I Y /F is smooth projective (more generally: a pure motive)

We want to study Hn(Y )(m) for some n, m.

I HB := Hn(YC,Q(m)): polarizable Hodge structure

I H` := Hn(YF̄ ,Q`(m)): Galois representation
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Hodge-theoretic side

I QHS := category of polarizable Q-Hodge structures

I QHS ⊃ 〈HB〉 := tensor subcategory generated by HB

This means: 〈HB〉 is the smallest subcategory that contains HB and is
stable under ⊕, ⊗, ( )∨ and taking subquotients.

Mumford–Tate group: algebraic group

GB ⊂ GL(HB)

(over Q) with the property that

〈HB〉 ' Rep(GB;Q)
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For T ∈ 〈HB〉 and t ∈ T :

t is a Hodge class ⇐⇒ t is invariant under the action of GB

(Hodge class = rational class of Hodge type (0, 0))



Galois side

We have ρ` : Gal(F̄/F )→ GL(H`) and define

G` :=
[
Im(ρ`)

]Zar

Let
〈H`〉 ⊂

(
`-adic representations of Gal(F̄/F )

)
be the tensor subcategory generated by H`. Then

〈H`〉 ' Rep(G`;Q`) .
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Basic properties:

I GB is a connected reductive group over Q

I G` is an algebraic group over Q`

I G` is not connected in general; however, after replacing F with a
finite extension, G` becomes connected, and then G` does not change
if we replace F with a finitely generated field extension.

I From now on we assume F is such that G` is connected.

I Conjecturally G` is reductive; this is not known in general (OK for
abelian motives)

If T` ∈ 〈H`〉 and t ∈ T` then

t is a Tate class := t is invariant under G`
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Mumford–Tate Conjecture:

Under the comparison isomorphism HB ⊗Q`
∼−→ H` we have

GB ⊗Q`
?
= G`

as algebraic subgroups of GL(H`).



Why believe the MTC?

I [Hodge Conjecture + Tate Conjecture] =⇒ MTC

I MTC =⇒ [HC ⇐⇒ TC]

Remark: if we take H = H2(Y )(1) then the Hodge conjecture is known
(Lefschetz theorem on divisor classes); in this case

MTC =⇒ TC for divisor classes
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Status of the MTC

I For abelian varieties: MTC known in many cases under assumptions
on the dimension and/or the structure of the endomorphism algebra
(Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

I MTC known for K3 surfaces (Tankeev, André)

I MTC known for many classes of surfaces with pg = 1 (BM)

I But: still open for abelian fourfolds; essentially nothing is known
beyond abelian motives

For abelian varieties (more generally: abelian motives):

I G` ⊂ GB ⊗Q` (Borovoi, Piatetski-Shapiro, Deligne)

I If MTC true for one ` then for all ` (Larsen–Pink)

I MTC is “true on centers” (Vasiu, Ullmo–Yafaev)
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MAIN RESULTS



Throughout the following discussion:

I F ⊂ C a finitely generated field of characteristic 0

I Y /F smooth projective (mainly: AV or K3)

I H = H i
(
Y (C),Z(m)

)
and H` = H i (YF̄ ,Z`(m)

)
I

ρY : Gal(F̄/F )→ GL(H)
(
Ẑ
)

the Galois representation on H ⊗ Ẑ =
∏
` H`

I

ρY ,` : Gal(F̄/F )→ GL(H)
(
Z`
)

the `-component of ρY



Throughout the following discussion:

I F ⊂ C a finitely generated field of characteristic 0

I Y /F smooth projective (mainly: AV or K3)

I H = H i
(
Y (C),Z(m)

)
and H` = H i (YF̄ ,Z`(m)

)
I

ρY : Gal(F̄/F )→ GL(H)
(
Ẑ
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Suppose the MTC is true: GB ⊗Q` = G`. This means:

the image of ρY ,` is Zariski-dense in GB(Q`)

Bogomolov + Faltings (p-adic Hodge theory) in fact gives:

the image of ρY ,` is `-adically open in GB(Q`)

Question: Can we make this more precise, also varying ` ?
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Example (Serre, Inventiones 1972):

E/F elliptic curve with End(EF̄ ) = Z then the image of

ρE : Gal(F̄/F )→ GL
(

lim←−E [n]
(
F̄
)) ∼= GL2(Ẑ)

is open in GL2(Ẑ).



Main Theorem (Abelian varieties)

I Y /F an abelian variety, H = H1(Y ,Z)

I GB := Zariski closure of GB in GL(H)

I ρ = ρY : Gal(F̄/F )→ GL(H)
(
Ẑ
)

I ρ` is the `-adic component of ρ

I Assumption: the MTC is true for Y

(1) The index
[
GB(Z`) : Im(ρ`)

]
is bounded when ` varies.

(2) For almost all ` the image of ρ` contains (Z×` · id) ·
[
GB(Z`),GB(Z`)

]
.

(3) If HQ is Hodge-maximal, Im(ρ) is open in GB(Af).

This confirms a conjecture of Serre (1976). Parts (1), (2) have
independently been obtained by Hindry and Ratazzi.
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Hodge-maximality

Definition. — Let V be a Q-Hodge structure, given by

h : S→ GL(V )R ,

and
M ⊂ GL(V )

the Mumford–Tate group. Then V is Hodge-maximal if there does not
exist a non-trivial isogeny M ′ → M of connected Q-groups such that
h : S→ MR lifts to h′ : S→ M ′R.



Remark. Hodge-maximality is a necessary condition for Im(ρ) ⊂ GB(Af)
to be open.

Sketch: Suppose we do have an isogeny M ′ → M with h lifting to h′.

I Wintenberger: the `-adic Galois representations ρ` lift to
ρ′` : Gal(F̄/F )→ M ′(Q`)

I For almost all `: using Galois cohomology one sees that
M ′(Q`)→ M(Q`) is not surjective

I We find: Im(ρ) is contained in the image of M ′(Af)→ M(Af), which
is not open in M(Af).

For abelian varieties: H1 is not always Hodge-maximal
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Corollary of the Main Theorem for Abelian varieties

For n > 0 let F ⊂ F [n] be the field extension generated by the coordinates
of the points in Y [n](F̄ ). Assume the MTC for Y is true. Then:

(1) Given ` there is a constant C (`) = C (Y , `) such that[
F [`i ] : F

]
= C (`) · `i ·dim(GB)

for all i big enough.

(2) If H1 is Hodge-maximal then there is a constant C = C (Y ) such that[
F [n] : F

]
= C · ndim(GB)

for all n divisible enough.
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Main Theorem (K3 surfaces)

I Y /F is a K3 surface

I H = H2
(
Y (C),Q(1)

)
I ρ : Gal(F̄/F )→ GL(H)

(
Af

)
Then Im(ρ) is open in GB(Af).

Note:

I The MTC is known for K3’s.

I H2
(
Y (C),Q(1)

)
is Hodge-maximal (!)

I H2(Y (C),Q) is not Hodge-maximal.
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3

The Galois representation

associated with a Shimura variety



Outline of the proof of the Main Theorems

I To a component of a Shimura variety S0 ⊂ ShK (G ,X ) we are going
to associate a representation

φ : π1(S0)→ K ⊂ G (Af)

of the étale fundamental group.

I Main technical result: the image of φ is “big”.

I We deduce the main theorems about AV and K3’s by using that their
moduli spaces (essentially) are Shimura varieties, and by using a
result of Cadoret–Kret about Galois generic points.



Let (G ,X ) be a Shimura datum, and let E ⊂ C be its reflex field. We
assume: G is the generic Mumford–Tate group on X .

For K ⊂ G (Af) a compact open subgroup we have the associated scheme

ShK (G ,X ) over E

with
ShK (G ,X )

(
C
)

= G (Q)\
[
X × G (Af)/K

]
.

If K1 ⊂ K2 then we have an associated morphism

ShK1,K2 : ShK1(G ,X )→ ShK2(G ,X )

and if K1 is normal in K2 this is a Galois cover with group K2/K1.
(Assume K2 is neat.)
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Construction of the homomorphism φ

I Fix: K0 ⊂ G (Af) neat compact open subgroup

I Fix: S0,C ⊂ ShK0(G ,X )C irreducible component

I Let F ⊂ C be the field of definition of S0,C, so that we have a
geometrically integral S0 over F

I For K ⊂ K0 compact open, let SK ⊂ ShK (G ,X )F be the inverse
image of S0 under ShK ,K0 .

By construction, for K ⊂ K0 compact open we then have an étale cover

SK → S0

and if K / K0 then this is Galois with group K0/K .



Construction of the homomorphism φ

I Fix: K0 ⊂ G (Af) neat compact open subgroup

I Fix: S0,C ⊂ ShK0(G ,X )C irreducible component

I Let F ⊂ C be the field of definition of S0,C, so that we have a
geometrically integral S0 over F

I For K ⊂ K0 compact open, let SK ⊂ ShK (G ,X )F be the inverse
image of S0 under ShK ,K0 .

By construction, for K ⊂ K0 compact open we then have an étale cover

SK → S0

and if K / K0 then this is Galois with group K0/K .



Construction of the homomorphism φ

I Fix: K0 ⊂ G (Af) neat compact open subgroup

I Fix: S0,C ⊂ ShK0(G ,X )C irreducible component

I Let F ⊂ C be the field of definition of S0,C, so that we have a
geometrically integral S0 over F

I For K ⊂ K0 compact open, let SK ⊂ ShK (G ,X )F be the inverse
image of S0 under ShK ,K0 .

By construction, for K ⊂ K0 compact open we then have an étale cover

SK → S0

and if K / K0 then this is Galois with group K0/K .



Construction of the homomorphism φ

I Fix: K0 ⊂ G (Af) neat compact open subgroup

I Fix: S0,C ⊂ ShK0(G ,X )C irreducible component

I Let F ⊂ C be the field of definition of S0,C, so that we have a
geometrically integral S0 over F

I For K ⊂ K0 compact open, let SK ⊂ ShK (G ,X )F be the inverse
image of S0 under ShK ,K0 .

By construction, for K ⊂ K0 compact open we then have an étale cover

SK → S0

and if K / K0 then this is Galois with group K0/K .



Construction of the homomorphism φ

I Fix: K0 ⊂ G (Af) neat compact open subgroup

I Fix: S0,C ⊂ ShK0(G ,X )C irreducible component

I Let F ⊂ C be the field of definition of S0,C, so that we have a
geometrically integral S0 over F

I For K ⊂ K0 compact open, let SK ⊂ ShK (G ,X )F be the inverse
image of S0 under ShK ,K0 .

By construction, for K ⊂ K0 compact open we then have an étale cover

SK → S0

and if K / K0 then this is Galois with group K0/K .



For K / K0, let
φK : π1(S0)→ K0/K

be the homomorphism corresponding with the Galois cover SK → S0.

Taking the limit over all K we obtain

φ : π1(S0)→ K0
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Example:
(G ,X ) =

(
CSp2g ,Q , H

±
g

)
,

Kn =
{
g ∈ CSp2g (Ẑ)

∣∣ g ≡ 1 mod n
}

then
ShKn(G ,X ) = Ag ,n

moduli space of ppav with Jacobi level n structure.

What does this actually mean?
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(Y , λ) principally polarized abelian variety, dim(Y ) = g ,

Weil pairing:
eλn : Y [n]× Y [n]→ µn

We want to compare this with the standard symplectic pairing

ψn : (Z/nZ)2g × (Z/nZ)2g → (Z/nZ)
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Definition. — A Jacobi level n structure on (Y , λ) is a pair (α, ζ)
consisting of isomorphisms of group schemes

α : (Z/nZ)2g ∼−→ Y [n] , ζ : (Z/nZ)
∼−→ µn

such that the diagram

(Z/nZ)2g × (Z/nZ)2g (Z/nZ)

Y [n]× Y [n] µn

ψn

α×αo ζo

eλn

is commutative.



The scheme Ag ,n is irreducible over Q.

Over Q(e2πi/n) it splits up into ϕ(n) geometrically irreducible components,
corresponding to the various choices of the isomorphism ζ : (Z/nZ)

∼−→ µn.

We have a diagram

1 π1(Ag ,1 ⊗ Q̄) π1(Ag ,1) Gal(Q̄/Q) 1

1 Sp2g (Ẑ) CSp2g (Ẑ) Ẑ× 1

φgeom φ χ
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The homomorphism
χ : Gal(Q̄/Q)→ Ẑ×

(in this case the cyclotomic character) describes the action of Galois on
the set of irreducible components of lim←−n

Ag ,n ⊗ Q̄.

If we choose roots of unity ζn for all n in a compatible manner, we have a
tower of irreducible moduli schemes Ag ,(n) ⊗ Q̄ parametrizing ppav with
symplectic level n structure, and Ag ,(n),Q̄ → Ag ,(1),Q̄ is Galois with group
Sp2g (Z/nZ).

This tower corresponds with the homomorphism

φgeom : π1(Ag ,1 ⊗ Q̄)� Sp2g (Ẑ) ,

which is surjective because the Ag ,(n),Q̄ are all irreducible.
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Back to the general case: to the Shimura datum (G ,X ) and the
geometrically irreducible component

S0 ⊂ ShK0(G ,X )F

over the number field F we have associated the homomorphism

φ : π1(S0)→ K0 ⊂ G (Af)

Using Deligne’s description of the action of Galois on the set of geometric
irreducible components of the tower of Shimura varieties, we prove:
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Main Theorem about the homomorphism φ

Let G be an integral model of G such that K0 ⊂ G (Ẑ).

(1) The index
[
G (Z`) : Im(φ`)

]
is bounded when ` varies. (φ` = `-adic

component of φ)

(2) For almost all ` the image of φ` contains
[
G (Z`),G (Z`)

]
.

(3) If (G ,X ) is maximal, Im(φ) ⊂ G (Af) is open.
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Some technical details on the proof.

Set
Sh(G ,X ) = lim←−

K

ShK (G ,X ) .

The set of geometric irreducible components together with the action of
Gal(Ē/E ) on it allows a purely group-theoretic description:

Let ad: G → G ad be the adjoint map, let G ad(R)+ ⊂ G ad(R) be the
topological identity component, and let

G (Q)+ :=
{
g ∈ G (Q)

∣∣ ad(g) ∈ G ad(R)+
}
.

Then π0

(
Sh(G ,X )Q̄

)
is a torsor under

G (Af)/G (Q)−+ .

This is an abelian profinite group.
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The Galois group Gal(Ē/E ) acts on the set of geometric irreducible
components through its maximal abelian quotient, and the action is given
by a reciprocity homomorphism

rec : Gal(E ab/E )→ G (Af)/G (Q)−+ ,

which is a continuous homomorphism of abelian profinite groups.

We reduce our main theorem about the homomorphism φ to the following
result about the reciprocity homomorphism:

Theorem

The cokernel of the reciprocity map has finite exponent, and if (G ,X ) is
maximal then it is a finite discrete group.
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The abstract yoga of Shimura varieties allows to do this in steps:

(1) The case of a Shimura datum (G ,X ) with G a torus.

(2) The case of a Shimura variety (G ,X ) such that Gder is simply
connected.

(3) The general case.
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Deducing the Main Theorems about AV and K3’s

We focus on the result for abelian varieties; the case of K3 surfaces is
analogous.

Let (Y , λ) be a ppav over F ⊂ C, let G = GB be the Mumford–Tate
group. We obtain a Shimura datum (G ,X ) and, as before,

φ : π1(S0)→ K0 ⊂ G (Af)

We may arrange everything in such a way that (Y , λ) corresponds to a
point y ∈ S0(F ). This gives

1 π1(S0 ⊗ F̄ ) π1(S0) Gal(F̄/F ) 1

y∗
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We show: φ ◦ y∗ is the usual Galois representation of Gal(F̄/F ) on H1(Y ).

(This gives an easy new proof of the fact that G` ⊆ GB ⊗Q`.)

In our main result we assume that the MTC for Y is true. By the result of
Bogomolov mentioned earlier, it follows that the image of φ` ◦ y∗ is open
in the image of φ`.

Theorem (Cadoret–Kret)

If, for some `, the image of φ` ◦ y∗ is open in the image of φ` then in fact
the image of φ ◦ y∗ is open in the image of φ.
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Together with our results about the image of φ, the main theorem follows:

I Assumption that MTC is true + Bogomolov ⇒
the image of φ` ◦ y∗ is open in the image of φ`

I Cadoret–Kret ⇒
the image of φ ◦ y∗ is open in the image of φ

I The representation φ ◦ y∗ is (isomorphic to) the usual Galois
representation ρY on the adelic H1 of Y .

I Our result on Shimura varieties: The image of φ is “big”.

Combining these we obtain that the image of ρY is “big”.
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