IMAGES OF GALOIS REPRESENTATIONS AND THE MUMFORD-TATE CONJECTURE

Ben Moonen

JOINT WORK WITH

ANNA CADORET

THE MUMFORD-TATE CONJECTURE

General setting:

- $F \subset \mathbb{C}$ is a finitely generated field of characteristic 0
- Y / F is smooth projective (more generally: a pure motive)

General setting:

- $F \subset \mathbb{C}$ is a finitely generated field of characteristic 0
- Y / F is smooth projective (more generally: a pure motive)

We want to study $H^{n}(Y)(m)$ for some n, m.

- $H_{B}:=H^{n}\left(Y_{\mathbb{C}}, \mathbb{Q}(m)\right)$: polarizable Hodge structure
- $H_{\ell}:=H^{n}\left(Y_{\bar{F}}, \mathbb{Q}_{\ell}(m)\right)$: Galois representation

Hodge-theoretic side

- $\mathbb{Q H S}:=$ category of polarizable \mathbb{Q}-Hodge structures

Hodge-theoretic side

- $\mathbb{Q H S}:=$ category of polarizable \mathbb{Q}-Hodge structures
- $\mathbb{Q} H S \supset\left\langle H_{\mathrm{B}}\right\rangle:=$ tensor subcategory generated by H_{B}

This means: $\left\langle H_{\mathrm{B}}\right\rangle$ is the smallest subcategory that contains H_{B} and is stable under $\oplus, \otimes,()^{\vee}$ and taking subquotients.

Hodge-theoretic side

- $\mathbb{Q H S}:=$ category of polarizable \mathbb{Q}-Hodge structures
- $\mathbb{Q H S} \supset\left\langle H_{\mathrm{B}}\right\rangle:=$ tensor subcategory generated by H_{B}

This means: $\left\langle H_{B}\right\rangle$ is the smallest subcategory that contains H_{B} and is stable under $\oplus, \otimes,()^{\vee}$ and taking subquotients.

Mumford-Tate group: algebraic group

$$
G_{\mathrm{B}} \subset \mathrm{GL}\left(H_{\mathrm{B}}\right)
$$

(over \mathbb{Q}) with the property that

$$
\left\langle H_{B}\right\rangle \simeq \operatorname{Rep}\left(G_{B} ; \mathbb{Q}\right)
$$

For $T \in\left\langle H_{\mathrm{B}}\right\rangle$ and $t \in T$:
t is a Hodge class $\Longleftrightarrow t$ is invariant under the action of G_{B}
$($ Hodge class $=$ rational class of Hodge type $(0,0))$

Galois side

We have $\rho_{\ell}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}\left(H_{\ell}\right)$ and define

$$
G_{\ell}:=\left[\operatorname{lm}\left(\rho_{\ell}\right)\right]^{Z a r}
$$

Galois side
We have $\rho_{\ell}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}\left(H_{\ell}\right)$ and define

$$
G_{\ell}:=\left[\operatorname{lm}\left(\rho_{\ell}\right)\right]^{Z a r}
$$

Let

$$
\left\langle H_{\ell}\right\rangle \subset(\ell \text {-adic representations of } \operatorname{Gal}(\bar{F} / F))
$$

be the tensor subcategory generated by H_{ℓ}. Then

$$
\left\langle H_{\ell}\right\rangle \simeq \operatorname{Rep}\left(G_{\ell} ; \mathbb{Q}_{\ell}\right) .
$$

Basic properties:

- G_{B} is a connected reductive group over \mathbb{Q}

Basic properties:

- G_{B} is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}

Basic properties:

- G_{B} is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}
- G_{ℓ} is not connected in general; however, after replacing F with a finite extension, G_{ℓ} becomes connected, and then G_{ℓ} does not change if we replace F with a finitely generated field extension.

Basic properties:

- G_{B} is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}
- G_{ℓ} is not connected in general; however, after replacing F with a finite extension, G_{ℓ} becomes connected, and then G_{ℓ} does not change if we replace F with a finitely generated field extension.
- From now on we assume F is such that G_{ℓ} is connected.

Basic properties:

- G_{B} is a connected reductive group over \mathbb{Q}
- G_{ℓ} is an algebraic group over \mathbb{Q}_{ℓ}
- G_{ℓ} is not connected in general; however, after replacing F with a finite extension, G_{ℓ} becomes connected, and then G_{ℓ} does not change if we replace F with a finitely generated field extension.
- From now on we assume F is such that G_{ℓ} is connected.
- Conjecturally G_{ℓ} is reductive; this is not known in general (OK for abelian motives)

If $T_{\ell} \in\left\langle H_{\ell}\right\rangle$ and $t \in T_{\ell}$ then
t is a Tate class $:=t$ is invariant under G_{ℓ}

Mumford-Tate Conjecture:

Under the comparison isomorphism $H_{\mathrm{B}} \otimes \mathbb{Q}_{\ell} \xrightarrow{\sim} H_{\ell}$ we have

$$
G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell} \stackrel{?}{=} G_{\ell}
$$

as algebraic subgroups of $\mathrm{GL}\left(H_{\ell}\right)$.

Why believe the MTC?

- [Hodge Conjecture + Tate Conjecture] \Longrightarrow MTC
- MTC $\Longrightarrow[\mathrm{HC} \Longleftrightarrow \mathrm{TC}]$

Why believe the MTC?

- [Hodge Conjecture + Tate Conjecture] \Longrightarrow MTC
- MTC $\Longrightarrow[\mathrm{HC} \Longleftrightarrow \mathrm{TC}]$

Remark: if we take $H=H^{2}(Y)(1)$ then the Hodge conjecture is known (Lefschetz theorem on divisor classes); in this case

$$
\text { MTC } \Longrightarrow \text { TC for divisor classes }
$$

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_{g}=1$ (BM)

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_{g}=1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_{g}=1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

For abelian varieties (more generally: abelian motives):

- $G_{\ell} \subset G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}$ (Borovoi, Piatetski-Shapiro, Deligne)

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_{g}=1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

For abelian varieties (more generally: abelian motives):

- $G_{\ell} \subset G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}$ (Borovoi, Piatetski-Shapiro, Deligne)
- If MTC true for one ℓ then for all ℓ (Larsen-Pink)

Status of the MTC

- For abelian varieties: MTC known in many cases under assumptions on the dimension and/or the structure of the endomorphism algebra (Serre, Ribet, Tankeev, Larsen, Pink, Zarhin, BM, ...)
- MTC known for K3 surfaces (Tankeev, André)
- MTC known for many classes of surfaces with $p_{g}=1$ (BM)
- But: still open for abelian fourfolds; essentially nothing is known beyond abelian motives

For abelian varieties (more generally: abelian motives):

- $G_{\ell} \subset G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}$ (Borovoi, Piatetski-Shapiro, Deligne)
- If MTC true for one ℓ then for all ℓ (Larsen-Pink)
- MTC is "true on centers" (Vasiu, Ullmo-Yafaev)

2

MAIN RESULTS

Throughout the following discussion:

- $F \subset \mathbb{C}$ a finitely generated field of characteristic 0

Throughout the following discussion:

- $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y / F smooth projective (mainly: AV or K3)

Throughout the following discussion:

- $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y / F smooth projective (mainly: AV or K3)
- $H=H^{i}(Y(\mathbb{C}), \mathbb{Z}(m))$ and $H_{\ell}=H^{i}\left(Y_{\bar{F}}, \mathbb{Z}_{\ell}(m)\right)$

Throughout the following discussion:

- $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y / F smooth projective (mainly: AV or K3)
- $H=H^{i}(Y(\mathbb{C}), \mathbb{Z}(m))$ and $H_{\ell}=H^{i}\left(Y_{\bar{F}}, \mathbb{Z}_{\ell}(m)\right)$

$$
\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}(H)(\hat{\mathbb{Z}})
$$

the Galois representation on $H \otimes \hat{\mathbb{Z}}=\prod_{\ell} H_{\ell}$

Throughout the following discussion:

- $F \subset \mathbb{C}$ a finitely generated field of characteristic 0
- Y / F smooth projective (mainly: AV or K3)
- $H=H^{i}(Y(\mathbb{C}), \mathbb{Z}(m))$ and $H_{\ell}=H^{i}\left(Y_{\bar{F}}, \mathbb{Z}_{\ell}(m)\right)$

$$
\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}(H)(\hat{\mathbb{Z}})
$$

the Galois representation on $H \otimes \hat{\mathbb{Z}}=\prod_{\ell} H_{\ell}$

$$
\rho_{Y, \ell}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)\left(\mathbb{Z}_{\ell}\right)
$$

the ℓ-component of ρ_{Y}

Suppose the MTC is true: $G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}=G_{\ell}$. This means: the image of $\rho_{Y, \ell}$ is Zariski-dense in $G_{B}\left(\mathbb{Q}_{\ell}\right)$

Bogomolov + Faltings (p-adic Hodge theory) in fact gives:
the image of $\rho_{Y, \ell}$ is ℓ-adically open in $G_{B}\left(\mathbb{Q}_{\ell}\right)$

Suppose the MTC is true: $G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}=G_{\ell}$. This means: the image of $\rho_{Y, \ell}$ is Zariski-dense in $G_{B}\left(\mathbb{Q}_{\ell}\right)$

Bogomolov + Faltings (p-adic Hodge theory) in fact gives:
the image of $\rho_{Y, \ell}$ is ℓ-adically open in $G_{B}\left(\mathbb{Q}_{\ell}\right)$

Question: Can we make this more precise, also varying ℓ ?

Example (Serre, Inventiones 1972):

E / F elliptic curve with $\operatorname{End}\left(E_{\bar{F}}\right)=\mathbb{Z}$ then the image of

$$
\rho_{E}: \operatorname{Gal}(\bar{F} / F) \rightarrow \mathrm{GL}\left(\lim _{\longleftarrow} E[n](\bar{F})\right) \cong \mathrm{GL}_{2}(\hat{\mathbb{Z}})
$$

is open in $\mathrm{GL}_{2}(\hat{\mathbb{Z}})$.

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_{ℓ} is the ℓ-adic component of ρ

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_{ℓ} is the ℓ-adic component of ρ
- Assumption: the MTC is true for Y

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_{ℓ} is the ℓ-adic component of ρ
- Assumption: the MTC is true for Y
(1) The index $\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\rho_{\ell}\right)\right]$ is bounded when ℓ varies.

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_{ℓ} is the ℓ-adic component of ρ
- Assumption: the MTC is true for Y
(1) The index $\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\rho_{\ell}\right)\right]$ is bounded when ℓ varies.
(2) For almost all ℓ the image of ρ_{ℓ} contains $\left(\mathbb{Z}_{\ell}^{\times} \cdot \mathrm{id}\right) \cdot\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right), \mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right)\right]$.

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_{ℓ} is the ℓ-adic component of ρ
- Assumption: the MTC is true for Y
(1) The index $\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\rho_{\ell}\right)\right]$ is bounded when ℓ varies.
(2) For almost all ℓ the image of ρ_{ℓ} contains $\left(\mathbb{Z}_{\ell}^{\times} \cdot \mathrm{id}\right) \cdot\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right), \mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right)\right]$.
(3) If $H_{\mathbb{Q}}$ is Hodge-maximal, $\operatorname{Im}(\rho)$ is open in $G_{B}\left(\mathbb{A}_{f}\right)$.

Main Theorem (Abelian varieties)

- Y / F an abelian variety, $H=H_{1}(Y, \mathbb{Z})$
- $\mathscr{G}_{\mathrm{B}}:=$ Zariski closure of G_{B} in $\mathrm{GL}(H)$
- $\rho=\rho_{Y}: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)(\hat{\mathbb{Z}})$
- ρ_{ℓ} is the ℓ-adic component of ρ
- Assumption: the MTC is true for Y
(1) The index $\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\rho_{\ell}\right)\right]$ is bounded when ℓ varies.
(2) For almost all ℓ the image of ρ_{ℓ} contains $\left(\mathbb{Z}_{\ell}^{\times} \cdot \mathrm{id}\right) \cdot\left[\mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right), \mathscr{G}_{\mathrm{B}}\left(\mathbb{Z}_{\ell}\right)\right]$.
(3) If $H_{\mathbb{Q}}$ is Hodge-maximal, $\operatorname{Im}(\rho)$ is open in $G_{\mathrm{B}}\left(\mathbb{A}_{\mathrm{f}}\right)$.

This confirms a conjecture of Serre (1976). Parts (1), (2) have independently been obtained by Hindry and Ratazzi.

Hodge-maximality

Definition. - Let V be a \mathbb{Q}-Hodge structure, given by

$$
h: \mathbb{S} \rightarrow \mathrm{GL}(V)_{\mathbb{R}}
$$

and

$$
M \subset \mathrm{GL}(V)
$$

the Mumford-Tate group. Then V is Hodge-maximal if there does not exist a non-trivial isogeny $M^{\prime} \rightarrow M$ of connected \mathbb{Q}-groups such that $h: \mathbb{S} \rightarrow M_{\mathbb{R}}$ lifts to $h^{\prime}: \mathbb{S} \rightarrow M_{\mathbb{R}}^{\prime}$.

Remark. Hodge-maximality is a necessary condition for $\operatorname{Im}(\rho) \subset G_{\mathbf{B}}\left(\mathbb{A}_{\mathbf{f}}\right)$ to be open.

Sketch: Suppose we do have an isogeny $M^{\prime} \rightarrow M$ with h lifting to h^{\prime}.

- Wintenberger: the ℓ-adic Galois representations ρ_{ℓ} lift to

$$
\rho_{\ell}^{\prime}: \operatorname{Gal}(\bar{F} / F) \rightarrow M^{\prime}\left(\mathbb{Q}_{\ell}\right)
$$

Remark. Hodge-maximality is a necessary condition for $\operatorname{Im}(\rho) \subset G_{\mathbf{B}}\left(\mathbb{A}_{\mathbf{f}}\right)$ to be open.

Sketch: Suppose we do have an isogeny $M^{\prime} \rightarrow M$ with h lifting to h^{\prime}.

- Wintenberger: the ℓ-adic Galois representations ρ_{ℓ} lift to $\rho_{\ell}^{\prime}: \operatorname{Gal}(\bar{F} / F) \rightarrow M^{\prime}\left(\mathbb{Q}_{\ell}\right)$
- For almost all ℓ : using Galois cohomology one sees that $M^{\prime}\left(\mathbb{Q}_{\ell}\right) \rightarrow M\left(\mathbb{Q}_{\ell}\right)$ is not surjective

Remark. Hodge-maximality is a necessary condition for $\operatorname{Im}(\rho) \subset G_{\mathbf{B}}\left(\mathbb{A}_{\mathbf{f}}\right)$ to be open.

Sketch: Suppose we do have an isogeny $M^{\prime} \rightarrow M$ with h lifting to h^{\prime}.

- Wintenberger: the ℓ-adic Galois representations ρ_{ℓ} lift to $\rho_{\ell}^{\prime}: \operatorname{Gal}(\bar{F} / F) \rightarrow M^{\prime}\left(\mathbb{Q}_{\ell}\right)$
- For almost all ℓ : using Galois cohomology one sees that $M^{\prime}\left(\mathbb{Q}_{\ell}\right) \rightarrow M\left(\mathbb{Q}_{\ell}\right)$ is not surjective
- We find: $\operatorname{Im}(\rho)$ is contained in the image of $M^{\prime}\left(\mathbb{A}_{f}\right) \rightarrow M\left(\mathbb{A}_{f}\right)$, which is not open in $M\left(\mathbb{A}_{f}\right)$.

Remark. Hodge-maximality is a necessary condition for $\operatorname{Im}(\rho) \subset G_{\mathrm{B}}\left(\mathbb{A}_{\mathrm{f}}\right)$ to be open.

Sketch: Suppose we do have an isogeny $M^{\prime} \rightarrow M$ with h lifting to h^{\prime}.

- Wintenberger: the ℓ-adic Galois representations ρ_{ℓ} lift to $\rho_{\ell}^{\prime}: \operatorname{Gal}(\bar{F} / F) \rightarrow M^{\prime}\left(\mathbb{Q}_{\ell}\right)$
- For almost all ℓ : using Galois cohomology one sees that $M^{\prime}\left(\mathbb{Q}_{\ell}\right) \rightarrow M\left(\mathbb{Q}_{\ell}\right)$ is not surjective
- We find: $\operatorname{Im}(\rho)$ is contained in the image of $M^{\prime}\left(\mathbb{A}_{\mathrm{f}}\right) \rightarrow M\left(\mathbb{A}_{\mathrm{f}}\right)$, which is not open in $M\left(\mathbb{A}_{f}\right)$.

For abelian varieties: H_{1} is not always Hodge-maximal

Corollary of the Main Theorem for Abelian varieties

For $n>0$ let $F \subset F[n]$ be the field extension generated by the coordinates of the points in $Y[n](\bar{F})$. Assume the MTC for Y is true. Then:

Corollary of the Main Theorem for Abelian varieties

For $n>0$ let $F \subset F[n]$ be the field extension generated by the coordinates of the points in $Y[n](\bar{F})$. Assume the MTC for Y is true. Then:
(1) Given ℓ there is a constant $C(\ell)=C(Y, \ell)$ such that

$$
\left[F\left[\ell^{i}\right]: F\right]=C(\ell) \cdot \ell^{i \cdot \operatorname{dim}\left(G_{B}\right)}
$$

for all i big enough.
(2) If H_{1} is Hodge-maximal then there is a constant $C=C(Y)$ such that

$$
[F[n]: F]=C \cdot n^{\operatorname{dim}\left(G_{\mathrm{B}}\right)}
$$

for all n divisible enough.

Main Theorem (K3 surfaces)

- Y / F is a K3 surface

Main Theorem (K3 surfaces)

- Y / F is a K3 surface
- $H=H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$

Main Theorem (K3 surfaces)

- Y / F is a K3 surface
- $H=H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)\left(\mathbb{A}_{\mathrm{f}}\right)$

Main Theorem (K3 surfaces)

- Y / F is a K3 surface
- $H=H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)\left(\mathbb{A}_{\mathrm{f}}\right)$

Then $\operatorname{Im}(\rho)$ is open in $G_{\mathbb{B}}\left(\mathbb{A}_{\mathfrak{f}}\right)$.

Main Theorem (K3 surfaces)

- Y / F is a K 3 surface
- $H=H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)\left(\mathbb{A}_{\mathrm{f}}\right)$

Then $\operatorname{Im}(\rho)$ is open in $G_{\mathbb{B}}\left(\mathbb{A}_{\mathfrak{f}}\right)$.

Note:

- The MTC is known for K3's.

Main Theorem (K3 surfaces)

- Y / F is a K 3 surface
- $H=H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)\left(\mathbb{A}_{\mathrm{f}}\right)$

Then $\operatorname{Im}(\rho)$ is open in $G_{B}\left(\mathbb{A}_{\mathrm{f}}\right)$.

Note:

- The MTC is known for K3's.
- $H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$ is Hodge-maximal (!)

Main Theorem (K3 surfaces)

- Y / F is a K 3 surface
- $H=H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$
- $\rho: \operatorname{Gal}(\bar{F} / F) \rightarrow \operatorname{GL}(H)\left(\mathbb{A}_{\mathrm{f}}\right)$

Then $\operatorname{Im}(\rho)$ is open in $G_{B}\left(\mathbb{A}_{\mathfrak{f}}\right)$.

Note:

- The MTC is known for K3's.
- $H^{2}(Y(\mathbb{C}), \mathbb{Q}(1))$ is Hodge-maximal (!)
- $H^{2}(Y(\mathbb{C}), \mathbb{Q})$ is not Hodge-maximal.

The Galois Representation

associated with a Shimura variety

- To a component of a Shimura variety $S_{0} \subset \operatorname{Sh}_{K}(G, X)$ we are going to associate a representation

$$
\phi: \pi_{1}\left(S_{0}\right) \rightarrow K \subset G\left(\mathbb{A}_{\mathrm{f}}\right)
$$

of the étale fundamental group.

- Main technical result: the image of ϕ is "big".
- We deduce the main theorems about AV and K3's by using that their moduli spaces (essentially) are Shimura varieties, and by using a result of Cadoret-Kret about Galois generic points.

Let (G, X) be a Shimura datum, and let $E \subset \mathbb{C}$ be its reflex field. We assume: G is the generic Mumford-Tate group on X.

Let (G, X) be a Shimura datum, and let $E \subset \mathbb{C}$ be its reflex field. We assume: G is the generic Mumford-Tate group on X.

For $K \subset G\left(\mathbb{A}_{\mathrm{f}}\right)$ a compact open subgroup we have the associated scheme

$$
\operatorname{Sh}_{K}(G, X) \quad \text { over } E
$$

with

$$
\operatorname{Sh}_{K}(G, X)(\mathbb{C})=G(\mathbb{Q}) \backslash\left[X \times G\left(\mathbb{A}_{\mathrm{f}}\right) / K\right] .
$$

Let (G, X) be a Shimura datum, and let $E \subset \mathbb{C}$ be its reflex field. We assume: G is the generic Mumford-Tate group on X.

For $K \subset G\left(\mathbb{A}_{\mathrm{f}}\right)$ a compact open subgroup we have the associated scheme

$$
\operatorname{Sh}_{K}(G, X) \quad \text { over } E
$$

with

$$
\operatorname{Sh}_{K}(G, X)(\mathbb{C})=G(\mathbb{Q}) \backslash\left[X \times G\left(\mathbb{A}_{\mathrm{f}}\right) / K\right] .
$$

If $K_{1} \subset K_{2}$ then we have an associated morphism

$$
\operatorname{Sh}_{K_{1}, K_{2}}: \operatorname{Sh}_{K_{1}}(G, X) \rightarrow \operatorname{Sh}_{K_{2}}(G, X)
$$

and if K_{1} is normal in K_{2} this is a Galois cover with group K_{2} / K_{1}. (Assume K_{2} is neat.)

Construction of the homomorphism ϕ

- Fix: $K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)$ neat compact open subgroup

Construction of the homomorphism ϕ

- Fix: $K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)$ neat compact open subgroup
- Fix: $S_{0, \mathbb{C}} \subset \operatorname{Sh}_{K_{0}}(G, X)_{\mathbb{C}}$ irreducible component

Construction of The homomorphism ϕ

- Fix: $K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)$ neat compact open subgroup
- Fix: $S_{0, \mathbb{C}} \subset \operatorname{Sh}_{K_{0}}(G, X)_{\mathbb{C}}$ irreducible component
- Let $F \subset \mathbb{C}$ be the field of definition of $S_{0, \mathbb{C}}$, so that we have a geometrically integral S_{0} over F

Construction of The homomorphism ϕ

- Fix: $K_{0} \subset G\left(\mathbb{A}_{f}\right)$ neat compact open subgroup
- Fix: $S_{0, \mathbb{C}} \subset \operatorname{Sh}_{K_{0}}(G, X)_{\mathbb{C}}$ irreducible component
- Let $F \subset \mathbb{C}$ be the field of definition of $S_{0, \mathbb{C}}$, so that we have a geometrically integral S_{0} over F
- For $K \subset K_{0}$ compact open, let $S_{K} \subset \operatorname{Sh}_{K}(G, X)_{F}$ be the inverse image of S_{0} under $\mathrm{Sh}_{K, K_{0}}$.

Construction of The homomorphism ϕ

- Fix: $K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)$ neat compact open subgroup
- Fix: $S_{0, \mathbb{C}} \subset \operatorname{Sh}_{K_{0}}(G, X)_{\mathbb{C}}$ irreducible component
- Let $F \subset \mathbb{C}$ be the field of definition of $S_{0, \mathbb{C}}$, so that we have a geometrically integral S_{0} over F
- For $K \subset K_{0}$ compact open, let $S_{K} \subset \operatorname{Sh}_{K}(G, X)_{F}$ be the inverse image of S_{0} under $\mathrm{Sh}_{K, K_{0}}$.

By construction, for $K \subset K_{0}$ compact open we then have an étale cover

$$
S_{K} \rightarrow S_{0}
$$

and if $K \triangleleft K_{0}$ then this is Galois with group K_{0} / K.

For $K \triangleleft K_{0}$, let

$$
\phi_{K}: \pi_{1}\left(S_{0}\right) \rightarrow K_{0} / K
$$

be the homomorphism corresponding with the Galois cover $S_{K} \rightarrow S_{0}$.

For $K \triangleleft K_{0}$, let

$$
\phi_{K}: \pi_{1}\left(S_{0}\right) \rightarrow K_{0} / K
$$

be the homomorphism corresponding with the Galois cover $S_{K} \rightarrow S_{0}$.
Taking the limit over all K we obtain

$$
\phi: \pi_{1}\left(S_{0}\right) \rightarrow K_{0}
$$

Example:

$$
(G, X)=\left(\operatorname{CSp}_{2 g, \mathbb{Q}}, \mathfrak{H}_{g}^{ \pm}\right),
$$

Example:

$$
\begin{gathered}
(G, X)=\left(\operatorname{CSp}_{2 g, \mathbb{Q}}, \mathfrak{H}_{g}^{ \pm}\right), \\
K_{n}=\left\{g \in \operatorname{CSp}_{2 g}(\hat{\mathbb{Z}}) \mid g \equiv 1 \bmod n\right\}
\end{gathered}
$$

Example:

$$
\begin{gathered}
(G, X)=\left(\operatorname{CSp}_{2 g, \mathbb{Q}}, \mathfrak{H}_{g}^{ \pm}\right), \\
K_{n}=\left\{g \in \operatorname{CSp}_{2 g}(\hat{\mathbb{Z}}) \mid g \equiv 1 \bmod n\right\}
\end{gathered}
$$

then

$$
\operatorname{Sh}_{K_{n}}(G, X)=A_{g, n}
$$

moduli space of ppav with Jacobi level n structure.

Example:

$$
\begin{gathered}
(G, X)=\left(\operatorname{CSp}_{2 g, \mathbb{Q}}, \mathfrak{H}_{g}^{ \pm}\right), \\
K_{n}=\left\{g \in \operatorname{CSp}_{2 g}(\hat{\mathbb{Z}}) \mid g \equiv 1 \bmod n\right\}
\end{gathered}
$$

then

$$
\operatorname{Sh}_{K_{n}}(G, X)=A_{g, n}
$$

moduli space of ppav with Jacobi level n structure.

What does this actually mean?
(Y, λ) principally polarized abelian variety, $\operatorname{dim}(Y)=g$, Weil pairing:

$$
e_{n}^{\lambda}: Y[n] \times Y[n] \rightarrow \mu_{n}
$$

(Y, λ) principally polarized abelian variety, $\operatorname{dim}(Y)=g$,
Weil pairing:

$$
e_{n}^{\lambda}: Y[n] \times Y[n] \rightarrow \mu_{n}
$$

We want to compare this with the standard symplectic pairing

$$
\psi_{n}:(\mathbb{Z} / n \mathbb{Z})^{2 g} \times(\mathbb{Z} / n \mathbb{Z})^{2 g} \rightarrow(\mathbb{Z} / n \mathbb{Z})
$$

Definition. - A Jacobi level n structure on (Y, λ) is a pair (α, ζ) consisting of isomorphisms of group schemes

$$
\alpha:(\mathbb{Z} / n \mathbb{Z})^{2 g} \xrightarrow{\sim} Y[n], \quad \zeta:(\mathbb{Z} / n \mathbb{Z}) \xrightarrow{\sim} \mu_{n}
$$

such that the diagram

$$
\begin{aligned}
& (\mathbb{Z} / n \mathbb{Z})^{2 g} \times(\mathbb{Z} / n \mathbb{Z})^{2 g} \xrightarrow{\psi_{n}}(\mathbb{Z} / n \mathbb{Z})
\end{aligned}
$$

is commutative.

The scheme $A_{g, n}$ is irreducible over \mathbb{Q}.

The scheme $A_{g, n}$ is irreducible over \mathbb{Q}.
Over $\mathbb{Q}\left(e^{2 \pi i / n}\right)$ it splits up into $\varphi(n)$ geometrically irreducible components, corresponding to the various choices of the isomorphism $\zeta:(\mathbb{Z} / n \mathbb{Z}) \xrightarrow{\sim} \mu_{n}$.

The scheme $A_{g, n}$ is irreducible over \mathbb{Q}.
Over $\mathbb{Q}\left(e^{2 \pi i / n}\right)$ it splits up into $\varphi(n)$ geometrically irreducible components, corresponding to the various choices of the isomorphism $\zeta:(\mathbb{Z} / n \mathbb{Z}) \xrightarrow{\sim} \mu_{n}$.

We have a diagram

The homomorphism

$$
\chi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \hat{\mathbb{Z}}^{\times}
$$

(in this case the cyclotomic character) describes the action of Galois on the set of irreducible components of $\lim _{n} A_{g, n} \otimes \overline{\mathbb{Q}}$.

The homomorphism

$$
\chi: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \hat{\mathbb{Z}}^{\times}
$$

(in this case the cyclotomic character) describes the action of Galois on the set of irreducible components of $\lim _{\leftrightarrows_{n}} A_{g, n} \otimes \overline{\mathbb{Q}}$.

If we choose roots of unity ζ_{n} for all n in a compatible manner, we have a tower of irreducible moduli schemes $A_{g,(n)} \otimes \overline{\mathbb{Q}}$ parametrizing ppav with symplectic level n structure, and $A_{g,(n), \overline{\mathbb{Q}}} \rightarrow A_{g,(1), \overline{\mathbb{Q}}}$ is Galois with group $\mathrm{Sp}_{2 g}(\mathbb{Z} / n \mathbb{Z})$.

This tower corresponds with the homomorphism

$$
\phi_{\text {geom }}: \pi_{1}\left(A_{g, 1} \otimes \overline{\mathbb{Q}}\right) \rightarrow \operatorname{Sp}_{2 g}(\hat{\mathbb{Z}})
$$

which is surjective because the $A_{g,(n), \overline{\mathbb{Q}}}$ are all irreducible.

Back to the general case: to the Shimura datum (G, X) and the geometrically irreducible component

$$
S_{0} \subset \operatorname{Sh}_{K_{0}}(G, X)_{F}
$$

over the number field F we have associated the homomorphism

$$
\phi: \pi_{1}\left(S_{0}\right) \rightarrow K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)
$$

Back to the general case: to the Shimura datum (G, X) and the geometrically irreducible component

$$
S_{0} \subset \operatorname{Sh}_{K_{0}}(G, X)_{F}
$$

over the number field F we have associated the homomorphism

$$
\phi: \pi_{1}\left(S_{0}\right) \rightarrow K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)
$$

Using Deligne's description of the action of Galois on the set of geometric irreducible components of the tower of Shimura varieties, we prove:

Main Theorem about the homomorphism ϕ

Let \mathscr{G} be an integral model of G such that $K_{0} \subset \mathscr{G}(\hat{\mathbb{Z}})$.
(1) The index $\left[\mathscr{G}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\phi_{\ell}\right)\right]$ is bounded when ℓ varies. ($\phi_{\ell}=\ell$-adic component of ϕ)

Main Theorem about the homomorphism ϕ

Let \mathscr{G} be an integral model of G such that $K_{0} \subset \mathscr{G}(\hat{\mathbb{Z}})$.
(1) The index $\left[\mathscr{G}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\phi_{\ell}\right)\right]$ is bounded when ℓ varies. ($\phi_{\ell}=\ell$-adic component of ϕ)
(2) For almost all ℓ the image of ϕ_{ℓ} contains $\left[\mathscr{G}\left(\mathbb{Z}_{\ell}\right), \mathscr{G}\left(\mathbb{Z}_{\ell}\right)\right]$.

Main Theorem about the homomorphism ϕ

Let \mathscr{G} be an integral model of G such that $K_{0} \subset \mathscr{G}(\hat{\mathbb{Z}})$.
(1) The index $\left[\mathscr{G}\left(\mathbb{Z}_{\ell}\right): \operatorname{Im}\left(\phi_{\ell}\right)\right]$ is bounded when ℓ varies. ($\phi_{\ell}=\ell$-adic component of ϕ)
(2) For almost all ℓ the image of ϕ_{ℓ} contains $\left[\mathscr{G}\left(\mathbb{Z}_{\ell}\right), \mathscr{G}\left(\mathbb{Z}_{\ell}\right)\right]$.
(3) If (G, X) is maximal, $\operatorname{Im}(\phi) \subset G\left(\mathbb{A}_{f}\right)$ is open.

Some technical details on the proof.
Set

$$
\operatorname{Sh}(G, X)=\underset{K}{\lim _{K}} \operatorname{Sh}_{K}(G, X)
$$

The set of geometric irreducible components together with the action of $\operatorname{Gal}(\bar{E} / E)$ on it allows a purely group-theoretic description:

Some technical details on the proof.
Set

$$
\operatorname{Sh}(G, X)=\underset{K}{\lim _{K}} \operatorname{Sh}_{K}(G, X)
$$

The set of geometric irreducible components together with the action of $\operatorname{Gal}(\bar{E} / E)$ on it allows a purely group-theoretic description:

Let ad: $G \rightarrow G^{\text {ad }}$ be the adjoint map, let $G^{\text {ad }}(\mathbb{R})^{+} \subset G^{\text {ad }}(\mathbb{R})$ be the topological identity component, and let

$$
G(\mathbb{Q})_{+}:=\left\{g \in G(\mathbb{Q}) \mid \operatorname{ad}(g) \in G^{\mathrm{ad}}(\mathbb{R})^{+}\right\}
$$

Some technical details on the proof.

Set

$$
\operatorname{Sh}(G, X)={\underset{K}{K}}_{\lim _{K}} \operatorname{Sh}_{K}(G, X)
$$

The set of geometric irreducible components together with the action of $\operatorname{Gal}(\bar{E} / E)$ on it allows a purely group-theoretic description:

Let ad: $G \rightarrow G^{\text {ad }}$ be the adjoint map, let $G^{\text {ad }}(\mathbb{R})^{+} \subset G^{\text {ad }}(\mathbb{R})$ be the topological identity component, and let

$$
G(\mathbb{Q})_{+}:=\left\{g \in G(\mathbb{Q}) \mid \operatorname{ad}(g) \in G^{\mathrm{ad}}(\mathbb{R})^{+}\right\}
$$

Then $\pi_{0}\left(\operatorname{Sh}(G, X)_{\overline{\mathbb{Q}}}\right)$ is a torsor under

$$
G\left(\mathbb{A}_{\mathrm{f}}\right) / G(\mathbb{Q})_{+}^{-} .
$$

This is an abelian profinite group.

The Galois group $\operatorname{Gal}(\bar{E} / E)$ acts on the set of geometric irreducible components through its maximal abelian quotient, and the action is given by a reciprocity homomorphism

$$
\text { rec: } \operatorname{Gal}\left(E^{\mathrm{ab}} / E\right) \rightarrow G\left(\mathbb{A}_{\mathrm{f}}\right) / G(\mathbb{Q})_{+}^{-},
$$

which is a continuous homomorphism of abelian profinite groups.

The Galois group $\operatorname{Gal}(\bar{E} / E)$ acts on the set of geometric irreducible components through its maximal abelian quotient, and the action is given by a reciprocity homomorphism

$$
\text { rec: } \operatorname{Gal}\left(E^{\mathrm{ab}} / E\right) \rightarrow G\left(\mathbb{A}_{\mathrm{f}}\right) / G(\mathbb{Q})_{+}^{-},
$$

which is a continuous homomorphism of abelian profinite groups.
We reduce our main theorem about the homomorphism ϕ to the following result about the reciprocity homomorphism:

The Galois group $\operatorname{Gal}(\bar{E} / E)$ acts on the set of geometric irreducible components through its maximal abelian quotient, and the action is given by a reciprocity homomorphism

$$
\text { rec: } \operatorname{Gal}\left(E^{\mathrm{ab}} / E\right) \rightarrow G\left(\mathbb{A}_{\mathrm{f}}\right) / G(\mathbb{Q})_{+}^{-},
$$

which is a continuous homomorphism of abelian profinite groups.
We reduce our main theorem about the homomorphism ϕ to the following result about the reciprocity homomorphism:

Theorem

The cokernel of the reciprocity map has finite exponent, and if (G, X) is maximal then it is a finite discrete group.

The abstract yoga of Shimura varieties allows to do this in steps:

The abstract yoga of Shimura varieties allows to do this in steps:
(1) The case of a Shimura datum (G, X) with G a torus.

The abstract yoga of Shimura varieties allows to do this in steps:
(1) The case of a Shimura datum (G, X) with G a torus.
(2) The case of a Shimura variety (G, X) such that $G^{\text {der }}$ is simply connected.

The abstract yoga of Shimura varieties allows to do this in steps:
(1) The case of a Shimura datum (G, X) with G a torus.
(2) The case of a Shimura variety (G, X) such that $G^{\text {der }}$ is simply connected.
(3) The general case.

We focus on the result for abelian varieties; the case of K 3 surfaces is analogous.

Deducing the Main Theorems about AV and K3's

We focus on the result for abelian varieties; the case of K3 surfaces is analogous.

Let (Y, λ) be a ppav over $F \subset \mathbb{C}$, let $G=G_{\mathrm{B}}$ be the Mumford-Tate group. We obtain a Shimura datum (G, X) and, as before,

$$
\phi: \pi_{1}\left(S_{0}\right) \rightarrow K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)
$$

Deducing the Main Theorems about AV and K3's

We focus on the result for abelian varieties; the case of K 3 surfaces is analogous.

Let (Y, λ) be a ppav over $F \subset \mathbb{C}$, let $G=G_{\mathrm{B}}$ be the Mumford-Tate group. We obtain a Shimura datum (G, X) and, as before,

$$
\phi: \pi_{1}\left(S_{0}\right) \rightarrow K_{0} \subset G\left(\mathbb{A}_{\mathrm{f}}\right)
$$

We may arrange everything in such a way that (Y, λ) corresponds to a point $y \in S_{0}(F)$. This gives

We show: $\phi \circ y_{*}$ is the usual Galois representation of $\operatorname{Gal}(\bar{F} / F)$ on $H_{1}(Y)$.

We show: $\phi \circ y_{*}$ is the usual Galois representation of $\operatorname{Gal}(\bar{F} / F)$ on $H_{1}(Y)$.
(This gives an easy new proof of the fact that $G_{\ell} \subseteq G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}$.)

We show: $\phi \circ y_{*}$ is the usual Galois representation of $\operatorname{Gal}(\bar{F} / F)$ on $H_{1}(Y)$.
(This gives an easy new proof of the fact that $G_{\ell} \subseteq G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}$.)
In our main result we assume that the MTC for Y is true. By the result of Bogomolov mentioned earlier, it follows that the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}.

We show: $\phi \circ y_{*}$ is the usual Galois representation of $\operatorname{Gal}(\bar{F} / F)$ on $H_{1}(Y)$.
(This gives an easy new proof of the fact that $G_{\ell} \subseteq G_{\mathrm{B}} \otimes \mathbb{Q}_{\ell}$.)
In our main result we assume that the MTC for Y is true. By the result of Bogomolov mentioned earlier, it follows that the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}.

Theorem (Cadoret-Kret)

If, for some ℓ, the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ} then in fact the image of $\phi \circ y_{*}$ is open in the image of ϕ.

Together with our results about the image of ϕ, the main theorem follows:

- Assumption that MTC is true + Bogomolov \Rightarrow the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}

Together with our results about the image of ϕ, the main theorem follows:

- Assumption that MTC is true + Bogomolov \Rightarrow the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}
- Cadoret-Kret \Rightarrow
the image of $\phi \circ y_{*}$ is open in the image of ϕ

Together with our results about the image of ϕ, the main theorem follows:

- Assumption that MTC is true + Bogomolov \Rightarrow the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}
- Cadoret-Kret \Rightarrow
the image of $\phi \circ y_{*}$ is open in the image of ϕ
- The representation $\phi \circ y_{*}$ is (isomorphic to) the usual Galois representation ρ_{Y} on the adelic H_{1} of Y.

Together with our results about the image of ϕ, the main theorem follows:

- Assumption that MTC is true + Bogomolov \Rightarrow the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}
- Cadoret-Kret \Rightarrow
the image of $\phi \circ y_{*}$ is open in the image of ϕ
- The representation $\phi \circ y_{*}$ is (isomorphic to) the usual Galois representation ρ_{Y} on the adelic H_{1} of Y.
- Our result on Shimura varieties: The image of ϕ is "big".

Together with our results about the image of ϕ, the main theorem follows:

- Assumption that MTC is true + Bogomolov \Rightarrow the image of $\phi_{\ell} \circ y_{*}$ is open in the image of ϕ_{ℓ}
- Cadoret-Kret \Rightarrow
the image of $\phi \circ y_{*}$ is open in the image of ϕ
- The representation $\phi \circ y_{*}$ is (isomorphic to) the usual Galois representation ρ_{Y} on the adelic H_{1} of Y.
- Our result on Shimura varieties: The image of ϕ is "big".

Combining these we obtain that the image of ρ_{Y} is "big".

THANK YOU FOR
 YOUR ATTENTION

