Real multiplication on $K 3$ surfaces via period integration

Jörg Jahnel
University of Siegen
Shepperton, May 3, 2018
joint work with
Andreas-Stephan Elsenhans (Paderborn)

K3 surfaces

Definition (abstract definition - classification of algebraic surfaces)
A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Facts

For X a $K 3$ surface, $\pi_{1}(X,)=$.0 and $H_{2}(X, \mathbb{Z}) \cong H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}^{22}$.

K3 surfaces

Definition (abstract definition - classification of algebraic surfaces)

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Facts

For X a $K 3$ surface, $\pi_{1}(X,)=$.0 and $H_{2}(X, \mathbb{Z}) \cong H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}^{22}$.

Examples

(1) A smooth quartic in \mathbf{P}^{3}.
(2) A double cover of \mathbf{P}^{2}, ramified at a smooth sextic curve.

Sextics with ordinary double points may be taken, too. Then the resolution of singularities is a $K 3$ surface.

In this talk, we work with $K 3$ surfaces that are double covers of \mathbf{P}^{2}, ramified over six lines in \mathbf{P}^{2}.

Point counting - An experiment

Consider a "random" example and a very particular one

$$
\begin{aligned}
& X_{1}: w^{2}=x^{6}+2 y^{6}+3 z^{6}+5 x^{2} y^{4}+7 x y^{2} z^{3}+3 y^{5} z+x^{3} z^{3} \\
& X_{2}: \\
& x^{2}=\left(-y^{2}+8 y z-8 z^{2}\right)\left(7 x^{2}+40 x z+56 z^{2}\right)\left(2 x^{2}+3 x y+y^{2}\right)
\end{aligned}
$$

p	$\left(\# X_{1}\left(\mathbb{F}_{p}\right) \bmod p\right)$	$\left(\# X_{2}\left(\mathbb{F}_{p}\right) \bmod p\right)$
23	19	18
29	7	1
31	7	7
37	0	1
41	7	1
43	5	1
47	11	19
53	47	1
59	28	1
61	44	1
67	54	1
71	23	34
73	11	0
79	41	27
83	57	1
89	46	3
97	28	5

Point counting - An experiment II

Observations

(1) In the "random" example X_{1}, there is no regularity to be seen.
(2) In example X_{2}, however, we observe that

$$
\# X_{2}\left(\mathbb{F}_{p}\right) \equiv 1 \quad(\bmod p)
$$

for all primes $p \equiv 3,5(\bmod 8)$.

Remarks

- One also has $\# X_{2}\left(\mathbb{F}_{41}\right) \equiv 1(\bmod 41)$, which is purely accidental.
- The bound of 100 is just for the presentation, one may easily extend it, at least up to 1000 .
- The primes $p \equiv 3,5(\bmod 8)$ are exactly those that are inert in $\mathbb{Q}(\sqrt{2})$.

Recall from the theory of elliptic curves

Fact (An arithmetic consequence of CM)

Let X be an elliptic curve with complex multiplication (CM) by $E=\mathbb{Q}(\sqrt{d})$. Then $\# X\left(\mathbb{F}_{p}\right) \equiv 1(\bmod p)$ for every prime p that is inert in E.

Figure: Distribution of $\frac{\# X\left(\mathbb{F}_{p}\right)-p-1}{\sqrt{p}}$ for $p \rightarrow \infty$ for an ordinary elliptic curve (left) and a CM elliptic curve (right)
The spike has area $\frac{1}{2}$ (!!).

Our original motivation - Picard ranks

Fact

Let X be a $K 3$ surface over \mathbb{Q} and p a prime of good reduction. Then

$$
\operatorname{rk} \operatorname{Pic} X_{\overline{\mathbb{Q}}} \leq \operatorname{rk} \operatorname{Pic} X_{\overline{\mathbb{F}}_{p}} .
$$

Theorem (F. Charles, 2012)

Let X be a K3 surface over \mathbb{Q}.
(1) If X has real multiplication and $\left(22-\operatorname{rk} \operatorname{Pic} X_{\overline{\mathbb{Q}}}\right) /[E: \mathbb{Q}]$ is odd then, for every prime p of good reduction,

$$
\operatorname{rkPic} X_{\overline{\mathbb{Q}}}+[E: \mathbb{Q}] \leq \operatorname{rkPic} X_{\overline{\mathbb{F}}_{p}}
$$

(2) Otherwise, there exists a prime p of good reduction such that

$$
\operatorname{rkPic} X_{\overline{\mathbb{F}}_{p}}=\operatorname{rkPic} X_{\overline{\mathbb{Q}}} \quad \text { or } \quad \text { rkPic } X_{\overline{\mathbb{F}}_{p}}=\operatorname{rkPic} X_{\overline{\mathbb{Q}}}+1
$$

Hodge structures

Definition (P. Deligne, 1971)

(1) A (pure \mathbb{Q}-)Hodge structure of weight i is a finite dimensional \mathbb{Q}-vector space V, together with a decomposition

$$
V_{\mathbb{C}}:=V \otimes_{\mathbb{Q}} \mathbb{C}=H^{0, i} \oplus H^{1, i-1} \oplus \ldots \oplus H^{i-1,1} \oplus H^{i, 0}
$$

such that $\overline{H^{m, n}}=H^{n, m}$ for every $m, n \in \mathbb{Z}_{\geq 0}, m+n=i$.
(2) A polarisation on a pure \mathbb{Q}-Hodge structure V of even weight is a nondegenerate symmetric bilinear form $\langle.,\rangle:. V \times V \rightarrow \mathbb{Q}$ such that its \mathbb{C}-bilinear extension $\langle.,\rangle:. V_{\mathbb{C}} \times V_{\mathbb{C}} \rightarrow \mathbb{C}$ satisfies the two conditions below.

- One has $\langle x, y\rangle=0$ for all $x \in H^{m, n}$ and $y \in H^{m^{\prime}, n^{\prime}}$ such that $m \neq n^{\prime}$.
- The inequality $i^{m-n}\langle x, \bar{x}\rangle>0$ is true for every $0 \neq x \in H^{m, n}$.

Hodge structures

Definition (P. Deligne, 1971)

(1) A (pure \mathbb{Q}-)Hodge structure of weight i is a finite dimensional \mathbb{Q}-vector space V, together with a decomposition

$$
V_{\mathbb{C}}:=V \otimes_{\mathbb{Q}} \mathbb{C}=H^{0, i} \oplus H^{1, i-1} \oplus \ldots \oplus H^{i-1,1} \oplus H^{i, 0}
$$

such that $\overline{H^{m, n}}=H^{n, m}$ for every $m, n \in \mathbb{Z}_{\geq 0}, m+n=i$.
(2) A polarisation on a pure \mathbb{Q}-Hodge structure V of even weight is a nondegenerate symmetric bilinear form $\langle.,\rangle:. V \times V \rightarrow \mathbb{Q}$ such that its \mathbb{C}-bilinear extension $\langle.,\rangle:. V_{\mathbb{C}} \times V_{\mathbb{C}} \rightarrow \mathbb{C}$ satisfies the two conditions below.

- One has $\langle x, y\rangle=0$ for all $x \in H^{m, n}$ and $y \in H^{m^{\prime}, n^{\prime}}$ such that $m \neq n^{\prime}$.
- The inequality $i^{m-n}\langle x, \bar{x}\rangle>0$ is true for every $0 \neq x \in H^{m, n}$.

Facts

(1) Hodge structures of weight i form an abelian category.
(2) Every polarisable Hodge structure is a direct sum of primitive ones.

Hodge structures II

Definition (Yu. Zarhin, 1983)

A Hodge structure of $K 3$ type is a primitive polarisable Hodge structure of weight 2 such that $\operatorname{dim}_{\mathbb{C}} H^{2,0}=1$.

Examples

Let X be a compact complex manifold that is Kähler.
(1) Then $H^{j}(X, \mathbb{Q})$ is naturally a polarisable pure \mathbb{Q}-Hodge structure of weight j. [The polarisation is induced by the cup product.]
(2) For X a $K 3$ surface, the transcendental part

$$
T:=\left(\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{Q}\right)^{\perp} \subset H^{2}(X, \mathbb{Q})
$$

is a Hodge structure of K3 type.

Real and complex multiplication

Theorem (Yu. Zarhin, 1983)

Let T be a Hodge structure of K3 type.
(1) Then $E:=\operatorname{End}(T)$ is either a totally real field or a CM field.
(2) Thereby, every $\varphi \in E$ operates as a self-adjoint mapping. I.e.,

$$
\langle\varphi(x), y\rangle=\langle x, \bar{\varphi}(y)\rangle,
$$

for the identity map in the case that E is totally real and the complex conjugation in the case that it is a CM field.

Real and complex multiplication

Theorem (Yu. Zarhin, 1983)

Let T be a Hodge structure of $K 3$ type.
(1) Then $E:=\operatorname{End}(T)$ is either a totally real field or a CM field.
(2) Thereby, every $\varphi \in E$ operates as a self-adjoint mapping. I.e.,

$$
\langle\varphi(x), y\rangle=\langle x, \bar{\varphi}(y)\rangle
$$

for the identity map in the case that E is totally real and the complex conjugation in the case that it is a CM field.

Definition

If $E \supsetneqq \mathbb{Q}$ then one speaks of real multiplication when E is totally real and of complex multiplication when E is CM.
[The same terminology, applied to a $K 3$ surface, means that the associated Hodge structure T has real or complex multiplication.]

RM on K3 surfaces

The difference (Recall)

- For X an elliptic curve, one considers $\operatorname{End}(H)$, for $H:=H^{1}(X(\mathbb{C}), \mathbb{Q})$.
- For X a $K 3$ surface, consider $\operatorname{End}(T)$, for $T:=P^{\perp}$ the transcendental part of $H^{2}(X(\mathbb{C}), \mathbb{Q})$.

Questions

- Can one construct $K 3$ surfaces having real multiplication?
- How many K3 surfaces have real multiplication? I.e., what is the dimension of the corresponding locus in moduli space?
- Are there $K 3$ surfaces defined over \mathbb{Q} that have real multiplication?

K3 surfaces having CM due to an automorphism

Examples

$$
X: w^{2}=f_{6}(x, y, z)
$$

- with $f_{6}(x, y,-z)=-f_{6}(x, y, z)$ or $f_{6}(y, x, z)=-f_{6}(x, y, z)$. Automorphism

$$
\begin{aligned}
& I:(w, x: y: z) \mapsto\left(\zeta_{4} w, x: y:-z\right) \text { or } \\
& I:(w, x: y: z) \mapsto\left(\zeta_{4} w, y: x: z\right) .
\end{aligned}
$$

$C M$ with $\mathbb{Q}(\sqrt{-1})$.

- with $f_{6}(x, y, z)=\zeta_{3} f_{6}(y, z, x)$. Automorphism

$$
I:(w, x: y: z) \mapsto\left(\zeta_{6} w, y: z: x\right)
$$

$C M$ with $\mathbb{Q}(\sqrt{-3})$.
[There are similar examples of degrees 4 and 6.]
The Lefschetz trace formula shows that $I \circ I$ [resp. $I \circ / \circ I$] acts on the transcendental part $T \subset H^{2}(X(\mathbb{C}), \mathbb{Q})$ non-trivially, with the only eigenvalue (-1). It does so on the [dim 21] orthogonal complement of the inverse image of a general line on \mathbf{P}^{2}.

The period space

Definition

By a marked $K 3$ surface, we mean a complex $K 3$ surface together with an isomorphism $i: \mathbb{Z}^{22} \longrightarrow H^{2}(X, \mathbb{Z})$.

Notation

- The marking $i: \mathbb{Z}^{22} \rightarrow H^{2}(X, \mathbb{Z})$ determines $c^{k}:=i\left(e_{k}\right) \in H^{2}(X, \mathbb{Z})$, for $k=1, \ldots, 22$, which form a basis of $H^{2}(X, \mathbb{Z})$.
- The dual basis $\left(c_{1}, \ldots, c_{22}\right)$ of $H^{2}(X, \mathbb{Z})$, is given by $\left(c_{k}, c^{j}\right)=\delta_{k j}$, for $(.,):. H^{2}(X, \mathbb{Z}) \times H^{2}(X, \mathbb{Z}) \rightarrow \mathbb{Z}$ the cup product pairing.
- Moreover, as the pull-back of the cup product pairing via i, the marking distinguishes a perfect, symmetric pairing on \mathbb{Z}^{22}.

The period space

Definition

By a marked $K 3$ surface, we mean a complex $K 3$ surface together with an isomorphism $i: \mathbb{Z}^{22} \longrightarrow H^{2}(X, \mathbb{Z})$.

Notation

- The marking $i: \mathbb{Z}^{22} \rightarrow H^{2}(X, \mathbb{Z})$ determines $c^{k}:=i\left(e_{k}\right) \in H^{2}(X, \mathbb{Z})$, for $k=1, \ldots, 22$, which form a basis of $H^{2}(X, \mathbb{Z})$.
- The dual basis $\left(c_{1}, \ldots, c_{22}\right)$ of $H^{2}(X, \mathbb{Z})$, is given by $\left(c_{k}, c^{j}\right)=\delta_{k j}$, for $(.,):. H^{2}(X, \mathbb{Z}) \times H^{2}(X, \mathbb{Z}) \rightarrow \mathbb{Z}$ the cup product pairing.
- Moreover, as the pull-back of the cup product pairing via i, the marking distinguishes a perfect, symmetric pairing on \mathbb{Z}^{22}.
Given any $c \in H^{2}(X, \mathbb{C})$, there is the canonical decomposition

$$
c=\left(c_{1}, c\right) c^{1}+\cdots+\left(c_{22}, c\right) c^{22}
$$

of c with respect to i.

The period space II

Definition

A marked $K 3$ surface (X, i) gives rise to a point

$$
\tau(X, i):=\left(\left(c_{1},[\omega]\right): \cdots:\left(c_{22},[\omega]\right)\right) \in \mathbf{P}^{21}(\mathbb{C})
$$

called the period point of (X, i).
Here, $[\omega] \in H^{2}(X, \mathbb{C})$ is the nowhere vanishing holomorphic (2,0)-form, uniquely determined up to scaling.

The period space II

Definition

A marked $K 3$ surface (X, i) gives rise to a point

$$
\tau(X, i):=\left(\left(c_{1},[\omega]\right): \cdots:\left(c_{22},[\omega]\right)\right) \in \mathbf{P}^{21}(\mathbb{C})
$$

called the period point of (X, i).
Here, $[\omega] \in H^{2}(X, \mathbb{C})$ is the nowhere vanishing holomorphic (2,0)-form, uniquely determined up to scaling.

Theorem (I.R. Shafarevich, ≈ 1965)

Let κ be a perfect pairing on \mathbb{Z}^{22}.
(1) Let $\left(X_{1}, i_{1}\right)$ and $\left(X_{2}, i_{2}\right)$ be marked $K 3$ surfaces inducing the pairing κ on \mathbb{Z}^{22} and having the same period point. Then $\left(X_{1}, i_{1}\right)$ and $\left(X_{2}, i_{2}\right)$ are isomorphic.
(2) The set of the period points of all marked $K 3$ surfaces inducing the pairing κ is $\Omega_{\kappa}:=\left\{\left(x_{1}: \cdots: x_{22}\right) \in \mathbf{P}^{21}(\mathbb{C}) \mid \kappa(x, x)=0, \kappa(x, \bar{x})>0\right\}$. This is an open subset of a quadric in $\mathbf{P}^{21}(\mathbb{C})$.

The period space III

Fact (The relative situation)

Let $q:(\mathfrak{X}, \mathfrak{i}) \rightarrow Y$ be a family of marked K3 surfaces. Then the period mapping $\tau: Y \rightarrow \mathbf{P}^{21}(\mathbb{C}), t \mapsto \tau\left(\mathfrak{X}_{t}, i_{t}\right)$, is holomorphic.

The period space III

Fact (The relative situation)

Let $q:(\mathfrak{X}, \mathfrak{i}) \rightarrow Y$ be a family of marked K3 surfaces. Then the period mapping $\tau: Y \rightarrow \mathbf{P}^{21}(\mathbb{C}), t \mapsto \tau\left(\mathfrak{X}_{t}, i_{t}\right)$, is holomorphic.

Fact (Restricted period space)

Let $r \in\{1, \ldots, 20\}$ be an integer and κ a perfect pairing on \mathbb{Z}^{22}. Then the set of the period points of all marked K3 surfaces (X, i) such that

- the classes $c_{22-r+1}, \ldots, c_{22} \in H^{2}(X, \mathbb{Z})$ from the dual basis are algebraic, i.e. in $\operatorname{Pic} X \subset H^{2}(X, \mathbb{Z})$, and
- via i, the pairing κ gets induced,
is

$$
\begin{array}{r}
\Omega_{\kappa, r}:=\left\{\left(x_{1}: \cdots: x_{22-r}: 0: \cdots: 0\right) \in \mathbf{P}^{21-r}(\mathbb{C}) \mid\right. \\
\kappa(x, x)=0, \kappa(x, \bar{x})>0\} .
\end{array}
$$

This is an open subset of a quadric $Q_{\kappa, r} \subset \mathbf{P}^{21-r}(\mathbb{C})$.

Periods and RM

Theorem

Let $r \in\{1, \ldots, 20\}, \kappa$ be a perfect pairing on \mathbb{Z}^{22}, and K be a totally real number field of degree d.
Then there is an at most countable union $M \subseteq Q_{\kappa, r}$ of quadrics of dimensions $\frac{22-r}{d}-2$ such that the following is true.

- Let $x \in \Omega_{\kappa, r} \subset Q_{\kappa, r}$ be the period point of a marked K3 surface (X, i), for which $c_{22-r+1}, \ldots, c_{22} \in \operatorname{Pic} X$ and the Picard rank is exactly r. Then X has real multiplication by K if and only if $x \in M$.

Idea of Proof. $T=\left(\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{Q}\right)^{\perp}=\operatorname{span}\left(c^{1}, \ldots, c^{22-r}\right)$. RM by K means that K operates \mathbb{Q}-linearly on T, keeping $x=x_{1} c^{1}+\cdots+x_{22-r} c^{22-r}$ as a simultaneous eigenvector.
There are countably many such operations. Each time, the eigenspaces are of [projective] dimension $\frac{22-r}{d}-1$. It can be shown that they are not contained in $Q_{\kappa, r}$.

A particular family

Consider double covers of $\mathbf{P}_{\mathbb{C}}^{2}$, ramified over a union of six lines,

$$
X^{\prime}: w^{2}=I_{1} \cdots I_{6}
$$

for I_{1}, \ldots, l_{6} linear forms in three variables.
Assume that no point is contained in three lines. Then there are 15 singular points of type A_{1}. The minimal desingularisation X is a $K 3$ surface.

Proposition (The global holomorphic (2, 0)-form)

Let X be a K3 surface, obtained as the minimal desingularisation of $X^{\prime}: w^{2}=l_{1} \cdots l_{6}$, for I_{1}, \ldots, l_{6} linear forms in the variables x, y, and z. Assume that no three of the six linear forms have a zero in common.
Then, for any linear form $I \neq x, y$ that defines an irreducible curve on X^{\prime},

$$
\omega^{\prime}:=\frac{d\left(\frac{x}{l}\right) \wedge d\left(\frac{y}{l}\right)}{\frac{w}{13}}
$$

is a differential form on X^{\prime}, the pull-back ω of which to X is a global holomorphic $(2,0)$-form without zeroes or poles.

Spheroids representing transcendental classes

The surfaces considered generically have Picard rank 16.
There are 16 obvious algebraic classes L, E_{1}, \ldots, E_{15}, generating a rank-16 submodule $P \subset H^{2}(X, \mathbb{Z})$. We explicitly need six further generators.

Spheroids representing transcendental classes

The surfaces considered generically have Picard rank 16.
There are 16 obvious algebraic classes L, E_{1}, \ldots, E_{15}, generating a rank-16 submodule $P \subset H^{2}(X, \mathbb{Z})$. We explicitly need six further generators.

Figure: A deformed line and a curve encircling a triangle Assume that the branch locus is the union of six real lines [no three of which have a point in common].
We start with 1-manifolds in $\mathbf{P}^{2}(\mathbb{R})$ as in the pictures above. I.e. such meeting the branch locus $V\left(I_{1} \cdots I_{6}\right)$ only in its double points. We also allow 1-manifolds that encircle a quadrangle or pentagon instead of a triangle.

Spheroids representing transcendental classes II

Parametrised by a differentiable map $\gamma: \mathbb{R} / \sim \rightarrow \mathbf{P}^{2}(\mathbb{R})$, for \sim the equivalence relation, given by $t \sim t^{\prime} \Leftrightarrow t-t^{\prime} \in \mathbb{Z}$.
On a suitable affine chart of $\mathbf{P}^{2}(\mathbb{R})$, one has a map $\underline{\gamma}: \mathbb{R} / \sim \rightarrow \mathbb{R}^{2}$.
Extend $\underline{\gamma}$ to a differentiable map in two variables by putting

$$
\begin{equation*}
\gamma^{\prime}: \mathbb{R} / \sim \times \mathbb{R} \longrightarrow \mathbb{C}^{2} \subset \mathbf{P}^{2}(\mathbb{C}), \quad(t, u) \mapsto \gamma_{0}(t)+\mathrm{i} u b \tag{1}
\end{equation*}
$$

for a suitable vector $b \in \mathbb{R}^{2}$.

Spheroids representing transcendental classes II

Parametrised by a differentiable map $\gamma: \mathbb{R} / \sim \rightarrow \mathbf{P}^{2}(\mathbb{R})$, for \sim the equivalence relation, given by $t \sim t^{\prime} \Leftrightarrow t-t^{\prime} \in \mathbb{Z}$.
On a suitable affine chart of $\mathbf{P}^{2}(\mathbb{R})$, one has a map $\underline{\gamma}: \mathbb{R} / \sim \rightarrow \mathbb{R}^{2}$.
Extend $\underline{\gamma}$ to a differentiable map in two variables by putting

$$
\begin{equation*}
\gamma^{\prime}: \mathbb{R} / \sim \times \mathbb{R} \longrightarrow \mathbb{C}^{2} \subset \mathbf{P}^{2}(\mathbb{C}), \quad(t, u) \mapsto \gamma_{0}(t)+\mathrm{i} u b \tag{1}
\end{equation*}
$$

for a suitable vector $b \in \mathbb{R}^{2}$.
Then $\lim _{u \rightarrow \pm \infty} \gamma^{\prime}(t, u)$ exists in $\mathbf{P}^{2}(\mathbb{C})$ and is independent of t. Therefore, γ^{\prime} actually provides a continuous map α^{\prime} from

$$
\begin{equation*}
\mathbb{R} / \sim \times[-\infty, \infty] /(\mathbb{R} / \sim \times\{\infty\}, \mathbb{R} / \sim \times\{-\infty\}) \cong S(\mathbb{R} / \sim)=S\left(S^{1}\right)=S^{2} \tag{2}
\end{equation*}
$$

to $\mathbf{P}^{2}(\mathbb{C})$. [α^{\prime} is differentiable outside the two poles $n, s \in S^{2}$.]

Spheroids representing transcendental classes III

Proposition (Lifting to the double cover)

Let $V\left(I_{1}\right), \ldots, V\left(I_{6}\right)$ be six real lines in \mathbf{P}^{2} such that no three of them have a point in common. Take an affine chart that meets each of the six lines.
(1) Then there is a union $E \subset \mathbb{R}^{2}$ of finitely many 1-dimensional subvector spaces such that, for $b \in \mathbb{R}^{2} \backslash E$, each of the spheroids α^{\prime}, as constructed above, meets $V\left(I_{1} \cdots /_{6}\right)$ only in the three to five real points.
(2) Assume that $b \in \mathbb{R}^{2} \backslash E$. Then the continuous map $\alpha^{\prime}: S^{2} \rightarrow \mathbf{P}^{2}(\mathbb{C})$, as constructed in (1) and (2), lifts to a continuous map $\widetilde{\alpha}: S^{2} \rightarrow X^{\prime}$, for $X^{\prime}: w^{2}=I_{1} \cdots I_{6}$ the double cover.

Idea of Proof. 1. Direct calculation.
2. Let $x_{1}, \ldots, x_{m} \in S^{2}, m=3,4,5$, be the points mapped to the ramification locus. Then essentially $\alpha_{0}:=\left.\alpha^{\prime}\right|_{S^{2} \backslash\left\{x_{1}, \ldots, x_{m}\right\}}$ needs to be lifted.
For this, one only has to verify

$$
\left(\alpha_{0}\right)_{\#} \pi_{1}\left(S^{2} \backslash\left\{x_{1}, \ldots, x_{n}\right\}, .\right) \subseteq \pi_{\#} \pi_{1}\left(X_{0}, .\right)
$$

for $X_{0}:=\pi^{-1}\left(\mathbf{P}^{2}(\mathbb{C}) \backslash V\left(I_{1} \cdots I_{6}\right)\right)$, which is completely local.
J. Jahnel (University of Siegen)

Spheroids representing transcendental classes IV

- The spheroid $\widetilde{\alpha}: S^{2} \rightarrow X^{\prime}$ represents a class in $\pi_{2}\left(X^{\prime},.\right)$.
- X^{\prime} and the $K 3$ surface X are simply connected. By Hurewicz's Theorem,

$$
\pi_{2}\left(X^{\prime}, .\right) \cong H_{2}\left(X^{\prime}, \mathbb{Z}\right) \quad \text { and } \quad \pi_{2}(X, .) \cong H_{2}(X, \mathbb{Z})
$$

- As $H_{2}\left(X^{\prime}, \mathbb{Z}\right)=H_{2}(X, \mathbb{Z}) /\left[E_{1}, \ldots, E_{15}\right], \widetilde{\alpha}$ can [non-uniquely] be lifted to X.

Spheroids representing transcendental classes IV

- The spheroid $\widetilde{\alpha}: S^{2} \rightarrow X^{\prime}$ represents a class in $\pi_{2}\left(X^{\prime},.\right)$.
- X^{\prime} and the $K 3$ surface X are simply connected. By Hurewicz's Theorem,

$$
\pi_{2}\left(X^{\prime}, .\right) \cong H_{2}\left(X^{\prime}, \mathbb{Z}\right) \quad \text { and } \quad \pi_{2}(X, .) \cong H_{2}(X, \mathbb{Z})
$$

- As $H_{2}\left(X^{\prime}, \mathbb{Z}\right)=H_{2}(X, \mathbb{Z}) /\left[E_{1}, \ldots, E_{15}\right], \widetilde{\alpha}$ can [non-uniquely] be lifted to X.

Notation (Explicit cohomology classes)

A spheroid α defines a cohomology class

$$
c_{\alpha}:=\alpha_{!}(1) \in H^{2}(X, \mathbb{Z})
$$

for $1 \in H^{0}(S, \mathbb{Z})$ the canonical generator.
The construction described provides by far more than six representatives of classes in $H^{2}(X, \mathbb{Z}) / P$.

The cup product

Fact

Let $c_{\alpha} \in H^{2}(X, \mathbb{Z})$ be given by a spheroid and $w \in H^{2}(X, \mathbb{C})$ be represented by the smooth 2 -form ω. Then, for the cup product pairing, one has

$$
\left(c_{\alpha}, w\right)=\int_{S^{2}} \alpha^{*} \omega
$$

Idea of Proof. $\left(c_{\alpha}, w\right)=\left\langle w \cup c_{\alpha},[X]\right\rangle=\left\langle w \cup \alpha_{!}(1),[X]\right\rangle=\left\langle\alpha^{*} w,\left[S^{2}\right]\right\rangle$. Here, the final equality is

$$
\left(w \cup \alpha_{!}(1)\right) \cap[X]=w \cap\left(\alpha_{!}(1) \cap[X]\right)=w \cap \alpha_{*}\left(\left[S^{2}\right]\right)=\alpha_{*}\left(\alpha^{*} w \cap\left[S^{2}\right]\right)
$$

The cup product

Fact

Let $c_{\alpha} \in H^{2}(X, \mathbb{Z})$ be given by a spheroid and $w \in H^{2}(X, \mathbb{C})$ be represented by the smooth 2 -form ω. Then, for the cup product pairing, one has

$$
\left(c_{\alpha}, w\right)=\int_{S^{2}} \alpha^{*} \omega
$$

Idea of Proof. $\left(c_{\alpha}, w\right)=\left\langle w \cup c_{\alpha},[X]\right\rangle=\left\langle w \cup \alpha_{!}(1),[X]\right\rangle=\left\langle\alpha^{*} w,\left[S^{2}\right]\right\rangle$. Here, the final equality is

$$
\left(w \cup \alpha_{!}(1)\right) \cap[X]=w \cap\left(\alpha_{!}(1) \cap[X]\right)=w \cap \alpha_{*}\left(\left[S^{2}\right]\right)=\alpha_{*}\left(\alpha^{*} w \cap\left[S^{2}\right]\right)
$$

Remark

In order to numerically calculate these 2-dimensional integrals, we use Fubini's Theorem in a naive manner. The resulting 1-dimensional integrals are evaluated using the Gauß-Legendre method of a degree between 30 and 300 .

The cup product II

Algorithm (Determining the cup product on P^{\perp}, up to scaling)

Let X be a $K 3$ surface that is given as the minimal desingularisation of a double cover of the form $w^{2}=x y z(x+y+z)\left(x+a_{0} y+b_{0} z\right)\left(x+c_{0} y+d_{0} z\right)$ and $\alpha_{1}, \ldots, \alpha_{n}: S^{2} \rightarrow X$ be spheroids.
(1) Choose open neighbourhoods $\mathbb{D} \cong U\left(a_{0}\right) \ni a_{0}, \ldots, \mathbb{D} \cong U\left(d_{0}\right) \ni d_{0}$ in such a way that, for every $(a, b, c, d) \in \mathbb{D}^{4}$, no three of the resulting six lines in $\mathbf{P}_{\mathbb{C}}^{2}$ have a point in common. Then the $c_{\alpha_{1}}, \ldots, c_{\alpha_{n}}$ uniquely extend to the whole family of surfaces $X_{(a, b, c, d)}$ analogous to X. Moreover, choose N surfaces X_{1}, \ldots, X_{N} at random from the family and write down the corresponding holomorphic 2-forms $\omega_{1}, \ldots, \omega_{N}$. [We work with $N=50$.]
(2) Set up the matrix $M:=\left(\left\langle c_{\alpha_{j}}, \omega_{i}\right\rangle\right)_{1 \leq i \leq N, 1 \leq j \leq n}$ using numerical integration and calculate the singular value decomposition of M. Six singular values should be numerically nonzero. The others give rise to linear relations among the cohomology classes $c_{\alpha_{1}}, \ldots, c_{\alpha_{n}}$.

The cup product III

(3) Choose a basis c_{1}, \ldots, c_{6} of the free \mathbb{Z}-module spanned by $c_{\alpha_{1}}, \ldots, c_{\alpha_{n}}$ modulo the relations found.
(9) Build from M the matrix $F:=\left(\left\langle c_{j_{1}}, \omega_{i}\right\rangle\left\langle c_{j_{2}}, \omega_{i}\right\rangle\right)_{1 \leq i \leq N, 1 \leq j_{1} \leq j_{2} \leq 6}$ and determine an approximate solution of the corresponding homogeneous linear system of equations, using the QR-factorisation of F. The solution vector describes the symmetric, bilinear form desired.

The cup product III

(3) Choose a basis c_{1}, \ldots, c_{6} of the free \mathbb{Z}-module spanned by $c_{\alpha_{1}}, \ldots, c_{\alpha_{n}}$ modulo the relations found.
(9) Build from M the matrix $F:=\left(\left\langle c_{j_{1}}, \omega_{i}\right\rangle\left\langle c_{j_{2}}, \omega_{i}\right\rangle\right)_{1 \leq i \leq N, 1 \leq j_{1} \leq j_{2} \leq 6}$ and determine an approximate solution of the corresponding homogeneous linear system of equations, using the QR-factorisation of F. The solution vector describes the symmetric, bilinear form desired.

Remarks

- As it relies on the restricted period space, our method detects only the restriction of the cup product pairing to $P^{\perp} \subset H^{2}(X, \mathbb{Q})$. Every class in $H^{2}(X, \mathbb{Z}) / P$ has a unique representative in P^{\perp}, the orthogonal projection pr: $H^{2}(X, \mathbb{Z}) / P \rightarrow P^{\perp}$ being injective.
- Let $\alpha: S^{2} \rightarrow X$ be constructed from a deformed line, as above. Then $\left(\operatorname{pr}\left(c_{\alpha}\right), \operatorname{pr}\left(c_{\alpha}\right)\right)=-\frac{1}{2}$. [We use this observation for scaling.]

The cup product IV

Theorem (Proof depending on numerical integration)

Let X be the minimal desingularisation of a double cover of $\mathbf{P}_{\mathbb{C}}^{2}$ ramified over a union of six real lines, such that no three of them have a point in common. Then the classes of the spheroids, as described above, always generate the whole of $H^{2}(X, \mathbb{Z}) / P$.

Tracing the preimage of a curve in the period space

In a family of $K 3$ surfaces of Picard rank 16, there are 1-dimensional subfamilies having real multiplication by $\mathbb{Q}(\sqrt{d})$

Strategy

Let X be an isolated example of a $K 3$ surface of type

$$
X_{\left(a_{0}, b_{0}, c_{0}, d_{0}\right)}: w^{2}=x y z(x+y+z)\left(x+a_{0} y+b_{0} z\right)\left(x+c_{0} y+d_{0} z\right)
$$

that has real multiplication by a quadratic field $\mathbb{Q}(\sqrt{d})$. The strategy below describes how to find the 1-dimensional family of RM surfaces, X belongs to.
(1) Run the Algorithm above to fix a marking i on X and to calculate the cup product pairing in terms of i.
Then $\mathbb{D} \cong U\left(a_{0}\right) \ni a_{0}, \ldots, \mathbb{D} \cong U\left(d_{0}\right) \ni d_{0}$ are chosen in such a way that, for every $(a, b, c, d) \in \mathbb{D}^{4}$, no three of the resulting six lines in $\mathbf{P}_{\mathbb{C}}^{2}$ have a point in common. Thus, the marking extends to the whole family and there is the associated period map

$$
\tau: \mathbb{D}^{4} \longrightarrow Q, \quad(a, b, c, d) \mapsto \tau\left(X_{(a, b, c, d)}, i_{(a, b, c, d)}\right) .
$$

Tracing the preimage of a curve in the period space II

(2) Calculate the period point of $X=X_{\left(a_{0}, b_{0}, c_{0}, d_{0}\right)}$ and identify the three linear relations between the six periods that encode real multiplication. These define, together with the cup product pairing, a conic C in the restricted period space.
(3) Trace the curve $Q^{-1}(C) \subset \mathbb{D}^{4}$ using a numerical continuation method.
(9) Use the singular-value decomposition in order to find algebraic relations between the coordinates of the points found. Control, using Gröbner bases, that they indeed define an algebraic curve.

A result

Theorem (E. +J., 2017)

Consider the family of double covers $X_{(a, b, c, d)}^{\prime}$ of \mathbf{P}^{2}, given by

$$
w^{2}=(x+a y+b z)(x+c y+d z) f_{4}(x, y, z)
$$

for $f_{4}:=x^{4}-2 x^{3} y-5 x^{2} y^{2}-26 x^{2} z^{2}+6 x y^{3}+104 x y z^{2}+9 y^{4}-130 y^{2} z^{2}+52 z^{4}$.
(1) Then the branch locus is the union of six lines, which are in general position for a generic choice of $(a, b, c, d) \in \mathbb{C}^{4}$. In this case, the minimal desingularisation $X_{(a, b, c, d)}$ of $X_{(a, b, c, d)}^{\prime}$ is a K3 surface of Picard rank 16.
(2) Consider the closed subscheme $C \subset \mathbf{A}^{4}$, given by the equations

$$
\begin{aligned}
& 0=630272 a-11421 b d^{5}+411400 b d^{3}-871552 b d-272976 c^{2} d^{2}+315136 c^{2} \\
&+98982 c d^{4}-3508064 c d^{2}+2205952 c+233496 d^{4}-6409856 d^{2}+4411904, \\
& 0=78784 b c-243 b d^{4}+37040 b d^{2}+110528 b-5808 c^{2} d+2106 c d^{3}-319792 c d+4968 d^{3}-714688 d, \\
& 0=243 b d^{6}-8960 b d^{4}+29952 b d^{2}-26624 b+5808 c^{2} d^{3}-11648 c^{2} d-2106 c d^{5}
\end{aligned} \quad \begin{gathered}
\quad+76432 c d^{3}-144768 c d-4968 d^{5}+140608 d^{3}-259584 d, \\
0=2 c^{3}+28 c^{2}-3 c d^{2}+98 c-8 d^{2}+104 .
\end{gathered}
$$

Then C is a geometrically irreducible, nonsingular curve of genus 1.

A result II

(3) There is strong evidence that, for generic $(a, b, c, d) \in C(\mathbb{C})$, the $K 3$ surface $X_{(a, b, c, d)}$ is of Picard rank 16 and has real multiplication by $\mathbb{Q}(\sqrt{13})$.

Proof. 1) For $(a, b, c, d):=(0,-4,-9,-8)$, an isolated example appears, which we had found before by a different approach.
2) This is easily obtained by a calculation in any computer algebra system. We used magma for this purpose.
3) The curve C is the result of the Strategy above, taking the isolated example above as the starting point. Evidence for assertion c) includes that one has $\# X_{\xi}\left(\mathbb{F}_{p}\right) \equiv 1(\bmod p)$ for every prime number $p<500$ such that $p \equiv 2,5,6,7,8,11(\bmod 13)$ and every point $\xi \in C\left(\mathbb{F}_{p}\right)$.

A result II

(3) There is strong evidence that, for generic $(a, b, c, d) \in C(\mathbb{C})$, the $K 3$ surface $X_{(a, b, c, d)}$ is of Picard rank 16 and has real multiplication by $\mathbb{Q}(\sqrt{13})$.

Proof. 1) For $(a, b, c, d):=(0,-4,-9,-8)$, an isolated example appears, which we had found before by a different approach.
2) This is easily obtained by a calculation in any computer algebra system. We used magma for this purpose.
3) The curve C is the result of the Strategy above, taking the isolated example above as the starting point. Evidence for assertion c) includes that one has $\# X_{\xi}\left(\mathbb{F}_{p}\right) \equiv 1(\bmod p)$ for every prime number $p<500$ such that $p \equiv 2,5,6,7,8,11(\bmod 13)$ and every point $\xi \in C\left(\mathbb{F}_{p}\right)$.

Remark

The genus 1 curve C has \mathbb{Q}-rational points. Taking any of them as the origin, the Mordell-Weil group of C is isomorphic to \mathbb{Z}.

A result III

Remarks (Some details)

- [Transcendental classes.] We worked with 14 classes, which were represented by spheroids, as explained above.
In step 2 of the Algorithm, we found six singular values within a factor of 100 , while the next one was smaller by nine orders of magnitude. In the basis chosen, the cup product form found on P^{\perp} has only coefficients from $\left\{ \pm 1, \pm \frac{1}{2}, 0\right\}$, up to errors that are smaller than 10^{-10}.
- [Tracing the curve.] In an expert's language, we applied a predictorcorrector method. More precisely, we used the Euler predictor, followed by Newton corrector steps.
For numerical integration, the Gauß-Legendre method of degree 100 [i.e. order 200] was used. Based on this, we determined 101 points on $Q^{-1}(C) \subset \mathbb{D}^{4}$, each with a numerical precision of 80 digits.

A result IV

- Polynomials of degree ≤ 3 in four variables form a vector space of dimension 35. When looking for cubic relations between the 101 points found, we ended up with 25 singular values in the range from 1714 to $6.08 \cdot 10^{-41}$, the other ten being less than 10^{-80}.
Thus, the curve sought is contained in an intersection of ten cubics in \mathbf{A}^{4}. The equations given form a Gröbner basis for the ideal generated by them.

A result IV

- Polynomials of degree ≤ 3 in four variables form a vector space of dimension 35. When looking for cubic relations between the 101 points found, we ended up with 25 singular values in the range from 1714 to $6.08 \cdot 10^{-41}$, the other ten being less than 10^{-80}.
Thus, the curve sought is contained in an intersection of ten cubics in \mathbf{A}^{4}. The equations given form a Gröbner basis for the ideal generated by them.

Thank you!!!

