Real multiplication on K3 surfaces via period integration

Jörg Jahnel

University of Siegen

Shepperton, May 3, 2018

joint work with Andreas-Stephan Elsenhans (Paderborn)

K3 surfaces

Definition (abstract definition - classification of algebraic surfaces)

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Facts

For X a K3 surface, $\pi_1(X,.) = 0$ and $H_2(X,\mathbb{Z}) \cong H^2(X,\mathbb{Z}) \cong \mathbb{Z}^{22}$.

K3 surfaces

Definition (abstract definition - classification of algebraic surfaces)

A K3 surface is a simply connected, projective algebraic surface having a global (algebraic, holomorphic) 2-form without zeroes or poles.

Facts

For X a K3 surface,
$$\pi_1(X,.) = 0$$
 and $H_2(X,\mathbb{Z}) \cong H^2(X,\mathbb{Z}) \cong \mathbb{Z}^{22}$

Examples

• A smooth quartic in \mathbf{P}^3 .

A double cover of P², ramified at a smooth sextic curve. Sextics with ordinary double points may be taken, too. Then the resolution of singularities is a K3 surface.

In this talk, we work with K3 surfaces that are double covers of \mathbf{P}^2 , ramified over six lines in \mathbf{P}^2 .

Point counting – An experiment

Consider a "random" example and a very particular one X_1 : $w^2 = x^6 + 2y^6 + 3z^6 + 5x^2y^4 + 7xy^2z^3 + 3y^5z + x^3z^3$ X_2 : $w^2 = (-y^2 + 8yz - 8z^2)(7x^2 + 40xz + 56z^2)(2x^2 + 3xy + y^2)$.

р	$(\#X_1(\mathbb{F}_p) \mod p)$	$(\#X_2(\mathbb{F}_p) \mod p)$
23	19	18
29	7	1
31	7	7
37	0	1
41	7	1
43	5	1
47	11	19
53	47	1
59	28	1
61	44	1
67	54	1
71	23	34
73	11	0
79	41	27
83	57	1
89	46	3
97	28	52 🗆 🕨 🐗

J. Jahnel (University of Siegen)

Real multiplication via period integration

Shepperton, May 3, 2018 3 / 30

Observations

- **1** In the "random" example X_1 , there is no regularity to be seen.
- 2 In example X_2 , however, we observe that

$$\#X_2(\mathbb{F}_p)\equiv 1 \pmod{p}$$

for all primes
$$p \equiv 3, 5 \pmod{8}$$
.

Remarks

- One also has $\#X_2(\mathbb{F}_{41}) \equiv 1 \pmod{41}$, which is purely accidental.
- The bound of 100 is just for the presentation, one may easily extend it, at least up to 1000.
- The primes $p \equiv 3,5 \pmod{8}$ are exactly those that are inert in $\mathbb{Q}(\sqrt{2})$.

Recall from the theory of elliptic curves

Fact (An arithmetic consequence of CM)

Let X be an elliptic curve with complex multiplication (CM) by $E = \mathbb{Q}(\sqrt{d})$. Then $\#X(\mathbb{F}_p) \equiv 1 \pmod{p}$ for every prime p that is inert in E.

Fact

Let X be a K3 surface over ${\mathbb Q}$ and p a prime of good reduction. Then

 $\operatorname{\mathsf{rk}}\operatorname{\mathsf{Pic}}\nolimits X_{\overline{\mathbb{Q}}} \leq \operatorname{\mathsf{rk}}\operatorname{\mathsf{Pic}}\nolimits X_{\overline{\mathbb{F}}_p}.$

Theorem (F. Charles, 2012)

Let X be a K3 surface over \mathbb{Q} .

If X has real multiplication and (22 − rk Pic X_Q)/[E : Q] is odd then, for every prime p of good reduction,

$$\operatorname{rk}\operatorname{Pic}X_{\overline{\mathbb{Q}}}+[E:\mathbb{Q}]\leq\operatorname{rk}\operatorname{Pic}X_{\overline{\mathbb{F}}_p}$$

2 Otherwise, there exists a prime p of good reduction such that

$$\operatorname{\mathsf{rk}}\operatorname{\mathsf{Pic}} X_{\overline{\mathbb{F}}_p} = \operatorname{\mathsf{rk}}\operatorname{\mathsf{Pic}} X_{\overline{\mathbb{Q}}} \quad \operatorname{\mathsf{or}} \quad \operatorname{\mathsf{rk}}\operatorname{\mathsf{Pic}} X_{\overline{\mathbb{F}}_p} = \operatorname{\mathsf{rk}}\operatorname{\mathsf{Pic}} X_{\overline{\mathbb{Q}}} + 1 \, .$$

Hodge structures

Definition (P. Deligne, 1971)

A (pure Q-)Hodge structure of weight *i* is a finite dimensional Q-vector space V, together with a decomposition

$$V_{\mathbb{C}} := V \otimes_{\mathbb{Q}} \mathbb{C} = H^{0,i} \oplus H^{1,i-1} \oplus \ldots \oplus H^{i-1,1} \oplus H^{i,0}$$

such that $\overline{H^{m,n}} = H^{n,m}$ for every $m, n \in \mathbb{Z}_{\geq 0}$, m + n = i.

- ② A polarisation on a pure Q-Hodge structure V of even weight is a nondegenerate symmetric bilinear form ⟨.,.⟩: V × V → Q such that its C-bilinear extension ⟨.,.⟩: V_C × V_C → C satisfies the two conditions below.
 - One has $\langle x, y \rangle = 0$ for all $x \in H^{m,n}$ and $y \in H^{m',n'}$ such that $m \neq n'$.
 - The inequality $i^{m-n}\langle x, \overline{x} \rangle > 0$ is true for every $0 \neq x \in H^{m,n}$.

Hodge structures

Definition (P. Deligne, 1971)

A (pure Q-)Hodge structure of weight *i* is a finite dimensional Q-vector space V, together with a decomposition

$$V_{\mathbb{C}} := V \otimes_{\mathbb{Q}} \mathbb{C} = H^{0,i} \oplus H^{1,i-1} \oplus \ldots \oplus H^{i-1,1} \oplus H^{i,0}$$

such that $\overline{H^{m,n}} = H^{n,m}$ for every $m, n \in \mathbb{Z}_{\geq 0}$, m + n = i.

- ② A polarisation on a pure Q-Hodge structure V of even weight is a nondegenerate symmetric bilinear form ⟨.,.⟩: V × V → Q such that its C-bilinear extension ⟨.,.⟩: V_C × V_C → C satisfies the two conditions below.
 - One has $\langle x, y \rangle = 0$ for all $x \in H^{m,n}$ and $y \in H^{m',n'}$ such that $m \neq n'$.
 - The inequality $i^{m-n}\langle x, \overline{x} \rangle > 0$ is true for every $0 \neq x \in H^{m,n}$.

Facts

In Hodge structures of weight i form an abelian category.

2 Every polarisable Hodge structure is a direct sum of primitive ones.

J. Jahnel (University of Siegen)

Definition (Yu. Zarhin, 1983)

A Hodge structure of K3 type is a primitive polarisable Hodge structure of weight 2 such that dim_{\mathbb{C}} $H^{2,0} = 1$.

Examples

Let X be a compact complex manifold that is Kähler.

- Then H^j(X, Q) is naturally a polarisable pure Q-Hodge structure of weight j. [The polarisation is induced by the cup product.]
- **2** For X a K3 surface, the *transcendental part*

$$\mathcal{T}:=(\operatorname{\mathsf{Pic}} X\otimes_{\mathbb{Z}} \mathbb{Q})^{\perp}\subset H^2(X,\mathbb{Q})$$

is a Hodge structure of K3 type.

Real and complex multiplication

Theorem (Yu. Zarhin, 1983)

Let T be a Hodge structure of K3 type.

- Then E := End(T) is either a totally real field or a CM field.
- ② Thereby, every $arphi\in \mathsf{E}$ operates as a self-adjoint mapping. I.e.,

$$\langle \varphi(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, \overline{\varphi}(\mathbf{y}) \rangle,$$

for the identity map in the case that E is totally real and the complex conjugation in the case that it is a CM field.

9 / 30

Real and complex multiplication

Theorem (Yu. Zarhin, 1983)

Let T be a Hodge structure of K3 type.

- Then E := End(T) is either a totally real field or a CM field.
- **2** Thereby, every $\varphi \in E$ operates as a self-adjoint mapping. I.e.,

 $\langle \varphi(\mathbf{x}), \mathbf{y} \rangle = \langle \mathbf{x}, \overline{\varphi}(\mathbf{y}) \rangle \,,$

for the identity map in the case that E is totally real and the complex conjugation in the case that it is a CM field.

Definition

If $E \supseteq \mathbb{Q}$ then one speaks of *real multiplication* when E is totally real and of *complex multiplication* when E is CM. [The same terminology, applied to a K3 surface, means that the associated Hodge structure T has real or complex multiplication.]

The difference (Recall)

- For X an elliptic curve, one considers End(H), for $H := H^1(X(\mathbb{C}), \mathbb{Q})$.
- For X a K3 surface, consider End(T), for T := P[⊥] the transcendental part of H²(X(ℂ), ℚ).

Questions

- Can one construct K3 surfaces having real multiplication?
- How many K3 surfaces have real multiplication? I.e., what is the dimension of the corresponding locus in moduli space?
- Are there K3 surfaces defined over Q that have real multiplication?

K3 surfaces having CM due to an automorphism

Examples

$$X: w^2 = f_6(x, y, z)$$

• with $f_6(x, y, -z) = -f_6(x, y, z)$ or $f_6(y, x, z) = -f_6(x, y, z)$. Automorphism $I: (w, x: y: z) \mapsto (\zeta_4 w, x: y: -z)$ or $I: (w, x: y: z) \mapsto (\zeta_4 w, y: x: z)$. CM with $\mathbb{Q}(\sqrt{-1})$.

• with $f_6(x, y, z) = \zeta_3 f_6(y, z, x)$. Automorphism $I: (w, x: y: z) \mapsto (\zeta_6 w, y: z: x)$. CM with $\mathbb{Q}(\sqrt{-3})$.

[There are similar examples of degrees 4 and 6.]

The Lefschetz trace formula shows that $I \circ I$ [resp. $I \circ I \circ I$] acts on the transcendental part $T \subset H^2(X(\mathbb{C}), \mathbb{Q})$ non-trivially, with the only eigenvalue (-1). It does so on the [dim 21] orthogonal complement of the inverse image of a general line on \mathbf{P}^2 .

The period space

Definition

By a marked K3 surface, we mean a complex K3 surface together with an isomorphism $i: \mathbb{Z}^{22} \longrightarrow H^2(X, \mathbb{Z})$.

Notation

- The marking i: Z²² → H²(X, Z) determines c^k := i(e_k) ∈ H²(X, Z), for k = 1,..., 22, which form a basis of H²(X, Z).
- The dual basis (c_1, \ldots, c_{22}) of $H^2(X, \mathbb{Z})$, is given by $(c_k, c^j) = \delta_{kj}$, for $(.,.): H^2(X, \mathbb{Z}) \times H^2(X, \mathbb{Z}) \to \mathbb{Z}$ the cup product pairing.
- Moreover, as the pull-back of the cup product pairing via *i*, the marking distinguishes a perfect, symmetric pairing on Z²².

12 / 30

The period space

Definition

By a marked K3 surface, we mean a complex K3 surface together with an isomorphism $i: \mathbb{Z}^{22} \longrightarrow H^2(X, \mathbb{Z})$.

Notation

- The marking $i: \mathbb{Z}^{22} \to H^2(X, \mathbb{Z})$ determines $c^k := i(e_k) \in H^2(X, \mathbb{Z})$, for k = 1, ..., 22, which form a basis of $H^2(X, \mathbb{Z})$.
- The dual basis (c_1, \ldots, c_{22}) of $H^2(X, \mathbb{Z})$, is given by $(c_k, c^j) = \delta_{kj}$, for $(.,.): H^2(X, \mathbb{Z}) \times H^2(X, \mathbb{Z}) \to \mathbb{Z}$ the cup product pairing.
- Moreover, as the pull-back of the cup product pairing via *i*, the marking distinguishes a perfect, symmetric pairing on Z²².

Given any $c \in H^2(X, \mathbb{C})$, there is the *canonical decomposition*

$$c = (c_1, c)c^1 + \cdots + (c_{22}, c)c^{22}$$
,

of c with respect to i.

The period space II

Definition

A marked K3 surface (X, i) gives rise to a point

$$\mathbf{P}(X,i) := \left((c_1, [\omega]) : \cdots : (c_{22}, [\omega]) \right) \in \mathbf{P}^{21}(\mathbb{C}),$$

called the *period point* of (X, i).

τ

Here, $[\omega] \in H^2(X, \mathbb{C})$ is the nowhere vanishing holomorphic (2,0)-form, uniquely determined up to scaling.

The period space II

Definition

A marked K3 surface (X, i) gives rise to a point

$$\mathbf{P}(X,i) := \left((c_1, [\omega]) : \cdots : (c_{22}, [\omega])
ight) \in \mathbf{P}^{21}(\mathbb{C}) \, ,$$

called the *period point* of (X, i).

Here, $[\omega] \in H^2(X, \mathbb{C})$ is the nowhere vanishing holomorphic (2,0)-form, uniquely determined up to scaling.

Theorem (I.R. Shafarevich, \approx 1965)

Let κ be a perfect pairing on \mathbb{Z}^{22} .

- Let (X₁, i₁) and (X₂, i₂) be marked K3 surfaces inducing the pairing κ on Z²² and having the same period point. Then (X₁, i₁) and (X₂, i₂) are isomorphic.
- The set of the period points of all marked K3 surfaces inducing the pairing κ is Ω_κ := {(x₁ : · · · : x₂₂) ∈ P²¹(ℂ) | κ(x, x) = 0, κ(x, x̄) > 0}. This is an open subset of a quadric in P²¹(ℂ).

The period space III

Fact (The relative situation)

Let $q: (\mathfrak{X}, \mathfrak{i}) \to Y$ be a family of marked K3 surfaces. Then the period mapping $\tau: Y \to \mathbf{P}^{21}(\mathbb{C}), t \mapsto \tau(\mathfrak{X}_t, i_t)$, is holomorphic.

14 / 30

The period space III

Fact (The relative situation)

Let $q: (\mathfrak{X}, \mathfrak{i}) \to Y$ be a family of marked K3 surfaces. Then the period mapping $\tau: Y \to \mathbf{P}^{21}(\mathbb{C}), t \mapsto \tau(\mathfrak{X}_t, i_t)$, is holomorphic.

Fact (Restricted period space)

Let $r \in \{1, ..., 20\}$ be an integer and κ a perfect pairing on \mathbb{Z}^{22} . Then the set of the period points of all marked K3 surfaces (X, i) such that

- the classes c_{22-r+1},..., c₂₂ ∈ H²(X, Z) from the dual basis are algebraic, i.e. in Pic X ⊂ H²(X, Z), and
- via i, the pairing κ gets induced,

$$\Omega_{\kappa,r} := \left\{ (x_1:\cdots:x_{22-r}:0:\cdots:0) \in \mathbf{P}^{21-r}(\mathbb{C}) \mid \\ \kappa(x,x) = 0, \, \kappa(x,\overline{x}) > 0 \right\} \,.$$

This is an open subset of a quadric $Q_{\kappa,r} \subset \mathbf{P}^{21-r}(\mathbb{C})$.

Theorem

Let $r \in \{1, ..., 20\}$, κ be a perfect pairing on \mathbb{Z}^{22} , and K be a totally real number field of degree d.

Then there is an at most countable union $M \subseteq Q_{\kappa,r}$ of quadrics of dimensions $\frac{22-r}{d} - 2$ such that the following is true.

Let x ∈ Ω_{κ,r} ⊂ Q_{κ,r} be the period point of a marked K3 surface (X, i), for which c_{22-r+1},..., c₂₂ ∈ Pic X and the Picard rank is exactly r. Then X has real multiplication by K if and only if x ∈ M.

Idea of Proof. $T = (\operatorname{Pic} X \otimes_{\mathbb{Z}} \mathbb{Q})^{\perp} = \operatorname{span}(c^1, \ldots, c^{22-r})$. RM by K means that K operates \mathbb{Q} -linearly on T, keeping $x = x_1c^1 + \cdots + x_{22-r}c^{22-r}$ as a simultaneous eigenvector.

There are countably many such operations. Each time, the eigenspaces are of [projective] dimension $\frac{22-r}{d} - 1$. It can be shown that they are not contained in $Q_{\kappa,r}$.

A particular family

Consider double covers of $\boldsymbol{\mathsf{P}}^2_{\mathbb{C}},$ ramified over a union of six lines,

$$X'\colon w^2=I_1\cdots I_6\,,$$

for l_1, \ldots, l_6 linear forms in three variables.

Assume that no point is contained in three lines. Then there are 15 singular points of type A_1 . The minimal desingularisation X is a K3 surface.

Proposition (The global holomorphic (2, 0)-form)

Let X be a K3 surface, obtained as the minimal desingularisation of $X': w^2 = l_1 \cdots l_6$, for l_1, \ldots, l_6 linear forms in the variables x, y, and z. Assume that no three of the six linear forms have a zero in common.

Then, for any linear form $l \neq x$, y that defines an irreducible curve on X', $\omega' := \frac{d(\frac{x}{l}) \wedge d(\frac{y}{l})}{\frac{w}{l^3}}$

is a differential form on X', the pull-back ω of which to X is a global holomorphic (2,0)-form without zeroes or poles.

Spheroids representing transcendental classes

The surfaces considered generically have Picard rank 16.

There are 16 obvious algebraic classes L, E_1, \ldots, E_{15} , generating a rank-16 submodule $P \subset H^2(X, \mathbb{Z})$. We explicitly need six further generators.

17 / 30

Spheroids representing transcendental classes

The surfaces considered generically have Picard rank 16.

There are 16 obvious algebraic classes L, E_1, \ldots, E_{15} , generating a rank-16 submodule $P \subset H^2(X, \mathbb{Z})$. We explicitly need six further generators.

Figure: A deformed line and a curve encircling a triangle Assume that the branch locus is the union of six *real* lines [no three of which have a point in common].

We start with 1-manifolds in $\mathbf{P}^2(\mathbb{R})$ as in the pictures above. I.e. such meeting the branch locus $V(l_1 \cdots l_6)$ only in its double points. We also allow 1-manifolds that encircle a quadrangle or pentagon instead of a triangle.

Spheroids representing transcendental classes II

Parametrised by a differentiable map $\gamma \colon \mathbb{R}/\sim \to \mathbf{P}^2(\mathbb{R})$, for \sim the equivalence relation, given by $t \sim t' \Leftrightarrow t - t' \in \mathbb{Z}$.

On a suitable affine chart of $\mathbf{P}^2(\mathbb{R})$, one has a map $\underline{\gamma} \colon \mathbb{R}/\sim \to \mathbb{R}^2$.

Extend γ to a differentiable map in two variables by putting

$$\gamma' \colon \mathbb{R}/\sim \times \mathbb{R} \longrightarrow \mathbb{C}^2 \subset \mathbf{P}^2(\mathbb{C}), \qquad (t,u) \mapsto \gamma_0(t) + \mathrm{i} u b \,, \qquad (1)$$

for a suitable vector $b \in \mathbb{R}^2$.

Spheroids representing transcendental classes II

Parametrised by a differentiable map $\gamma \colon \mathbb{R}/\sim \to \mathbf{P}^2(\mathbb{R})$, for \sim the equivalence relation, given by $t \sim t' \Leftrightarrow t - t' \in \mathbb{Z}$.

On a suitable affine chart of $\mathbf{P}^2(\mathbb{R})$, one has a map $\underline{\gamma} \colon \mathbb{R}/\sim \to \mathbb{R}^2$.

Extend γ to a differentiable map in two variables by putting

$$\gamma' \colon \mathbb{R}/\sim \times \mathbb{R} \longrightarrow \mathbb{C}^2 \subset \mathbf{P}^2(\mathbb{C}), \qquad (t,u) \mapsto \gamma_0(t) + \mathrm{i} u b \,, \qquad (1)$$

for a suitable vector $b \in \mathbb{R}^2$.

Then $\lim_{u\to\pm\infty}\gamma'(t,u)$ exists in $\mathbf{P}^2(\mathbb{C})$ and is independent of t. Therefore, γ' actually provides a continuous map α' from

$$\mathbb{R}/\sim\times[-\infty,\infty]/(\mathbb{R}/\sim\times\{\infty\},\mathbb{R}/\sim\times\{-\infty\})\cong S(\mathbb{R}/\sim)=S(S^1)=S^2$$
(2)

to $\mathbf{P}^2(\mathbb{C})$. [lpha' is differentiable outside the two poles $n, s \in S^2$.]

Spheroids representing transcendental classes III

Proposition (Lifting to the double cover)

Let $V(l_1), \ldots, V(l_6)$ be six real lines in \mathbf{P}^2 such that no three of them have a point in common. Take an affine chart that meets each of the six lines.

- Then there is a union E ⊂ ℝ² of finitely many 1-dimensional subvector spaces such that, for b ∈ ℝ² \ E, each of the spheroids α', as constructed above, meets V(l₁ ··· l₆) only in the three to five real points.
- Assume that b ∈ ℝ²\E. Then the continuous map α': S² → P²(ℂ), as constructed in (1) and (2), lifts to a continuous map α̃: S² → X', for X': w² = l₁ ··· l₆ the double cover.

Idea of Proof. 1. Direct calculation.

2. Let $x_1, \ldots, x_m \in S^2$, m = 3, 4, 5, be the points mapped to the ramification locus. Then essentially $\alpha_0 := \alpha'|_{S^2 \setminus \{x_1, \ldots, x_m\}}$ needs to be lifted. For this, one only has to verify

 $(\alpha_0)_{\#}\pi_1(S^2 \setminus \{x_1, \dots, x_n\}, .) \subseteq \pi_{\#}\pi_1(X_0, .)$ for $X_0 := \pi^{-1}(\mathbf{P}^2(\mathbb{C}) \setminus V(I_1 \cdots I_6))$, which is completely local.

Spheroids representing transcendental classes IV

- The spheroid $\widetilde{\alpha} \colon S^2 \to X'$ represents a class in $\pi_2(X', .)$.
- X' and the K3 surface X are simply connected. By Hurewicz's Theorem,

 $\pi_2(X',.)\cong H_2(X',\mathbb{Z})$ and $\pi_2(X,.)\cong H_2(X,\mathbb{Z}).$

As H₂(X', ℤ) = H₂(X, ℤ)/[E₁,..., E₁₅], α̃ can [non-uniquely] be lifted to X.

Spheroids representing transcendental classes IV

- The spheroid $\widetilde{\alpha} \colon S^2 \to X'$ represents a class in $\pi_2(X', .)$.
- X' and the K3 surface X are simply connected. By Hurewicz's Theorem,

 $\pi_2(X',.)\cong H_2(X',\mathbb{Z})$ and $\pi_2(X,.)\cong H_2(X,\mathbb{Z})$.

As H₂(X', ℤ) = H₂(X, ℤ)/[E₁,..., E₁₅], α̃ can [non-uniquely] be lifted to X.

Notation (Explicit cohomology classes)

A spheroid α defines a cohomology class

$$c_{lpha}:=lpha_!(1)\in H^2(X,\mathbb{Z})\,,$$

for $1\in H^0(S,\mathbb{Z})$ the canonical generator.

The construction described provides by far more than six representatives of classes in $H^2(X, \mathbb{Z})/P$.

The cup product

Fact

Let $c_{\alpha} \in H^2(X, \mathbb{Z})$ be given by a spheroid and $w \in H^2(X, \mathbb{C})$ be represented by the smooth 2-form ω . Then, for the cup product pairing, one has

$$(c_{lpha},w)=\int_{S^2}lpha^*\omega\,.$$

Idea of Proof. $(c_{\alpha}, w) = \langle w \cup c_{\alpha}, [X] \rangle = \langle w \cup \alpha_{!}(1), [X] \rangle = \langle \alpha^{*}w, [S^{2}] \rangle$. Here, the final equality is

 $(w \cup \alpha_!(1)) \cap [X] = w \cap (\alpha_!(1) \cap [X]) = w \cap \alpha_*([S^2]) = \alpha_*(\alpha^*w \cap [S^2]).$

The cup product

Fact

Let $c_{\alpha} \in H^2(X, \mathbb{Z})$ be given by a spheroid and $w \in H^2(X, \mathbb{C})$ be represented by the smooth 2-form ω . Then, for the cup product pairing, one has

$$(c_{lpha},w)=\int_{S^2}lpha^*\omega\,.$$

Idea of Proof. $(c_{\alpha}, w) = \langle w \cup c_{\alpha}, [X] \rangle = \langle w \cup \alpha_!(1), [X] \rangle = \langle \alpha^* w, [S^2] \rangle$. Here, the final equality is

$$(w \cup \alpha_!(1)) \cap [X] = w \cap (\alpha_!(1) \cap [X]) = w \cap \alpha_*([S^2]) = \alpha_*(\alpha^* w \cap [S^2]).$$

Remark

In order to numerically calculate these 2-dimensional integrals, we use Fubini's Theorem in a naive manner. The resulting 1-dimensional integrals are evaluated using the Gauß-Legendre method of a degree between 30 and 300.

The cup product II

Algorithm (Determining the cup product on P^{\perp} , up to scaling)

Let X be a K3 surface that is given as the minimal desingularisation of a double cover of the form $w^2 = xyz(x+y+z)(x+a_0y+b_0z)(x+c_0y+d_0z)$ and $\alpha_1, \ldots, \alpha_n \colon S^2 \to X$ be spheroids.

- Choose open neighbourhoods D ≅ U(a₀) ∋ a₀, ..., D ≅ U(d₀) ∋ d₀ in such a way that, for every (a, b, c, d) ∈ D⁴, no three of the resulting six lines in P²_C have a point in common. Then the c_{α1},..., c_{αn} uniquely extend to the whole family of surfaces X_(a,b,c,d) analogous to X. Moreover, choose N surfaces X₁,..., X_N at random from the family and write down the corresponding holomorphic 2-forms ω₁,..., ω_N. [We work with N = 50.]
- Set up the matrix $M := (\langle c_{\alpha_j}, \omega_i \rangle)_{1 \le i \le N, 1 \le j \le n}$ using numerical integration and calculate the singular value decomposition of M. Six singular values should be numerically nonzero. The others give rise to linear relations among the cohomology classes $c_{\alpha_1}, \ldots, c_{\alpha_n}$.

22 / 30

The cup product III

- Observe the server of the free Z-module spanned by c_{α1},..., c_{αn} modulo the relations found.
- Build from *M* the matrix $F := (\langle c_{j_1}, \omega_i \rangle \langle c_{j_2}, \omega_i \rangle)_{1 \le i \le N, 1 \le j_1 \le j_2 \le 6}$ and determine an approximate solution of the corresponding homogeneous linear system of equations, using the QR-factorisation of *F*. The solution vector describes the symmetric, bilinear form desired.

The cup product III

- Shoose a basis c₁,..., c₆ of the free Z-module spanned by c_{α1},..., c_{αn} modulo the relations found.
- Build from *M* the matrix $F := (\langle c_{j_1}, \omega_i \rangle \langle c_{j_2}, \omega_i \rangle)_{1 \le i \le N, 1 \le j_1 \le j_2 \le 6}$ and determine an approximate solution of the corresponding homogeneous linear system of equations, using the QR-factorisation of *F*. The solution vector describes the symmetric, bilinear form desired.

Remarks

- As it relies on the restricted period space, our method detects only the restriction of the cup product pairing to P[⊥] ⊂ H²(X, Q). Every class in H²(X, Z)/P has a unique representative in P[⊥], the orthogonal projection pr: H²(X, Z)/P → P[⊥] being injective.
- Let $\alpha: S^2 \to X$ be constructed from a deformed line, as above. Then $(\operatorname{pr}(c_{\alpha}), \operatorname{pr}(c_{\alpha})) = -\frac{1}{2}$. [We use this observation for scaling.]

Theorem (Proof depending on numerical integration)

Let X be the minimal desingularisation of a double cover of $\mathbf{P}_{\mathbb{C}}^2$ ramified over a union of six real lines, such that no three of them have a point in common. Then the classes of the spheroids, as described above, always generate the whole of $H^2(X,\mathbb{Z})/P$.

Tracing the preimage of a curve in the period space

In a family of K3 surfaces of Picard rank 16, there are 1-dimensional subfamilies having real multiplication by $\mathbb{Q}(\sqrt{d})$

Strategy

Let X be an isolated example of a K3 surface of type

$$X_{(a_0,b_0,c_0,d_0)}: w^2 = xyz(x+y+z)(x+a_0y+b_0z)(x+c_0y+d_0z)$$

that has real multiplication by a quadratic field $\mathbb{Q}(\sqrt{d})$. The strategy below describes how to find the 1-dimensional family of RM surfaces, X belongs to.

Run the Algorithm above to fix a marking i on X and to calculate the cup product pairing in terms of i.

Then $\mathbb{D} \cong U(a_0) \ni a_0, \ldots, \mathbb{D} \cong U(d_0) \ni d_0$ are chosen in such a way that, for every $(a, b, c, d) \in \mathbb{D}^4$, no three of the resulting six lines in $\mathbf{P}^2_{\mathbb{C}}$ have a point in common. Thus, the marking extends to the whole family and there is the associated period map

$$au : \mathbb{D}^4 \longrightarrow Q, \quad (a, b, c, d) \mapsto \tau(X_{(a, b, c, d)}, i_{(a, b, c, d)}).$$

- Calculate the period point of $X = X_{(a_0,b_0,c_0,d_0)}$ and identify the three linear relations between the six periods that encode real multiplication. These define, together with the cup product pairing, a conic C in the restricted period space.
- Trace the curve $Q^{-1}(C) \subset \mathbb{D}^4$ using a numerical continuation method.
- Use the singular-value decomposition in order to find algebraic relations between the coordinates of the points found. Control, using Gröbner bases, that they indeed define an algebraic curve.

A result

Theorem (E.+J., 2017)

Consider the family of double covers $X'_{(a,b,c,d)}$ of \mathbf{P}^2 , given by $w^2 = (x + ay + bz)(x + cy + dz)f_4(x, y, z)$, for $f_4 := x^4 - 2x^3y - 5x^2y^2 - 26x^2z^2 + 6xy^3 + 104xyz^2 + 9y^4 - 130y^2z^2 + 52z^4$.

Then the branch locus is the union of six lines, which are in general position for a generic choice of (a, b, c, d) ∈ C⁴. In this case, the minimal desingularisation X_(a,b,c,d) of X'_(a,b,c,d) is a K3 surface of Picard rank 16.

2 Consider the closed subscheme $C \subset \mathbf{A}^4$, given by the equations

 $\begin{array}{rcl} 0 &=& 630\,272\,a - 11\,421bd^5 + 411\,400bd^3 - 871\,552bd - 272\,976c^2d^2 + 315\,136c^2 \\ &+& 98\,982cd^4 - 3\,508\,064cd^2 + 2\,205\,952c + 233\,496d^4 - 6\,409\,856d^2 + 4\,411\,904 \,, \\ 0 &=& 78\,784bc - 243bd^4 + 37\,040bd^2 + 110\,528b - 5808c^2d + 2106cd^3 - 319\,792cd + 4968d^3 - 714\,688d \,, \\ 0 &=& 243bd^6 - 8960bd^4 + 29\,952bd^2 - 26\,624b + 5808c^2d^3 - 11\,648c^2d - 2106cd^5 \\ &+& 76\,432cd^3 - 144\,768cd - 4968d^5 + 140\,608d^3 - 259\,584d \,, \\ 0 &=& 2c^3 + 28c^2 - 3cd^2 + 98c - 8d^2 + 104 \,. \end{array}$

Then C is a geometrically irreducible, nonsingular curve of genus 1.

A result II

• There is strong evidence that, for generic $(a, b, c, d) \in C(\mathbb{C})$, the K3 surface $X_{(a,b,c,d)}$ is of Picard rank 16 and has real multiplication by $\mathbb{Q}(\sqrt{13})$.

Proof. 1) For (a, b, c, d) := (0, -4, -9, -8), an isolated example appears, which we had found before by a different approach.

2) This is easily obtained by a calculation in any computer algebra system. We used magma for this purpose.

3) The curve *C* is the result of the Strategy above, taking the isolated example above as the starting point. Evidence for assertion c) includes that one has $\#X_{\xi}(\mathbb{F}_p) \equiv 1 \pmod{p}$ for every prime number p < 500 such that $p \equiv 2, 5, 6, 7, 8, 11 \pmod{13}$ and every point $\xi \in C(\mathbb{F}_p)$.

A result II

• There is strong evidence that, for generic $(a, b, c, d) \in C(\mathbb{C})$, the K3 surface $X_{(a,b,c,d)}$ is of Picard rank 16 and has real multiplication by $\mathbb{Q}(\sqrt{13})$.

Proof. 1) For (a, b, c, d) := (0, -4, -9, -8), an isolated example appears, which we had found before by a different approach.

2) This is easily obtained by a calculation in any computer algebra system. We used magma for this purpose.

3) The curve *C* is the result of the Strategy above, taking the isolated example above as the starting point. Evidence for assertion c) includes that one has $\#X_{\xi}(\mathbb{F}_p) \equiv 1 \pmod{p}$ for every prime number p < 500 such that $p \equiv 2, 5, 6, 7, 8, 11 \pmod{13}$ and every point $\xi \in C(\mathbb{F}_p)$.

Remark

The genus 1 curve C has \mathbb{Q} -rational points. Taking any of them as the origin, the Mordell–Weil group of C is isomorphic to \mathbb{Z} .

Remarks (Some details)

• [Transcendental classes.] We worked with 14 classes, which were represented by spheroids, as explained above.

In step 2 of the Algorithm, we found six singular values within a factor of 100, while the next one was smaller by nine orders of magnitude. In the basis chosen, the cup product form found on P^{\perp} has only coefficients from $\{\pm 1, \pm \frac{1}{2}, 0\}$, up to errors that are smaller than 10^{-10} .

• [Tracing the curve.] In an expert's language, we applied a predictorcorrector method. More precisely, we used the Euler predictor, followed by Newton corrector steps.

For numerical integration, the Gauß-Legendre method of degree 100 [i.e. order 200] was used. Based on this, we determined 101 points on $Q^{-1}(C) \subset \mathbb{D}^4$, each with a numerical precision of 80 digits.

< ロト < 同ト < ヨト < ヨト

A result IV

• Polynomials of degree ≤ 3 in four variables form a vector space of dimension 35. When looking for cubic relations between the 101 points found, we ended up with 25 singular values in the range from 1714 to $6.08 \cdot 10^{-41}$, the other ten being less than 10^{-80} .

Thus, the curve sought is contained in an intersection of ten cubics in \mathbf{A}^4 . The equations given form a Gröbner basis for the ideal generated by them.

A result IV

• Polynomials of degree ≤ 3 in four variables form a vector space of dimension 35. When looking for cubic relations between the 101 points found, we ended up with 25 singular values in the range from 1714 to $6.08\cdot 10^{-41}$, the other ten being less than 10^{-80} .

Thus, the curve sought is contained in an intersection of ten cubics in \mathbf{A}^4 . The equations given form a Gröbner basis for the ideal generated by them.

Thank you!!!