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Rational points on K3 surfaces

Given a K3 surface X over a number field k , there are several questions
one can ask about the set X (k) of its rational points.

For example:

Is X (k) non-empty?

Is X (k) finite?

Is X (k) Zariski-dense in X?

More generally, one might ask about curves on X defined over k : for
example, is the number of (−2)-curves on X , defined over k , finite or
infinite?
One invariant very relevant to these problems is the group AutX of
k-automorphisms of X .
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Cones

Let X be a projective K3 surface over an algebraically closed field k .

Inside (PicX )R we have the cone

{α ∈ (PicX )R | α2 > 0}

consisting of two components; the one that contains all the ample
divisor classes is the positive cone, denoted CX .

There is also the nef cone

Nef(X ) = {α ∈ (PicX )R | α · C ≥ 0 for all curves C ⊂ X}.

The ample cone Amp(X ) is generated by the ample divisor classes. It
is contained in CX . The Nakai–Moishezon–Kleiman criterion shows
that the interior of Nef(X ) is Amp(X ), and the closure of Amp(X ) is
Nef(X ).

Within CX , the ample cone is cut out by the (−2)-curves C .
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Automorphisms and cones

We would like to study AutX by relating it to the group O(PicX ) of
lattice isometries of PicX .

Any φ ∈ AutX induces an isometry of PicX fixing the positive, nef
and ample cones.

There are some other obvious isometries of PicX , namely those given
by reflections corresponding to (−2)-curves:

sδ(x) = x + (x · δ)δ, where δ2 = −2.

These fix CX , but never fix Nef(X ), since sδ interchanges the two
half-spaces {(α · δ) > 0} and {(α · δ) < 0}.
The sδ generate the Weyl group W (PicX ). Standard results in the
theory of reflection groups show that Nef(X ) ∩ CX is a locally
polyhedral fundamental domain for the action of W (PicX ) on CX .

(Where Nef(X ) meets the boundary of CX , it need not be locally
polyhedral.)
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Finiteness theorems

It is a consequence of the Torelli theorem that the homomorphism

AutX → O(PicX )/W (PicX )

has finite kernel and cokernel.

In particular, this means that whether AutX is finite depends only on
PicX as an abstract lattice.

Nikulin has classified the lattices arising as Picard lattices of K3
surfaces such that O(PicX )/W (PicX ) is finite. For each rank ρ ≥ 3,
there are only finitely many (up to isomorphism).
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Finiteness theorems

For a K3 surface over an algebraically closed field k of characteristic zero,
we have the following theorem of Sterk.

Theorem (Sterk, 1985)

1 AutX is finitely generated.

2 The action of AutX on Nefe(X ) admits a rational polyhedral
fundamental domain.

3 For any d, there are only finitely many orbits under AutX of classes
of irreducible curves of self-intersection 2d.

Lieblich and Maulik (2011) have proved the same result over an
algebraically closed field k of characteristic 6= 2.
How many of the preceding statements remain true over an arbitrary base
field k?
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Over arbitrary fields

The positive, ample and nef cones of X are just the intersections with
(PicX )R of the positive, ample and nef cones of X̄ .

We will need to modify the group W (PicX ), rather than just taking
reflections in (−2)-classes defined over k.

For example, suppose that X contains a pair of disjoint, conjugate
(−2)-curves C1,C2. The class [C1 + C2] ∈ PicX defines a wall of the
ample cone that does not correspond to a (−2)-class defined over k .

Define RX = W (Pic X̄ )Aut(k̄/k). This is a Coxeter group.
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The main theorem

Theorem

Let X be a K3 surface over any field of characteristic 6= 2.

1 The cone Nef(X ) ∩ CX is a fundamental domain for the action of RX

on CX .

2 The homomorphism Aut(X )→ O(PicX )/RX has finite kernel and
cokernel.

3 The action of Aut(X ) on Nefe(X ) admits a rational polyhedral
fundamental domain.

4 For any d, there are only finitely many orbits under Aut(X ) of classes
of irreducible curves of self-intersection 2d.
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Separably closed fields

The first step is to reduce to separably closed fields – after that, we can
use Galois theory.
Suppose that k is separably closed, with algebraic closure k̄ .

The Picard scheme PicX/k exists, with PicX/k(k) = PicX and

PicX/k(k̄) = Pic X̄ .

H1(X ,OX ) = 0 implies that PicX/k is étale over k, and therefore

PicX → Pic X̄ is an isomorphism.

This also shows that all (−2)-curves on X̄ are defined over k.

Similarly, H0(X ,TX ) = 0 shows that the automorphism scheme
AutX/k is étale over k , and so AutX → Aut X̄ is an isomorphism.
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Galois actions

Let X be a K3 surface over an arbitrary field k , and let Γk = Gal(ks/k) be
the absolute Galois group of k .

We have PicX ⊂ (PicX s)Γk , but they need not be equal. (They are
equal if X has a k-rational point).

The quotient maps into Br k, so is finite.

Γk acts on W (PicX s) by conjugation in O(PicX s); we have
σsδσ

−1 = sσδ. Define RX = W (PicX s)Γk .

It is clear that the action of RX on PicX s preserves (PicX s)Γk , but
not immediately obvious that it preserves PicX .

Fortunately, we can see this from an explicit description of RX .
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Description of RX

Theorem (Hée; Lusztig; Geck, Iancu)

Let (W ,T ) be a Coxeter system. Let G be a group of permutations of T
that induce automorphisms of W . Let F be the set of G-orbits I ⊂ T for
which WI is finite, and for I ∈ F let `I be the longest element of (WI , I ).
Then (W G , {`I : I ∈ F}) is a Coxeter system.

In our situation, we have W = W (PicX s) and T = {sδ : δ a (−2)-curve}.

If two (−2)-curves have intersection number ≥ 2, then
the corresponding reflections generate an infinite dihe-
dral group in W . So a Galois orbit containing two
such curves will not lie in F , and will not contribute a
generator to RX .
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Description of RX

If an orbit consists of two (−2)-curves C ,C ′ intersect-
ing with multiplicity 1, then sC , sC ′ generate a sub-
group of W isomorphic to S3 = W (A2); the longest
element is the (−2)-class [C ] + [C ′], giving a Galois-
invariant reflection s[C ]+[C ′] = sC sC ′sC = sC ′sC sC ′ .

If an orbit consists of two disjoint (−2)-curves C ,C ′,
then sC , sC ′ commute and generate a subgroup of W
isomorphic to C2 × C2 = W (A1 × A1); the Galois-
invariant subgroup is generated by sC sC ′ , which is the
reflection defined by the (−4)-class [C ] + [C ′].

In general, the only orbits contributing to RX are disjoint unions of these.

or
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Fundamental domain for RX

In particular, this description shows that RX does indeed preserve (and
therefore act on) PicX ⊂ PicX s .

It is now easy to show that Nef X ∩ CX is a fundamental domain for the
action of RX on CX , as follows.

1 If α ∈ CX has trivial stabiliser in W (PicX s), then there is a unique
g ∈W (PicX s) with g(α) ∈ Nef X s .

2 Any σ ∈ Γk preserves Nef X s , so (σg)(α) also lies in Nef X s .

3 By uniqueness, σg = g for all σ ∈ Γk , so g lies in RX .

4 If α ∈ CX has non-trivial stabiliser (i.e. lies on a wall), write it as the
limit of elements with trivial stabiliser.

5 To show that two translates of (Nef X ∩ CX ) intersect only in their
boundaries, use ∂(Nef X ) = ∂(Nef X s) ∩ (PicX )R.
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Descending finiteness

To prove that AutX → O(PicX )/RX has finite kernel and cokernel:

AutX s O(PicX s)/W (PicX s)

O(PicX )/RX O(PicX s)Γk/RX

?

Theorem

Let Λ be a lattice and H ⊂ O(Λ) a subgroup such that M = ΛH is
non-degenerate. Then:

1 the natural map O(Λ,M)→ O(M) has finite cokernel;

2 if M⊥ is definite, then O(Λ,M)→ O(M) has finite kernel, and the
centraliser ZO(Λ)H has finite index in O(Λ,M).
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Descending finiteness

The theorem shows that (O(PicX s))Γk → O((PicX s)Γk ) has finite
kernel and cokernel.

Use that PicX is of finite index in (PicX s)Γk to finally obtain:
AutX → O(PicX )/RX has finite kernel and cokernel.

That the action of AutX on Nefe X admits a rational polyhedral
fundamental domain follows as in the complex case (using the general
fact that O(PicX ) has such a fundamental domain).

There are finitely many orbits under Aut(X ) of classes of irreducible
curves of given self-intersection: this also follows as in the complex
case.
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Example I

Over the complex numbers, whether AutX is finite can be read off
from PicX . Our first example shows that this is not true over
arbitrary fields.

Let M,N be the block diagonal matrices

M =

0 1 0
1 0 0
0 0 −8

 , N =

 0 1
1 0

−2I4

 .

Over C, a K3 surface having intersection matrix M would have
infinite automorphism group, whereas a K3 surface having
intersection matrix N would have finite automorphism group.

We construct a K3 surface X over Q such that PicX has intersection
matrix M, but Pic X̄ has intersection matrix N. So Aut X̄ , and a
fortiori AutX , is finite.
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Example I

M =

0 1 0
1 0 0
0 0 −8

 , N =

 0 1
1 0

−2I4

 .

Lemma

Let X be a K3 surface over Q with an elliptic fibration π : X → P1 that
has a section. Suppose that π has four conjugate fibres of type I2 or III
and that the rank of Pic X̄ is at most 6. Then PicX and Pic X̄ have
intersection matrices M and N, respectively.

It turns out that such a surface cannot be embedded with small
codimension in projective space, so we do the next best thing: find a
smooth quartic surface with an elliptic fibration but no section, whose
relative Jacobian is the desired X .
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Example I

The smooth quartic surface Y ⊂ P3
Q given by the equation

− 2x3z − 3x2yz − 3y3z + x2z2 − 3xyz2 + 2y2z2 + xz3 + yz3 − 13x3w

+24x2yw−13xy2w +8y3w−x2zw +51xz2w−37x2w2 +47xyw2−16y2w2

+ 111xzw2−38yzw2−57z2w2−227xw3 + 24yw3−94zw3 + 303w4 = 0

contains the line w = z = 0. Projection away from this line defines a
fibration with no section, having four conjugate singular fibres of type I2.

To prove that the rank of Pic Ȳ is 6, we use good reduction at 3 and
point-counting over the fields F3n for n ≤ 8.

It follows that the Jacobian of the fibration on Y is an example of the
type we are looking for.
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Example II

Example I was sort of cheating – the surface had finite automorphism
group over C.

Let

M =

(
10 0
0 −4

)
, N =

10 0 0
0 −2 0
0 0 −2

 .

Any K3 surface over C with intersection lattice either M or N has
infinite automorphism group.

We will construct a K3 surface X over Q, having intersection matrix
M over Q and intersection matrix N over Q̄, such that AutX is finite.

We take X to be the intersection of a quadric and a cubic in P4,
containing a pair of disjoint Galois-conjugate conics and having
geometric Picard number 3.
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Example II

Example I was sort of cheating – the surface had finite automorphism
group over C.

Let

M =

(
10 0
0 −4

)
, N =

10 0 0
0 −2 0
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Example II

M =

(
10 0
0 −4

)
, N =

10 0 0
0 −2 0
0 0 −2

 .

PicX has intersection matrix M, and O(PicX ) is easy to compute - it
is related to the unit group of the field Q(

√
10). In particular, it

contains a copy of Z with finite index.

A K3 surface over C having this Picard lattice would contain no
(−2)-curves, so would have infinite automorphism group.

However, X does contain a Galois-conjugate disjoint pair of
(−2)-curves, and in fact contains many.
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Example II

M =

(
10 0
0 −4

)
, N =

10 0 0
0 −2 0
0 0 −2

 .

If C ,C ′ are the conjugate conics on X , and H a hyperplane section,
then 6[H]− 3[C ]− 4[C ′] is the class of another (−2)-curve D,
disjoint from its conjugate D ′.

The two reflections in the (−4)-classes [C ] + [C ′] and [D] + [D ′]
generate an infinite dihedral subgroup of RX , showing that
O(PicX )/RX is finite, and hence so is AutX .

Actually writing down equations for an example is more involved than
in Example I, since we must use reduction at two primes to show that
Pic X̄ has rank 3.
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Example III

What about an example of actual arithmetic interest?

Theorem

Let k be a field of characteristic zero, let c ∈ k× be such that
[k(ζ8, 4

√
c) : k] = 16, and let X ⊂ P3

k be the surface

x4 − y4 = c(z4 − w4).

Then AutX is finite.

Our proof is computational.
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Example III

Pic X̄ is generated by the 48 lines on X , and the Galois action is
straightforward to compute.

It turns out that PicX = (Pic X̄ )Γk embeds with index 4 into the
lattice Λ having Gram matrix

N =

 0 1
1 0

−2I4

 .

from Example I. The group O(Λ) is not hard to describe.

Listing all the lines and conics on X̄ gives enough elements of RX to
prove that O(PicX )/RX is finite.
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