Local to global principle for the moduli space of K3 surfaces

Gregorio Baldi

Workshop on Galois representations and K3 surfaces organised by Martin Orr and Alexei
Skorobogatov

02/05/2018

Notations

In this talk we work with:

- K a number field, \bar{K} a fixed algebraic closure, $\operatorname{Gal}(\bar{K} / K)$ its absolute Galois group;

Notations

In this talk we work with:

- K a number field, \bar{K} a fixed algebraic closure, $\operatorname{Gal}(\bar{K} / K)$ its absolute Galois group;
- v a finite a place of K, and we write K_{v} for the associated local field and $\operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)$ for its absolute Galois group. We denote by Frob ${ }_{v}$ the conjugacy class of a lift of a topological generator of the absolute Galois group of the residue field at v;

Notations

In this talk we work with:

- K a number field, \bar{K} a fixed algebraic closure, $\operatorname{Gal}(\bar{K} / K)$ its absolute Galois group;
- v a finite a place of K, and we write K_{v} for the associated local field and $\operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)$ for its absolute Galois group. We denote by Frob ${ }_{v}$ the conjugacy class of a lift of a topological generator of the absolute Galois group of the residue field at v;
- a fixed embedding $\bar{K} \hookrightarrow \mathbb{C}$.

Motivation: section conjecture for the moduli space of abelian varieties

$\mathcal{A}_{\mathrm{g}}:=$ moduli space of p.p.a.v. of dimension g; It is a Deligne-Mumford stack (or an orbifold) defined over \mathbb{Q}.

Motivation: section conjecture for the moduli space of abelian varieties

$\mathcal{A}_{\mathrm{g}}:=$ moduli space of p.p.a.v. of dimension g; It is a Deligne-Mumford stack (or an orbifold) defined over \mathbb{Q}.

Question

Are sections s of $\mathcal{A}_{\mathrm{g}} / K$ locally induced by points induced by global points?

Selmer set and family of Galois representations

When $g>1$ we have:

$$
\begin{gathered}
1 \rightarrow \pi_{1}\left(\mathcal{A}_{g, \mathbb{C}}\right) \longrightarrow \pi_{1}\left(\mathcal{A}_{g}\right) \longrightarrow \operatorname{Gal}(\bar{K} / K) \rightarrow 1 \\
\downarrow \cong \\
1 \longrightarrow \operatorname{Sppp}_{2 \mathrm{~g}}(\widehat{\mathbb{Z}}) \longrightarrow(\widehat{\mathbb{Z}}) \longrightarrow{ }^{\downarrow} \longrightarrow \widehat{\mathbb{Z}}^{*} \longrightarrow 1
\end{gathered}
$$

Selmer set and family of Galois representations

When $g>1$ we have:

Sections $\rightsquigarrow \ell$-adic families of Galois representations.

Selmer set and family of Galois representations

When $g>1$ we have:

Sections $\rightsquigarrow \ell$-adic families of Galois representations.

Question

Is it possible to find some 'local' representation-theoretical properties to ensure that a family of ℓ-adic reps comes from an abelian variety?

Weakly compatible family of ℓ-adic representations

Definition (Weakly compatible, after Serre)

A family $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ is weakly compatible if there exists a finite set of places Σ of K such that
(i) for all ℓ, ρ_{ℓ} is unramified outside the union of Σ and the places Σ_{ℓ} of K dividing ℓ;

Weakly compatible family of ℓ-adic representations

Definition (Weakly compatible, after Serre)

A family $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ is weakly compatible if there exists a finite set of places Σ of K such that
(i) for all ℓ, ρ_{ℓ} is unramified outside the union of Σ and the places Σ_{ℓ} of K dividing ℓ;
(ii) for all $v \notin \Sigma \cup \Sigma_{\ell}$, denoting by Frob_{v} a frobenius element at v, the characteristic polynomial of $\rho_{\ell}\left(\mathrm{Frob}_{v}\right)$ has rational coefficient and it is independent of ℓ.

Weakly compatible family of ℓ-adic representations

Definition (Weakly compatible, after Serre)

A family $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ is weakly compatible if there exists a finite set of places Σ of K such that
(i) for all ℓ, ρ_{ℓ} is unramified outside the union of Σ and the places Σ_{ℓ} of K dividing ℓ;
(ii) for all $v \notin \Sigma \cup \Sigma_{\ell}$, denoting by Frob_{v} a frobenius element at v, the characteristic polynomial of $\rho_{\ell}\left(\mathrm{Frob}_{v}\right)$ has rational coefficient and it is independent of ℓ.

Example (Deligne)

If X is a smooth projective variety defined over $K,\left\{H_{\mathrm{et}}^{i}\left(X_{\bar{K}}, \mathbb{Q}_{\ell}(j)\right)\right\}_{\ell}$ form a weakly compatible system.

Patrikis-Voloch-Zarhin's result (2016)

Let $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{GL}_{2 N}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ be a weakly compatible system such that for some primes $\ell_{0}, \ell_{1}, \ell_{2}$ we have

- $\rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};

Patrikis-Voloch-Zarhin's result (2016)

Let $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{GL}_{2 N}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ be a weakly compatible system such that for some primes $\ell_{0}, \ell_{1}, \ell_{2}$ we have

- $\rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};
- $\rho_{\ell_{1}}$ is absolutely irreducible;

Patrikis-Voloch-Zarhin's result (2016)

Let $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \operatorname{GL}_{2 N}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ be a weakly compatible system such that for some primes $\ell_{0}, \ell_{1}, \ell_{2}$ we have

- $\rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};
- $\rho_{\ell_{1}}$ is absolutely irreducible;
- there is at least one place $v \in \Sigma_{\ell_{2}}$, such that $\rho_{\ell_{2} \mid \operatorname{Gal}\left(\overline{K_{v}}, K_{v}\right)}$ is de Rham with Hodge-Tate weights $-1,0$ each with multiplicity N.

Patrikis-Voloch-Zarhin's result (2016)

Let $\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{2 N}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}$ be a weakly compatible system such that for some primes $\ell_{0}, \ell_{1}, \ell_{2}$ we have

- $\rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};
- $\rho_{\ell_{1}}$ is absolutely irreducible;
- there is at least one place $v \in \Sigma_{\ell_{2}}$, such that $\rho_{\ell_{2} \mid \operatorname{Gal}\left(\overline{K_{v}}, K_{v}\right)}$ is de Rham with Hodge-Tate weights $-1,0$ each with multiplicity N.
Then, assuming some well known conjectures, there exists an abelian variety A defined over K such that $\rho_{\ell} \cong V_{\ell}(A)$ for all ℓ.

Formalism of motives

For any field E of characteristic zero, we denote by

$$
\mathcal{M}_{K, E}
$$

the category of homological motives over K with coefficients in E.

Formalism of motives

For any field E of characteristic zero, we denote by

$$
\mathcal{M}_{K, E}
$$

the category of homological motives over K with coefficients in E. Assuming the Tate conjecture it is a semisimple category and it is equivalent to the category $\operatorname{Rep}\left(\mathcal{G}_{K, E}\right)$ for some pro-reductive group $\mathcal{G}_{K, E}$ (choosing an E-linear fibre functor).

Formalism of motives

For any field E of characteristic zero, we denote by

$$
\mathcal{M}_{K, E}
$$

the category of homological motives over K with coefficients in E. Assuming the Tate conjecture it is a semisimple category and it is equivalent to the category $\operatorname{Rep}\left(\mathcal{G}_{K, E}\right)$ for some pro-reductive group $\mathcal{G}_{K, E}$ (choosing an E-linear fibre functor).
We fix a family of embeddings $\iota_{\ell}: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{\ell}$ and write

$$
H_{\ell}: \mathcal{M}_{K, E} \rightarrow \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Gal}(\bar{K} / K))
$$

for the ℓ-adic realisation functors associated to ι_{ℓ}.

A picture

A picture

The conjecture

Conjecture

Let $r_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)$ be an irreducible geometric Galois representation. Then there exists an object $M \in \mathcal{M}_{K, \overline{\mathbb{Q}}}$ such that

$$
r_{\ell} \otimes \overline{\mathbb{Q}}_{\ell} \cong H_{\ell}(M) \in \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Gal}(\bar{K} / K))
$$

The conjecture

Conjecture

Let $r_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{n}\left(\mathbb{Q}_{\ell}\right)$ be an irreducible geometric Galois representation. Then there exists an object $M \in \mathcal{M}_{K, \overline{\mathbb{Q}}}$ such that

$$
r_{\ell} \otimes \overline{\mathbb{Q}}_{\ell} \cong H_{\ell}(M) \in \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Gal}(\bar{K} / K))
$$

Remark

We work with compatible systems of ℓ-adic reps, rather than a fixed ρ_{ℓ}, to produce an object in \mathcal{M}_{K}, rather than $\mathcal{M}_{K, \overline{\mathbb{Q}}}$.

Some implications

This conjectural description of essential image of the ℓ-adic realisation functor is a consequence of the following well known conjectures:

Some implications

This conjectural description of essential image of the ℓ-adic realisation functor is a consequence of the following well known conjectures:
(1) Tate conjecture (i.e. H_{ℓ} is a full functor);

Some implications

This conjectural description of essential image of the ℓ-adic realisation functor is a consequence of the following well known conjectures:
(1) Tate conjecture (i.e. H_{ℓ} is a full functor);
(2) Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);

Some implications

This conjectural description of essential image of the ℓ-adic realisation functor is a consequence of the following well known conjectures:
(1) Tate conjecture (i.e. H_{ℓ} is a full functor);
(2) Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);
(3) Fontaine-Mazur (an irreducible ℓ-adic Galois representation is geometric iff it comes from geometry).

Some implications

This conjectural description of essential image of the ℓ-adic realisation functor is a consequence of the following well known conjectures:
(1) Tate conjecture (i.e. H_{ℓ} is a full functor);
(2) Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);
(3) Fontaine-Mazur (an irreducible ℓ-adic Galois representation is geometric iff it comes from geometry).

Theorem (B. Moonen (2017))

The Tate conjecture implies the semisimplicity conjecture.

Some implications

This conjectural description of essential image of the ℓ-adic realisation functor is a consequence of the following well known conjectures:
(1) Tate conjecture (i.e. H_{ℓ} is a full functor);
(2) Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);
(3) Fontaine-Mazur (an irreducible ℓ-adic Galois representation is geometric iff it comes from geometry).

Theorem (B. Moonen (2017))

The Tate conjecture implies the semisimplicity conjecture.

K3 surfaces and Galois representations

Question

Given a weakly compatible system of ℓ-adic representations that looks like the cohomology of a K3 surface, is it induced by a K3 surface?

K3 surfaces and Galois representations

Question

Given a weakly compatible system of ℓ-adic representations that looks like the cohomology of a K3 surface, is it induced by a K3 surface?

Irreducibility issue: it is better to work with the transcendental part (i.e the orthogonal compliment of the Neron-Severi in the H^{2}).

K3 surfaces and Galois representations

Question

Given a weakly compatible system of ℓ-adic representations that looks like the cohomology of a K3 surface, is it induced by a K3 surface?

Irreducibility issue: it is better to work with the transcendental part (i.e the orthogonal compliment of the Neron-Severi in the H^{2}).

Question

Given $\left\{\rho_{\ell}\right\}_{\ell}$ a weakly compatible system of ℓ-adic representations of $\operatorname{Gal}(\bar{K} / K)$ that looks like the transcendental part of a K3 surface, can we construct a K3 surface X (defined over K) such that $T\left(X_{\bar{K}}\right)_{\mathbb{Q}_{\ell}} \cong \rho_{\ell}$ for all ls?

Motive of a surface (after Murre-Pedrini)

We can isolate the transcendental part of the motive of a surface X :

$$
h_{2}(X)=\left(h_{a l g}^{2}(X) \oplus t_{2}(X)\right),
$$

where $h_{\text {alg }}^{2}(X)=\left(X, \pi_{2}^{a l g}, 0\right)$ and $t_{2}(X)=\left(X, \pi_{2}^{t r}, 0\right)$, for a refined Künneth decomposition $\pi_{2}=\pi_{2}^{a l g}+\pi_{2}^{t r}$.

Motive of a surface (after Murre-Pedrini)

We can isolate the transcendental part of the motive of a surface X :

$$
h_{2}(X)=\left(h_{a l g}^{2}(X) \oplus t_{2}(X)\right),
$$

where $h_{\text {alg }}^{2}(X)=\left(X, \pi_{2}^{a l g}, 0\right)$ and $t_{2}(X)=\left(X, \pi_{2}^{t r}, 0\right)$, for a refined Künneth decomposition $\pi_{2}=\pi_{2}^{a l g}+\pi_{2}^{t r}$. We have

$$
\begin{gathered}
H_{B}\left(h_{a l g}^{2}(X) \oplus t_{2}(X)\right)=\mathrm{NS}(X)_{\mathbb{Q}} \oplus T(X)_{\mathbb{Q}} \\
H_{\ell}\left(h_{a l g}^{2}(X) \oplus t_{2}(X)\right)=\operatorname{NS}\left(X_{\bar{K}}\right)_{\mathbb{Q}_{\ell}} \oplus T\left(X_{\bar{K}}\right)_{\mathbb{Q}_{\ell}}
\end{gathered}
$$

Local conditions

For a refined Fontaine-Mazur we need to work with the following local conditions:
(1) For some prime $\ell_{0}, \rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};

Local conditions

For a refined Fontaine-Mazur we need to work with the following local conditions:
(1) For some prime $\ell_{0}, \rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};
(2) For some prime $\ell_{1}, \rho_{\ell_{1}}$ is absolutely irreducible;

Local conditions

For a refined Fontaine-Mazur we need to work with the following local conditions:
(1) For some prime $\ell_{0}, \rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};
(2) For some prime $\ell_{1}, \rho_{\ell_{1}}$ is absolutely irreducible;
(3) For some prime ℓ_{2} and at least one place $v \in \Sigma_{\ell_{2}}, \rho_{\ell_{2} \mid \operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)}$ is de Rham with Hodge-Tate weights of a K3 surface, and multiplicities, respectively, $1,20-\rho, 1$.

Local conditions

For a refined Fontaine-Mazur we need to work with the following local conditions:
(1) For some prime $\ell_{0}, \rho_{\ell_{0}}$ is de Rham at all places of K above ℓ_{0};
(2) For some prime $\ell_{1}, \rho_{\ell_{1}}$ is absolutely irreducible;
(3) For some prime ℓ_{2} and at least one place $v \in \Sigma_{\ell_{2}}, \rho_{\ell_{2} \mid \operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)}$ is de Rham with Hodge-Tate weights of a K3 surface, and multiplicities, respectively, $1,20-\rho, 1$.
Note that condition (3) is satisfied if there exists a $K 3$ surface X_{v} / K_{v} of Picard rank ρ and $\rho_{\ell_{2} \mid \operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)}$ is isomorphic to the representation induced by $T\left(X_{\overline{K_{v}}}\right) \mathbb{Q}_{\ell}$.

Main theorem

Theorem

Let $\rho \in \mathbb{N}$ be such that $2<22-\rho \leq 10$. Assume the Tate, Fontaine-Mazur and the Hodge conjecture. Let

$$
\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{22-\rho}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}
$$

be a weakly compatible family of ℓ-adic representations satisfying the conditions (1), (2), (3).

Main theorem

Theorem

Let $\rho \in \mathbb{N}$ be such that $2<22-\rho \leq 10$. Assume the Tate, Fontaine-Mazur and the Hodge conjecture. Let

$$
\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{22-\rho}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}
$$

be a weakly compatible family of ℓ-adic representations satisfying the conditions (1), (2), (3).
Then there exists a simple motive M defined over K inducing the representations ρ_{ℓ}

Main theorem

Theorem

Let $\rho \in \mathbb{N}$ be such that $2<22-\rho \leq 10$. Assume the Tate, Fontaine-Mazur and the Hodge conjecture. Let

$$
\left\{\rho_{\ell}: \operatorname{Gal}(\bar{K} / K) \rightarrow \mathrm{GL}_{22-\rho}\left(\mathbb{Q}_{\ell}\right)\right\}_{\ell}
$$

be a weakly compatible family of ℓ-adic representations satisfying the conditions (1), (2), (3).
Then there exists a simple motive M defined over K inducing the representations ρ_{ℓ} and a finite extension L / K, such that the base change of M to L is isomorphic to the transcendental part of the motive of a K3 surface defined over L.

Strategy of the proof

- From $\left\{\rho_{\ell}\right\}$ construct a motive M defined over K inducing $\left\{\rho_{\ell}\right\}_{\ell}$ and giving a Hodge structure of K3 type;

Strategy of the proof

- From $\left\{\rho_{\ell}\right\}$ construct a motive M defined over K inducing $\left\{\rho_{\ell}\right\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;

Strategy of the proof

- From $\left\{\rho_{\ell}\right\}$ construct a motive M defined over K inducing $\left\{\rho_{\ell}\right\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;
- Descend the K3 to a number field (using the fact that $t_{2}(X) \cong M_{\mid \mathbb{C}}$).

Strategy of the proof

- From $\left\{\rho_{\ell}\right\}$ construct a motive M defined over K inducing $\left\{\rho_{\ell}\right\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;
- Descend the K3 to a number field (using the fact that $t_{2}(X) \cong M_{\mid \mathbb{C}}$).

Two problems:

- We do not have enough information to reconstruct the algebraic part of the H^{2}. This is why we need a finite extension...

Strategy of the proof

- From $\left\{\rho_{\ell}\right\}$ construct a motive M defined over K inducing $\left\{\rho_{\ell}\right\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;
- Descend the K3 to a number field (using the fact that $t_{2}(X) \cong M_{\mid \mathbb{C}}$).

Two problems:

- We do not have enough information to reconstruct the algebraic part of the H^{2}. This is why we need a finite extension...
- the transcendental part determines the full H^{2} only in particular cases (Nikulin)...

Proof

Choosing a place ℓ_{0} as in (1), our conjectural description of the essential image of $H_{\ell_{0}}$ ensures the existence of a motivic Galois representation

$$
\rho: \mathcal{G}_{K, E} \rightarrow \mathrm{GL}_{22-\rho, E}
$$

for some number field E, such that $H_{\ell_{0}}(\rho) \cong \rho_{\ell_{0}} \otimes \overline{\mathbb{Q}}_{\ell_{0}}$ (the same holds for every ℓ).

Proof

Choosing a place ℓ_{0} as in (1), our conjectural description of the essential image of $H_{\ell_{0}}$ ensures the existence of a motivic Galois representation

$$
\rho: \mathcal{G}_{K, E} \rightarrow \mathrm{GL}_{22-\rho, E}
$$

for some number field E, such that $H_{\ell_{0}}(\rho) \cong \rho_{\ell_{0}} \otimes \overline{\mathbb{Q}}_{\ell_{0}}$ (the same holds for every ℓ). The obstruction to descending ρ to a \mathbb{Q}-rational representation of \mathcal{G}_{K} is an element obs $\rho_{\rho} \in H^{1}\left(\operatorname{Gal}(E / \mathbb{Q}), \mathrm{PGL}_{22-\rho}(E)\right)$.

Lemma ($\mathrm{P}-\mathrm{V}-\mathrm{Z}$)
In fact obs ρ_{ρ} lies in

$$
\operatorname{ker}\left(H^{1}\left(\operatorname{Gal}(E / \mathbb{Q}), \mathrm{PGL}_{22-\rho}(E)\right) \rightarrow \prod_{\ell}\left(\operatorname{Gal}\left(E_{\lambda} / \mathbb{Q}_{\lambda}\right), \mathrm{PGL}_{22-\rho}\left(E_{\lambda}\right)\right)\right)
$$

This shows that the compatible system $\left\{\rho_{\ell}\right\}_{\ell}$ arises as the ℓ-adic realisations of a motive $M \in \mathcal{M}_{K}$ of rank $22-\rho$.

This shows that the compatible system $\left\{\rho_{\ell}\right\}_{\ell}$ arises as the ℓ-adic realisations of a motive $M \in \mathcal{M}_{K}$ of rank $22-\rho$. Since $\rho_{\ell_{1}}$ is absolutely irreducible, M is absolutely simple.

This shows that the compatible system $\left\{\rho_{\ell}\right\}_{\ell}$ arises as the ℓ-adic realisations of a motive $M \in \mathcal{M}_{K}$ of rank $22-\rho$. Since $\rho_{\ell_{1}}$ is absolutely irreducible, M is absolutely simple. Working at the prime ℓ_{2}, where $\rho_{\ell_{2} \mid \operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)}$ is de Rham with Hodge-Tate weights of a K3 surface, we have a comparison isomorphism

$$
H_{d R}(M) \otimes_{K} K_{v} \cong D_{d R, K_{v}}\left(H_{\ell_{2}}(M)\right)
$$

This shows that the compatible system $\left\{\rho_{\ell}\right\}_{\ell}$ arises as the ℓ-adic realisations of a motive $M \in \mathcal{M}_{K}$ of rank $22-\rho$. Since $\rho_{\ell_{1}}$ is absolutely irreducible, M is absolutely simple. Working at the prime ℓ_{2}, where $\rho_{\ell_{2} \mid \operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)}$ is de Rham with Hodge-Tate weights of a K3 surface, we have a comparison isomorphism

$$
H_{d R}(M) \otimes_{K} K_{v} \cong D_{d R, K_{v}}\left(H_{\ell_{2}}(M)\right)
$$

Tanks to the Betti-de Rham comparison isomorphism we conclude that $H_{B}\left(M_{\mid \mathbb{C}}\right)$ is a polarizable rational Hodge structure of weight two and with Hodge numbers $1-(20-\rho)-1$, since $\rho_{\ell_{2} \mid \operatorname{Gal}\left(\bar{K}_{v} / K_{v}\right)}$ has such multiplicities.

Surjectivity of the period map

We may apply the following proposition to obtain a a K 3 surface X / \mathbb{C} with transcendental part isomorphic to $H_{B}\left(M_{\mid \mathbb{C}}\right)$.

Surjectivity of the period map

We may apply the following proposition to obtain a a K 3 surface X / \mathbb{C} with transcendental part isomorphic to $H_{B}\left(M_{\mid \mathbb{C}}\right)$.

Proposition (van Geemen)

Let (V, h, ψ) be a \mathbb{Q}-PHS of K3 type with $\operatorname{End}_{H d g}(V)=\mathbb{Q}$, and

$$
3 \leq \operatorname{dim} V \leq 10
$$

Choose a free \mathbb{Z}-module $T \subset V$, compatibly with the Hodge structure, of rank $\operatorname{dim}_{\mathbb{Q}} V$ such that ψ is integer valued on $T \times T$. Then there exists a K3 surface X / \mathbb{C} with $T(X) \cong T$ as integral polarised Hodge structure.

Surjectivity of the period map

We may apply the following proposition to obtain a a K 3 surface X / \mathbb{C} with transcendental part isomorphic to $H_{B}\left(M_{\mid \mathbb{C}}\right)$.

Proposition (van Geemen)

Let (V, h, ψ) be a \mathbb{Q}-PHS of K3 type with $\operatorname{End}_{H d g}(V)=\mathbb{Q}$, and

$$
3 \leq \operatorname{dim} V \leq 10
$$

Choose a free \mathbb{Z}-module $T \subset V$, compatibly with the Hodge structure, of rank $\operatorname{dim}_{\mathbb{Q}} V$ such that ψ is integer valued on $T \times T$. Then there exists a K3 surface X / \mathbb{C} with $T(X) \cong T$ as integral polarised Hodge structure.

Under these numerical constraints, a theorem Nikulin shows that there exists a primitive embedding of lattices

$$
T \hookrightarrow \Lambda_{K 3} .
$$

We have constructed a $\mathrm{K} 3 X / \mathbb{C}$ such that

$$
T(X)_{\mathbb{Q}} \cong H_{B}\left(M_{\mid \mathbb{C}}\right)
$$

We have constructed a $\mathrm{K} 3 X / \mathbb{C}$ such that

$$
T(X)_{\mathbb{Q}} \cong H_{B}\left(M_{\mid \mathbb{C}}\right)
$$

Thanks to the Hodge conjecture we can lift the isomorphism of Hodge structures to get an isomorphism at the level of motives:

$$
t_{2}(X) \cong M_{\mid \mathbb{C}} \in \mathcal{M}_{\mathbb{C}}
$$

where $t_{2}(X)$ is the transcendental part of the motive of X

Since M is defined over a number field, for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$, we have the following chain of isomorphisms:

$$
{ }^{\sigma} t_{2}(X) \cong{ }^{\sigma} M_{\mid \mathbb{C}}=M_{\mid \mathbb{C}} \cong t_{2}(X) \in \mathcal{M}_{\mathbb{C}}
$$

Since M is defined over a number field, for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$, we have the following chain of isomorphisms:

$$
{ }^{\sigma} t_{2}(X) \cong{ }^{\sigma} M_{\mid \mathbb{C}}=M_{\mid \mathbb{C}} \cong t_{2}(X) \in \mathcal{M}_{\mathbb{C}}
$$

It follows that, for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$ we have an isomorphism of \mathbb{Q}-PHS

$$
T(X)_{\mathbb{Q}} \cong T\left({ }^{\sigma} X\right)_{\mathbb{Q}}
$$

Descent

We are left to prove the following.
Theorem
Let X / \mathbb{C} be a $K 3$ surface such that for all $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$ we have an isomorphism of \mathbb{Q}-PHS

$$
T(X)_{\mathbb{Q}} \cong T\left({ }^{\sigma} X\right)_{\mathbb{Q}}
$$

Then X admits a model defined over $\overline{\mathbb{Q}}$.

The descent theorem then follows from the following two remarks:

The descent theorem then follows from the following two remarks:

- The number of complex K 3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;

The descent theorem then follows from the following two remarks:

- The number of complex K 3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;
- If all the conjugates of X fall into countably many isomorphism classes, then X descends to a number field.

The descent theorem then follows from the following two remarks:

- The number of complex K 3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;
- If all the conjugates of X fall into countably many isomorphism classes, then X descends to a number field.

Proof.

For the first point, use the fact there X admits only finitely many Fourier-Mukai partners (Mukai).

The descent theorem then follows from the following two remarks:

- The number of complex K 3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;
- If all the conjugates of X fall into countably many isomorphism classes, then X descends to a number field.

Proof.

For the first point, use the fact there X admits only finitely many
Fourier-Mukai partners (Mukai).
For the second, use that K3s (with some extra structure) have a fine moduli space defined over $\overline{\mathbb{Q}}$ (Rizov).

How to get rid of the extension L / K ?

Question

Assume that \mathcal{M}_{K} is a semisimple neutral Tannakian category over \mathbb{Q}. Let $M \in \mathcal{M}_{K}$ be a simple motive defined over some number field K. Assume there exists a finite extension L / K such that M_{L} is isomorphic to the transcendental part of the motive of Y_{L}, a K3 surface defined over L. Is there a K3 surface X defined over K such that

$$
t_{2}(X) \cong M \in \mathcal{M}_{K} .
$$

Answer for abelian varieties

Proposition

Let K be a number field, and assume that the category \mathcal{M}_{K} is a semisimple neutral Tannakian category over \mathbb{Q}. Let $M \in \mathcal{M}_{K}$ be a simple motive such that, after a finite extension L / K,

$$
M_{L} \cong H_{1}\left(A_{L}\right) \in \mathcal{M}_{L}
$$

for some abelian variety A_{L} defined over L.

Answer for abelian varieties

Proposition

Let K be a number field, and assume that the category \mathcal{M}_{K} is a semisimple neutral Tannakian category over \mathbb{Q}. Let $M \in \mathcal{M}_{K}$ be a simple motive such that, after a finite extension L / K,

$$
M_{L} \cong H_{1}\left(A_{L}\right) \in \mathcal{M}_{L}
$$

for some abelian variety A_{L} defined over L.
Then there exists an abelian variety A / K such that

$$
M \cong H_{1}(A) \in \mathcal{M}_{K} .
$$

Proof

Faltings proved that the following functor is full (and faithful):

$$
H_{1}(-): \mathrm{AV}_{K}^{0} \rightarrow \mathcal{M}_{K}, \quad B \mapsto H_{1}(B)
$$

Consider the K-ab. var. $\operatorname{Res}_{L, K}\left(A_{L}\right)$ and notice that $H_{1}\left(\operatorname{Res}_{L, K}\left(A_{L}\right)\right)$ corresponds to $\operatorname{Ind}_{L}^{K}\left(H_{1}\left(A_{L}\right)\right)$.

Proof

Faltings proved that the following functor is full (and faithful):

$$
H_{1}(-): \mathrm{AV}_{K}^{0} \rightarrow \mathcal{M}_{K}, \quad B \mapsto H_{1}(B)
$$

Consider the K-ab. var. $\operatorname{Res}_{L, K}\left(A_{L}\right)$ and notice that $H_{1}\left(\operatorname{Res}_{L, K}\left(A_{L}\right)\right)$ corresponds to $\operatorname{Ind}_{L}^{K}\left(H_{1}\left(A_{L}\right)\right)$. Since $M_{L} \cong H_{1}\left(A_{L}\right)$, Frobenius reciprocity implies that

$$
\operatorname{Hom}_{\mathcal{M}_{K}}\left(M, \operatorname{lnd}_{L}^{K}\left(H_{1}\left(A_{L}\right)\right)\right) \neq 0
$$

Since M is simple, an element in such Hom-set realizes M as a direct summand of $H_{1}\left(\operatorname{Res}_{L, K}\left(A_{L}\right)\right)$ in \mathcal{M}_{K}, therefore in AV_{K}^{0}.

Proof

Faltings proved that the following functor is full (and faithful):

$$
H_{1}(-): \mathrm{AV}_{K}^{0} \rightarrow \mathcal{M}_{K}, \quad B \mapsto H_{1}(B)
$$

Consider the K-ab. var. $\operatorname{Res}_{L, K}\left(A_{L}\right)$ and notice that $H_{1}\left(\operatorname{Res}_{L, K}\left(A_{L}\right)\right)$ corresponds to $\operatorname{Ind}_{L}^{K}\left(H_{1}\left(A_{L}\right)\right)$. Since $M_{L} \cong H_{1}\left(A_{L}\right)$, Frobenius reciprocity implies that

$$
\operatorname{Hom}_{\mathcal{M}_{K}}\left(M, \operatorname{Ind}_{L}^{K}\left(H_{1}\left(A_{L}\right)\right)\right) \neq 0
$$

Since M is simple, an element in such Hom-set realizes M as a direct summand of $H_{1}\left(\operatorname{Res}_{L, K}\left(A_{L}\right)\right)$ in \mathcal{M}_{K}, therefore in AV_{K}^{0}. Otherwise stated there exists an endomorphism of $\operatorname{Res}_{L, K}\left(A_{L}\right)$ whose image is an abelian variety A / K such that $H_{1}(A) \cong M \in \mathcal{M}_{K}$.

THANKS FOR YOUR ATTENTION!

