Local to global principle for the moduli space of K3 surfaces

Gregorio Baldi

Workshop on Galois representations and K3 surfaces organised by Martin Orr and Alexei Skorobogatov

02/05/2018

G. Baldi

02/05/2018 1 / 27

In this talk we work with:

• K a number field, \overline{K} a fixed algebraic closure, ${\rm Gal}(\overline{K}/K)$ its absolute Galois group;

In this talk we work with:

- K a number field, \overline{K} a fixed algebraic closure, ${\rm Gal}(\overline{K}/K)$ its absolute Galois group;
- v a finite a place of K, and we write K_v for the associated local field and $\operatorname{Gal}(\overline{K}_v/K_v)$ for its absolute Galois group. We denote by Frob_v the conjugacy class of a lift of a topological generator of the absolute Galois group of the residue field at v;

In this talk we work with:

- K a number field, \overline{K} a fixed algebraic closure, ${\rm Gal}(\overline{K}/K)$ its absolute Galois group;
- v a finite a place of K, and we write K_v for the associated local field and $\operatorname{Gal}(\overline{K}_v/K_v)$ for its absolute Galois group. We denote by Frob_v the conjugacy class of a lift of a topological generator of the absolute Galois group of the residue field at v;
- a fixed embedding $\overline{K} \hookrightarrow \mathbb{C}$.

Motivation: section conjecture for the moduli space of abelian varieties

 $\mathcal{A}_{g} :=$ moduli space of p.p.a.v. of dimension g; It is a Deligne-Mumford stack (or an orbifold) defined over \mathbb{Q} .

• □ > • # # > • # > •

Motivation: section conjecture for the moduli space of abelian varieties

- $\mathcal{A}_{\mathrm{g}}:=$ moduli space of p.p.a.v. of dimension g;
- It is a Deligne-Mumford stack (or an orbifold) defined over $\mathbb{Q}.$

Question

Are sections s of A_g/K locally induced by points induced by global points?

・ロト ・ 同ト ・ ヨト ・ 王

Selmer set and family of Galois representations

When g > 1 we have:

02/05/2018 4 / 27

Selmer set and family of Galois representations

When g > 1 we have:

Sections $\rightsquigarrow \ell$ -adic families of Galois representations.

Selmer set and family of Galois representations

When g > 1 we have:

Sections $\rightsquigarrow \ell$ -adic families of Galois representations.

Question

Is it possible to find some 'local' representation-theoretical properties to ensure that a family of ℓ -adic reps comes from an abelian variety?

02/05/2018 5 / 27

Weakly compatible family of ℓ -adic representations

Definition (Weakly compatible, after Serre)

- A family $\{\rho_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_n(\mathbb{Q}_{\ell})\}_{\ell}$ is weakly compatible if there exists a finite set of places Σ of K such that
 - (i) for all ℓ , ρ_{ℓ} is unramified outside the union of Σ and the places Σ_{ℓ} of K dividing ℓ ;

Definition (Weakly compatible, after Serre)

A family $\{\rho_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_n(\mathbb{Q}_{\ell})\}_{\ell}$ is weakly compatible if there exists a finite set of places Σ of K such that

- (i) for all ℓ , ρ_{ℓ} is unramified outside the union of Σ and the places Σ_{ℓ} of K dividing ℓ ;
- (ii) for all $v \notin \Sigma \cup \Sigma_{\ell}$, denoting by Frob_{v} a frobenius element at v, the characteristic polynomial of $\rho_{\ell}(\operatorname{Frob}_{v})$ has rational coefficient and it is independent of ℓ .

Definition (Weakly compatible, after Serre)

A family $\{\rho_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_n(\mathbb{Q}_{\ell})\}_{\ell}$ is weakly compatible if there exists a finite set of places Σ of K such that

- (i) for all ℓ , ρ_{ℓ} is unramified outside the union of Σ and the places Σ_{ℓ} of K dividing ℓ ;
- (ii) for all $v \notin \Sigma \cup \Sigma_{\ell}$, denoting by Frob_{v} a frobenius element at v, the characteristic polynomial of $\rho_{\ell}(\operatorname{Frob}_{v})$ has rational coefficient and it is independent of ℓ .

Example (Deligne)

If X is a smooth projective variety defined over K, $\{H^i_{\text{et}}(X_{\overline{K}}, \mathbb{Q}_{\ell}(j))\}_{\ell}$ form a weakly compatible system.

イロト イポト イヨト イヨト

Let $\{\rho_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{2N}(\mathbb{Q}_{\ell})\}_{\ell}$ be a weakly compatible system such that for some primes ℓ_0 , ℓ_1 , ℓ_2 we have

• ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;

Let $\{\rho_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{2N}(\mathbb{Q}_{\ell})\}_{\ell}$ be a weakly compatible system such that for some primes ℓ_0 , ℓ_1 , ℓ_2 we have

- ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;
- ρ_{ℓ_1} is absolutely irreducible;

Let $\{\rho_{\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{2N}(\mathbb{Q}_{\ell})\}_{\ell}$ be a weakly compatible system such that for some primes ℓ_0 , ℓ_1 , ℓ_2 we have

- ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;
- ρ_{ℓ_1} is absolutely irreducible;
- there is at least one place $v \in \Sigma_{\ell_2}$, such that $\rho_{\ell_2|\operatorname{Gal}(\overline{K_v},K_v)}$ is de Rham with Hodge-Tate weights -1, 0 each with multiplicity N.

Let $\{\rho_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{2N}(\mathbb{Q}_{\ell})\}_{\ell}$ be a weakly compatible system such that for some primes ℓ_0 , ℓ_1 , ℓ_2 we have

- ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;
- ρ_{ℓ_1} is absolutely irreducible;
- there is at least one place $v \in \Sigma_{\ell_2}$, such that $\rho_{\ell_2|\operatorname{Gal}(\overline{K_v},K_v)}$ is de Rham with Hodge-Tate weights -1, 0 each with multiplicity N.

Then, assuming some well known conjectures, there exists an abelian variety A defined over K such that $\rho_{\ell} \cong V_{\ell}(A)$ for all ℓ .

For any field ${\boldsymbol E}$ of characteristic zero, we denote by

 $\mathcal{M}_{K,E}$

the category of homological motives over K with coefficients in E.

For any field ${\boldsymbol E}$ of characteristic zero, we denote by

 $\mathcal{M}_{K,E}$

the category of homological motives over K with coefficients in E. Assuming the Tate conjecture it is a semisimple category and it is equivalent to the category $\operatorname{Rep}(\mathcal{G}_{K,E})$ for some pro-reductive group $\mathcal{G}_{K,E}$ (choosing an E-linear fibre functor). For any field ${\boldsymbol E}$ of characteristic zero, we denote by

$$\mathcal{M}_{K,E}$$

the category of homological motives over K with coefficients in E. Assuming the Tate conjecture it is a semisimple category and it is equivalent to the category $\operatorname{Rep}(\mathcal{G}_{K,E})$ for some pro-reductive group $\mathcal{G}_{K,E}$ (choosing an E-linear fibre functor). We fix a family of embeddings $\iota_{\ell}: \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}_{\ell}$ and write

$$H_{\ell}: \mathcal{M}_{K,E} \to \mathsf{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\mathrm{Gal}(\overline{K}/K))$$

for the ℓ -adic realisation functors associated to ι_{ℓ} .

A picture

A picture

Conjecture

Let $r_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_n(\mathbb{Q}_{\ell})$ be an irreducible geometric Galois representation. Then there exists an object $M \in \mathcal{M}_{K,\overline{\mathbb{Q}}}$ such that

$$r_{\ell} \otimes \overline{\mathbb{Q}}_{\ell} \cong H_{\ell}(M) \in \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Gal}(\overline{K}/K)).$$

Conjecture

Let $r_{\ell} : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_n(\mathbb{Q}_{\ell})$ be an irreducible geometric Galois representation. Then there exists an object $M \in \mathcal{M}_{K,\overline{\mathbb{Q}}}$ such that

$$r_{\ell} \otimes \overline{\mathbb{Q}}_{\ell} \cong H_{\ell}(M) \in \operatorname{Rep}_{\overline{\mathbb{Q}}_{\ell}}(\operatorname{Gal}(\overline{K}/K)).$$

Remark

We work with compatible systems of ℓ -adic reps, rather than a fixed ρ_{ℓ} , to produce an object in \mathcal{M}_{K} , rather than $\mathcal{M}_{K,\overline{\mathbb{O}}}$.

~	D	
G.	Βа	ldı

・ロト ・聞ト ・ヨト ・ヨト

3 X 3

• Tate conjecture (i.e. H_{ℓ} is a full functor);

- Tate conjecture (i.e. H_{ℓ} is a full functor);
- **2** Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);

- Tate conjecture (i.e. H_{ℓ} is a full functor);
- Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);
- Solution Fontaine-Mazur (an irreducible *l*-adic Galois representation is *geometric* iff it comes from geometry).

- Tate conjecture (i.e. H_{ℓ} is a full functor);
- Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);
- Solution Fontaine-Mazur (an irreducible *l*-adic Galois representation is geometric iff it comes from geometry).

Theorem (B. Moonen (2017))

The Tate conjecture implies the semisimplicity conjecture.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Tate conjecture (i.e. H_{ℓ} is a full functor);
- Serre's semisimplicity conjecture (i.e. H_{ℓ} takes value in semisimple Galois reps);
- Solution Fontaine-Mazur (an irreducible *l*-adic Galois representation is geometric iff it comes from geometry).

Theorem (B. Moonen (2017))

The Tate conjecture implies the semisimplicity conjecture.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question

Given a weakly compatible system of ℓ -adic representations that looks like the cohomology of a K3 surface, is it induced by a K3 surface?

Question

Given a weakly compatible system of ℓ -adic representations that looks like the cohomology of a K3 surface, is it induced by a K3 surface?

Irreducibility issue: it is better to work with the transcendental part (i.e the orthogonal compliment of the Neron-Severi in the H^2).

Question

Given a weakly compatible system of ℓ -adic representations that looks like the cohomology of a K3 surface, is it induced by a K3 surface?

Irreducibility issue: it is better to work with the transcendental part (i.e the orthogonal compliment of the Neron-Severi in the H^2).

Question

Given $\{\rho_\ell\}_\ell$ a weakly compatible system of ℓ -adic representations of $\operatorname{Gal}(\overline{K}/K)$ that looks like the transcendental part of a K3 surface, can we construct a K3 surface X (defined over K) such that $T(X_{\overline{K}})_{\mathbb{Q}_\ell} \cong \rho_\ell$ for all ℓ s?

We can isolate the transcendental part of the motive of a surface X:

$$h_2(X) = \left(h_{alg}^2(X) \oplus t_2(X)\right),\,$$

where $h_{alg}^2(X) = (X, \pi_2^{alg}, 0)$ and $t_2(X) = (X, \pi_2^{tr}, 0)$, for a refined Künneth decomposition $\pi_2 = \pi_2^{alg} + \pi_2^{tr}$.

We can isolate the transcendental part of the motive of a surface X:

$$h_2(X) = \left(h_{alg}^2(X) \oplus t_2(X)\right),\,$$

where $h_{alg}^2(X) = (X, \pi_2^{alg}, 0)$ and $t_2(X) = (X, \pi_2^{tr}, 0)$, for a refined Künneth decomposition $\pi_2 = \pi_2^{alg} + \pi_2^{tr}$. We have

$$H_B(h_{alg}^2(X) \oplus t_2(X)) = \mathrm{NS}(X)_{\mathbb{Q}} \oplus T(X)_{\mathbb{Q}},$$
$$H_\ell(h_{alg}^2(X) \oplus t_2(X)) = \mathrm{NS}(X_{\overline{K}})_{\mathbb{Q}_\ell} \oplus T(X_{\overline{K}})_{\mathbb{Q}_\ell}.$$

G. Baldi

02/05/2018 13 / 27

For a *refined Fontaine-Mazur* we need to work with the following local conditions:

() For some prime ℓ_0 , ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;

э

For a *refined Fontaine-Mazur* we need to work with the following local conditions:

- **9** For some prime ℓ_0 , ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;
- 2 For some prime ℓ_1 , ρ_{ℓ_1} is absolutely irreducible;

For a *refined Fontaine-Mazur* we need to work with the following local conditions:

- **9** For some prime ℓ_0 , ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;
- 2 For some prime ℓ_1 , ρ_{ℓ_1} is absolutely irreducible;
- For some prime ℓ_2 and at least one place $v \in \Sigma_{\ell_2}$, $\rho_{\ell_2|\operatorname{Gal}(\overline{K}_v/K_v)}$ is de Rham with Hodge-Tate weights of a K3 surface, and multiplicities, respectively, $1, 20 \rho, 1$.

For a *refined Fontaine-Mazur* we need to work with the following local conditions:

- **9** For some prime ℓ_0 , ρ_{ℓ_0} is de Rham at all places of K above ℓ_0 ;
- 2 For some prime ℓ_1 , ρ_{ℓ_1} is absolutely irreducible;
- For some prime ℓ_2 and at least one place $v \in \Sigma_{\ell_2}$, $\rho_{\ell_2|\operatorname{Gal}(\overline{K}_v/K_v)}$ is de Rham with Hodge-Tate weights of a K3 surface, and multiplicities, respectively, $1, 20 \rho, 1$.

Note that condition (3) is satisfied if there exists a K3 surface X_v/K_v of Picard rank ρ and $\rho_{\ell_2|\operatorname{Gal}(\overline{K}_v/K_v)}$ is isomorphic to the representation induced by $T(X_{\overline{K_v}})_{\mathbb{Q}_\ell}$.

(日) (四) (日) (日) (日)

Theorem

Let $\rho \in \mathbb{N}$ be such that $2 < 22 - \rho \le 10$. Assume the Tate, Fontaine-Mazur and the Hodge conjecture. Let

 $\{\rho_{\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{22-\rho}(\mathbb{Q}_{\ell})\}_{\ell}$

be a weakly compatible family of ℓ -adic representations satisfying the conditions (1), (2), (3).

Theorem

Let $\rho \in \mathbb{N}$ be such that $2 < 22 - \rho \le 10$. Assume the Tate, Fontaine-Mazur and the Hodge conjecture. Let

 $\{\rho_{\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{22-\rho}(\mathbb{Q}_{\ell})\}_{\ell}$

be a weakly compatible family of ℓ -adic representations satisfying the conditions (1), (2), (3). Then there exists a simple motive M defined over K inducing the representations ρ_{ℓ}

(日) (四) (日) (日) (日)

Theorem

Let $\rho \in \mathbb{N}$ be such that $2 < 22 - \rho \le 10$. Assume the Tate, Fontaine-Mazur and the Hodge conjecture. Let

 $\{\rho_{\ell}: \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_{22-\rho}(\mathbb{Q}_{\ell})\}_{\ell}$

be a weakly compatible family of ℓ -adic representations satisfying the conditions (1), (2), (3).

Then there exists a simple motive M defined over K inducing the representations ρ_{ℓ} and a finite extension L/K, such that the base change of M to L is isomorphic to the transcendental part of the motive of a K3 surface defined over L.

• From $\{\rho_\ell\}$ construct a motive M defined over K inducing $\{\rho_\ell\}_\ell$ and giving a Hodge structure of K3 type;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- From $\{\rho_\ell\}$ construct a motive M defined over K inducing $\{\rho_\ell\}_\ell$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;

- From $\{\rho_{\ell}\}$ construct a motive M defined over K inducing $\{\rho_{\ell}\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;
- Descend the K3 to a number field (using the fact that $t_2(X) \cong M_{|\mathbb{C}}$).

- From $\{\rho_{\ell}\}$ construct a motive M defined over K inducing $\{\rho_{\ell}\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;
- Descend the K3 to a number field (using the fact that $t_2(X) \cong M_{|\mathbb{C}}$).

Two problems:

• We do not have enough information to reconstruct the algebraic part of the H^2 . This is why we need a finite extension...

- From $\{\rho_{\ell}\}$ construct a motive M defined over K inducing $\{\rho_{\ell}\}_{\ell}$ and giving a Hodge structure of K3 type;
- Construct a complex K3 X from that Hodge structure;
- Descend the K3 to a number field (using the fact that $t_2(X) \cong M_{|\mathbb{C}}$).

Two problems:

- We do not have enough information to reconstruct the algebraic part of the H^2 . This is why we need a finite extension...
- the transcendental part determines the full H^2 only in particular cases (Nikulin)...

Proof

Choosing a place ℓ_0 as in (1), our conjectural description of the essential image of H_{ℓ_0} ensures the existence of a motivic Galois representation

$$\rho: \mathcal{G}_{K,E} \to \mathsf{GL}_{22-\rho,E}$$

for some number field E, such that $H_{\ell_0}(\rho) \cong \rho_{\ell_0} \otimes \overline{\mathbb{Q}}_{\ell_0}$ (the same holds for every ℓ).

Proof

Choosing a place ℓ_0 as in (1), our conjectural description of the essential image of H_{ℓ_0} ensures the existence of a motivic Galois representation

$$\rho: \mathcal{G}_{K,E} \to \mathsf{GL}_{22-\rho,E}$$

for some number field E, such that $H_{\ell_0}(\rho) \cong \rho_{\ell_0} \otimes \overline{\mathbb{Q}}_{\ell_0}$ (the same holds for every ℓ). The obstruction to descending ρ to a \mathbb{Q} -rational representation of \mathcal{G}_K is an element $\operatorname{obs}_{\rho} \in H^1(\operatorname{Gal}(E/\mathbb{Q}), \operatorname{PGL}_{22-\rho}(E))$.

Lemma (P-V-Z)

In fact obs_{ρ} lies in

$$\ker(H^1(\operatorname{Gal}(E/\mathbb{Q}),\operatorname{PGL}_{22-\rho}(E))\to \prod_{\ell}(\operatorname{Gal}(E_{\lambda}/\mathbb{Q}_{\lambda}),\operatorname{PGL}_{22-\rho}(E_{\lambda}))).$$

イロト イポト イヨト イヨト

This shows that the compatible system $\{\rho_\ell\}_\ell$ arises as the ℓ -adic realisations of a motive $M \in \mathcal{M}_K$ of rank $22 - \rho$.

B > B

This shows that the compatible system $\{\rho_\ell\}_\ell$ arises as the ℓ -adic realisations of a motive $M \in \mathcal{M}_K$ of rank $22 - \rho$. Since ρ_{ℓ_1} is absolutely irreducible, M is absolutely simple.

3

This shows that the compatible system $\{\rho_\ell\}_\ell$ arises as the ℓ -adic realisations of a motive $M \in \mathcal{M}_K$ of rank $22 - \rho$. Since ρ_{ℓ_1} is absolutely irreducible, M is absolutely simple. Working at the prime ℓ_2 , where $\rho_{\ell_2|\operatorname{Gal}(\overline{K}_v/K_v)}$ is de Rham with Hodge-Tate weights of a K3 surface, we have a comparison isomorphism

$$H_{dR}(M) \otimes_K K_v \cong D_{dR,K_v}(H_{\ell_2}(M)).$$

(日) (四) (日) (日) (日)

This shows that the compatible system $\{\rho_\ell\}_\ell$ arises as the ℓ -adic realisations of a motive $M \in \mathcal{M}_K$ of rank $22 - \rho$. Since ρ_{ℓ_1} is absolutely irreducible, M is absolutely simple. Working at the prime ℓ_2 , where $\rho_{\ell_2|\operatorname{Gal}(\overline{K}_v/K_v)}$ is de Rham with Hodge-Tate weights of a K3 surface, we have a comparison isomorphism

$$H_{dR}(M) \otimes_K K_v \cong D_{dR,K_v}(H_{\ell_2}(M)).$$

Tanks to the Betti-de Rham comparison isomorphism we conclude that $H_B(M_{|\mathbb{C}})$ is a polarizable rational Hodge structure of weight two and with Hodge numbers $1 - (20 - \rho) - 1$, since $\rho_{\ell_2|\operatorname{Gal}(\overline{K}_v/K_v)}$ has such multiplicities.

Surjectivity of the period map

We may apply the following proposition to obtain a a K3 surface X/\mathbb{C} with transcendental part isomorphic to $H_B(M_{|\mathbb{C}})$.

Surjectivity of the period map

We may apply the following proposition to obtain a a K3 surface X/\mathbb{C} with transcendental part isomorphic to $H_B(M_{|\mathbb{C}})$.

Proposition (van Geemen)

Let (V, h, ψ) be a \mathbb{Q} -PHS of K3 type with $\operatorname{End}_{Hdg}(V) = \mathbb{Q}$, and

 $3 \leq \dim V \leq 10$

Choose a free \mathbb{Z} -module $T \subset V$, compatibly with the Hodge structure, of rank $\dim_{\mathbb{Q}} V$ such that ψ is integer valued on $T \times T$. Then there exists a K3 surface X/\mathbb{C} with $T(X) \cong T$ as integral polarised Hodge structure.

Surjectivity of the period map

We may apply the following proposition to obtain a a K3 surface X/\mathbb{C} with transcendental part isomorphic to $H_B(M_{|\mathbb{C}})$.

Proposition (van Geemen)

Let (V, h, ψ) be a \mathbb{Q} -PHS of K3 type with $\operatorname{End}_{Hdg}(V) = \mathbb{Q}$, and

 $3 \leq \dim V \leq 10$

Choose a free \mathbb{Z} -module $T \subset V$, compatibly with the Hodge structure, of rank $\dim_{\mathbb{Q}} V$ such that ψ is integer valued on $T \times T$. Then there exists a K3 surface X/\mathbb{C} with $T(X) \cong T$ as integral polarised Hodge structure.

Under these numerical constraints, a theorem Nikulin shows that there exists a primitive embedding of lattices

 $T \hookrightarrow \Lambda_{K3}.$

We have constructed a K3 X/\mathbb{C} such that

 $T(X)_{\mathbb{Q}} \cong H_B(M_{|\mathbb{C}}).$

G.	

We have constructed a K3 X/\mathbb{C} such that

$$T(X)_{\mathbb{Q}} \cong H_B(M_{|\mathbb{C}}).$$

Thanks to the Hodge conjecture we can lift the isomorphism of Hodge structures to get an isomorphism at the level of motives:

$$t_2(X) \cong M_{|\mathbb{C}} \in \mathcal{M}_{\mathbb{C}},$$

where $t_2(X)$ is the transcendental part of the motive of X

Since M is defined over a number field, for all $\sigma \in Aut(\mathbb{C}/\overline{\mathbb{Q}})$, we have the following chain of isomorphisms:

$${}^{\sigma}t_2(X) \cong {}^{\sigma}M_{|\mathbb{C}} = M_{|\mathbb{C}} \cong t_2(X) \in \mathcal{M}_{\mathbb{C}}.$$

∃ >

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Since M is defined over a number field, for all $\sigma \in Aut(\mathbb{C}/\overline{\mathbb{Q}})$, we have the following chain of isomorphisms:

$${}^{\sigma}t_2(X) \cong {}^{\sigma}M_{|\mathbb{C}} = M_{|\mathbb{C}} \cong t_2(X) \in \mathcal{M}_{\mathbb{C}}.$$

It follows that, for all $\sigma \in Aut(\mathbb{C}/\overline{\mathbb{Q}})$ we have an isomorphism of \mathbb{Q} -PHS

 $T(X)_{\mathbb{Q}} \cong T(^{\sigma}X)_{\mathbb{Q}}.$

We are left to prove the following.

Theorem

Let X/\mathbb{C} be a K3 surface such that for all $\sigma \in Aut(\mathbb{C}/\overline{\mathbb{Q}})$ we have an isomorphism of \mathbb{Q} -PHS

$$T(X)_{\mathbb{Q}} \cong T(^{\sigma}X)_{\mathbb{Q}}.$$

Then X admits a model defined over $\overline{\mathbb{Q}}$.

(人間) 人 ヨト 人 ヨト

G.	ва	la

3

イロト イポト イヨト イヨト

• The number of complex K3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{O}}$ is isomorphic to $T(X)_{\mathbb{O}}$ is at most countable;

- The number of complex K3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;
- If all the conjugates of X fall into countably many isomorphism classes, then X descends to a number field.

(日) (四) (日) (日) (日)

- The number of complex K3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;
- If all the conjugates of X fall into countably many isomorphism classes, then X descends to a number field.

Proof.

For the first point, use the fact there X admits only finitely many Fourier-Mukai partners (Mukai).

- The number of complex K3 surfaces, up to isomorphism, Y such that $T(Y)_{\mathbb{Q}}$ is isomorphic to $T(X)_{\mathbb{Q}}$ is at most countable;
- If all the conjugates of X fall into countably many isomorphism classes, then X descends to a number field.

Proof.

For the first point, use the fact there X admits only finitely many Fourier-Mukai partners (Mukai). For the second, use that K3s (with some extra structure) have a fine moduli space defined over $\overline{\mathbb{Q}}$ (Rizov).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Question

Assume that \mathcal{M}_K is a semisimple neutral Tannakian category over \mathbb{Q} . Let $M \in \mathcal{M}_K$ be a simple motive defined over some number field K. Assume there exists a finite extension L/K such that M_L is isomorphic to the transcendental part of the motive of Y_L , a K3 surface defined over L. Is there a K3 surface X defined over K such that

 $t_2(X) \cong M \in \mathcal{M}_K.$

Proposition

Let K be a number field, and assume that the category \mathcal{M}_K is a semisimple neutral Tannakian category over \mathbb{Q} . Let $M \in \mathcal{M}_K$ be a simple motive such that, after a finite extension L/K,

$$M_L \cong H_1(A_L) \in \mathcal{M}_L$$

for some abelian variety A_L defined over L.

Proposition

Let K be a number field, and assume that the category \mathcal{M}_K is a semisimple neutral Tannakian category over \mathbb{Q} . Let $M \in \mathcal{M}_K$ be a simple motive such that, after a finite extension L/K,

$$M_L \cong H_1(A_L) \in \mathcal{M}_L$$

for some abelian variety A_L defined over L. Then there exists an abelian variety A/K such that

 $M \cong H_1(A) \in \mathcal{M}_K.$

~	D	
G.	ва	ldı

Proof

Faltings proved that the following functor is full (and faithful):

$$H_1(-): \operatorname{AV}^0_K \to \mathcal{M}_K, \quad B \mapsto H_1(B).$$

Consider the K-ab. var. $\operatorname{Res}_{L,K}(A_L)$ and notice that $H_1(\operatorname{Res}_{L,K}(A_L))$ corresponds to $\operatorname{Ind}_L^K(H_1(A_L))$.

э

Faltings proved that the following functor is full (and faithful):

$$H_1(-): \operatorname{AV}^0_K \to \mathcal{M}_K, \quad B \mapsto H_1(B).$$

Consider the K-ab. var. $\operatorname{Res}_{L,K}(A_L)$ and notice that $H_1(\operatorname{Res}_{L,K}(A_L))$ corresponds to $\operatorname{Ind}_L^K(H_1(A_L))$. Since $M_L \cong H_1(A_L)$, Frobenius reciprocity implies that

$$\operatorname{Hom}_{\mathcal{M}_K}(M, \operatorname{\mathsf{Ind}}_L^K(H_1(A_L))) \neq 0.$$

Since M is simple, an element in such Hom-set realizes M as a direct summand of $H_1(\operatorname{Res}_{L,K}(A_L))$ in \mathcal{M}_K , therefore in AV^0_K .

イロト イポト イヨト イヨト 二日

Faltings proved that the following functor is full (and faithful):

$$H_1(-): \operatorname{AV}^0_K \to \mathcal{M}_K, \quad B \mapsto H_1(B).$$

Consider the K-ab. var. $\operatorname{Res}_{L,K}(A_L)$ and notice that $H_1(\operatorname{Res}_{L,K}(A_L))$ corresponds to $\operatorname{Ind}_L^K(H_1(A_L))$. Since $M_L \cong H_1(A_L)$, Frobenius reciprocity implies that

$$\operatorname{Hom}_{\mathcal{M}_K}(M,\operatorname{\mathsf{Ind}}_L^K(H_1(A_L)))\neq 0.$$

Since M is simple, an element in such Hom-set realizes M as a direct summand of $H_1(\operatorname{Res}_{L,K}(A_L))$ in \mathcal{M}_K , therefore in AV_K^0 . Otherwise stated there exists an endomorphism of $\operatorname{Res}_{L,K}(A_L)$ whose image is an abelian variety A/K such that $H_1(A) \cong M \in \mathcal{M}_K$.

G. Baldi

02/05/2018 26 / 27

THANKS FOR YOUR ATTENTION!

G. Baldi

Local to global

02/05/2018 27 / 27

3

(日) (四) (日) (日) (日)