Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Specialization of Néron-Severi group in positive characteristic

Emiliano Ambrosi

K3 surfaces and Galois representations - Shepperton, England 4 May 2018

Notation Specialization of Néron-Severi group in positive characteristic • *k* infinite finitely generated field, char(k) = p > 0; Statements and applications ▲□▶▲□▶▲□▶▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals *k* infinite finitely generated field, *char*(*k*) = *p* > 0;
ℓ ≠ *p* a prime;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • *k* infinite finitely generated field, char(k) = p > 0;

- $\bullet \ell \neq p \text{ a prime};$
- X smooth geometrically connected *k*-variety;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • *k* infinite finitely generated field, char(k) = p > 0;

- $\ell \neq p \text{ a prime};$
- X smooth geometrically connected k-variety;
- |X| set of closed points of X, η generic point;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- *k* infinite finitely generated field, char(k) = p > 0;
- $\ell \neq p \text{ a prime};$
- X smooth geometrically connected k-variety;
- |X| set of closed points of X, η generic point;
- For x ∈ X, k(x) residue field, x̄ associated geometric point;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- *k* infinite finitely generated field, char(k) = p > 0;
- $\ell \neq p \text{ a prime};$
- X smooth geometrically connected k-variety;
- |X| set of closed points of X, η generic point;
- For x ∈ X, k(x) residue field, x̄ associated geometric point;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $f: Y \rightarrow X$ smooth proper morphism;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- *k* infinite finitely generated field, char(k) = p > 0;
- $\ell \neq p \text{ a prime};$
- X smooth geometrically connected k-variety;
- |X| set of closed points of X, η generic point;
- For x ∈ X, k(x) residue field, x̄ associated geometric point;

- $f: Y \rightarrow X$ smooth proper morphism;
- For $x \in X$, Y_x and $Y_{\overline{x}}$ corresponding fibres.

Specialization of representations

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Smooth and proper base change:

Specialization of representations

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Smooth and proper base change:

Write:

 $\rho_{\ell}(\pi_1(X)) := \Pi_{\ell} \qquad \rho_{\ell}(\pi_1(k(x))) := \Pi_{\ell,x}$

Specialization of representations

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Smooth and proper base change:

Write:

 $\rho_{\ell}(\pi_1(X)) := \Pi_{\ell} \qquad \rho_{\ell}(\pi_1(k(x))) := \Pi_{\ell,x}$

Consider the inclusion

 $\Pi_{\ell, x} \subseteq \Pi_{\ell}$

Specialization of the geometric Néron-Severi groups

Specialization of the geometric Néron-Severi groups

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals *NS*(Y_x) Néron-Severi group of Y_x
 Cycle class map:

$$ch_{Y_{\overline{X}}}: NS(Y_{\overline{X}})\otimes \mathbb{Q} \to H^2(Y_{\overline{X}}, \mathbb{Q}_{\ell}(1))$$

Specialization of the geometric Néron-Severi groups

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals *NS*(Y_x) Néron-Severi group of Y_x
 Cycle class map:

 $ch_{Y_{\overline{x}}}: NS(Y_{\overline{x}}) \otimes \mathbb{Q} \to H^2(Y_{\overline{x}}, \mathbb{Q}_{\ell}(1))$

For $x \in |X|$, injective map:

 $sp_{\eta,x}: NS(Y_{\overline{\eta}})\otimes \mathbb{Q} \hookrightarrow NS(Y_{\overline{x}})\otimes \mathbb{Q}$

Main result

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Theorem (E.A.)

If $\Pi_{\ell,x}$ is open in Π_{ℓ} and f projective, then $sp_{\eta,x}$ is an isomorphism.

Main result

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Theorem (E.A.)

If $\Pi_{\ell,x}$ is open in Π_{ℓ} and f projective, then $sp_{\eta,x}$ is an isomorphism.

Corollary

If $f : Y \to X$ smooth and proper there exists a $x \in |X|$ such that $sp_{\eta,x}$ is an isomorphism.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals If X curve, f projective then $\exists C := C(\ell, Y \to X)$ such that

$$|Br(Y_{\overline{x}})[\ell^{\infty}]^{\pi_1(x)}| \leq C$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for all $x \in X(k)$ such that Y_x satisfies the Tate conjecture for divisors.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals If X curve, f projective then $\exists C := C(\ell, Y \to X)$ such that

$$|Br(Y_{\overline{x}})[\ell^{\infty}]^{\pi_1(x)}| \leq C$$

for all $x \in X(k)$ such that Y_x satisfies the Tate conjecture for divisors.

If Y_x satisfies Tate conjecture for divisors for all x ∈ |X| then Y_η satisfies Tate conjecture for divisors.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals If X curve, f projective then $\exists C := C(\ell, Y \to X)$ such that

$$|Br(Y_{\overline{x}})[\ell^{\infty}]^{\pi_1(x)}| \leq C$$

for all $x \in X(k)$ such that Y_x satisfies the Tate conjecture for divisors.

- If Y_x satisfies Tate conjecture for divisors for all x ∈ |X| then Y_η satisfies Tate conjecture for divisors.
- (Maulik, Poonen) If Y_x projective for all $x \in |X|$ then there is an open subset $U \subseteq X$ with $Y_U \rightarrow U$ projective.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals If X curve, f projective then $\exists C := C(\ell, Y \to X)$ such that

$$|Br(Y_{\overline{x}})[\ell^{\infty}]^{\pi_1(x)}| \leq C$$

for all $x \in X(k)$ such that Y_x satisfies the Tate conjecture for divisors.

- If Y_x satisfies Tate conjecture for divisors for all x ∈ |X| then Y_η satisfies Tate conjecture for divisors.
- (Maulik, Poonen) If Y_x projective for all $x \in |X|$ then there is an open subset $U \subseteq X$ with $Y_U \rightarrow U$ projective.
- (E.A) Z smooth projective variety of dimension ≥ 3. There are infinitely many k-rational hyperplane sections W with NS(W) ⊗ Q = NS(Z) ⊗ Q.

Main ideas in the proof when p = 0: Cadoret's talk

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals ■ Variational Hodge conjecture (i.e. Lefschetz theorem on (1,1)-classes + Hodge II (P.Deligne)) ⇒ specialization of $NS(Y_{\overline{X}})$ in Betti cohomology controlled via the action of topological fundamental group of $X_{\mathbb{C}}$.

Main ideas in the proof when p = 0: Cadoret's talk

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- Variational Hodge conjecture (i.e. Lefschetz theorem on (1,1)-classes + Hodge II (P.Deligne)) ⇒ specialization of $NS(Y_{\overline{X}})$ in Betti cohomology controlled via the action of topological fundamental group of $X_{\mathbb{C}}$.
- Comparison between singular and étale cohomology \Rightarrow action studied via the relationship between Π_{ℓ} and $\Pi_{\ell,x}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

1 Variational Hodge conjecture

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

- 1 Variational Hodge conjecture
- 2 Comparison between Betti and *l*-adic cohomology.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

- 1 Variational Hodge conjecture
- 2 Comparison between Betti and ℓ -adic cohomology.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 1 is replaced with the variational Tate conjecture in crystalline cohomology;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

- 1 Variational Hodge conjecture
- 2 Comparison between Betti and ℓ -adic cohomology.

- 1 is replaced with the variational Tate conjecture in crystalline cohomology;
- 2 is replaced with:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

- Variational Hodge conjecture
- 2 Comparison between Betti and ℓ -adic cohomology.
- 1 is replaced with the variational Tate conjecture in crystalline cohomology;
- 2 is replaced with:
 - Relation between F-crystals and F-overconvergent isocrystals;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Find replacement for

- 1 Variational Hodge conjecture
- 2 Comparison between Betti and ℓ -adic cohomology.
- 1 is replaced with the variational Tate conjecture in crystalline cohomology;
- 2 is replaced with:
 - Relation between F-crystals and F-overconvergent isocrystals;
 - Comparison between *l*-adic and overconvergent monodromy groups via Tannakian formalism and independence.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals If X smooth variety over 𝔽_q, 𝒴 = 𝒴(𝔽_q) Witt Ring,
𝐾 = *Frac*(𝒴), 𝑘 the 𝔄-power Frobenius with 𝑔 = 𝑘^s;

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals X smooth variety over F_q, W = W(F_q) Witt Ring,
 K = Frac(W), F the s-power Frobenius with q = p^s;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Crys($\mathcal{X}|W$), crystalline site:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

- K = Frac(W), F the s-power Frobenius with $q = p^s$;
- Crys($\mathcal{X}|W$), crystalline site:
 - Objects: (U → ℑ, γ), U ⊆ X Zariski open, U → ℑ nilpotent immersion of W schemes, γ P.D. structure on Ker(O_ℑ → O_U);

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

- K = Frac(W), *F* the *s*-power Frobenius with $q = p^s$;
- Crys($\mathcal{X}|W$), crystalline site:
 - Objects: (U → ℑ, γ), U ⊆ X Zariski open, U → ℑ nilpotent immersion of W schemes, γ P.D. structure on Ker(O_ℑ → O_U);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

■ Covering induced by the Zariski topology on T.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

K = Frac(W), F the s-power Frobenius with $q = p^s$;

• Crys($\mathcal{X}|W$), crystalline site:

Objects: (U → T, γ), U ⊆ X Zariski open, U → T nilpotent immersion of W schemes, γ P.D. structure on Ker(O_T → O_U);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \blacksquare Covering induced by the Zariski topology on $\ensuremath{\mathbb{T}}.$

■ O_{X/W} structural sheaf,

 $H^{i}_{crys}(\mathfrak{X}) := H^{i}(Crys(\mathfrak{X}|W), \mathfrak{O}_{\mathfrak{X}/W}) \otimes \mathbb{Q};$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

K = Frac(W), F the s-power Frobenius with $q = p^s$;

• Crys($\mathcal{X}|W$), crystalline site:

Objects: (U → T, γ), U ⊆ X Zariski open, U → T nilpotent immersion of W schemes, γ P.D. structure on Ker(O_T → O_U);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- \blacksquare Covering induced by the Zariski topology on $\ensuremath{\mathbb{T}}.$
- $\mathcal{O}_{\mathcal{X}/W}$ structural sheaf,

 $H^{i}_{crys}(\mathfrak{X}) := H^{i}(Crys(\mathfrak{X}|W), \mathfrak{O}_{\mathfrak{X}/W}) \otimes \mathbb{Q};$

• Cycle class map: $ch_{\mathfrak{X}}: Pic(\mathfrak{X}) \otimes \mathbb{Q} \to H^{i}_{crys}(\mathfrak{X});$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

- K = Frac(W), *F* the *s*-power Frobenius with $q = p^s$;
- Crys($\mathcal{X}|W$), crystalline site:
 - Objects: (𝔅 → 𝔅, γ), 𝔅 ⊆ 𝔅 Zariski open, 𝔅 → 𝔅 nilpotent immersion of 𝑘 schemes, γ P.D. structure on Ker(𝔅_𝔅 → 𝔅_𝔅);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Covering induced by the Zariski topology on \mathcal{T} .

• $\mathcal{O}_{\mathcal{X}/W}$ structural sheaf,

 $H^{i}_{crys}(\mathfrak{X}) := H^{i}(Crys(\mathfrak{X}|W), \mathfrak{O}_{\mathfrak{X}/W}) \otimes \mathbb{Q};$

• Cycle class map: $ch_{\mathfrak{X}} : Pic(\mathfrak{X}) \otimes \mathbb{Q} \to H^{i}_{crys}(\mathfrak{X});$

• $\mathfrak{f}: \mathfrak{Y} \to \mathfrak{X}$ smooth and proper:
Crystalline site

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

K = Frac(W), *F* the *s*-power Frobenius with $q = p^s$;

- Crys($\mathcal{X}|W$), crystalline site:
 - Objects: (𝔅 → 𝔅, γ), 𝔅 ⊆ 𝔅 Zariski open, 𝔅 → 𝔅 nilpotent immersion of 𝑘 schemes, γ P.D. structure on Ker(𝔅_𝔅 → 𝔅_𝔅);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- \blacksquare Covering induced by the Zariski topology on $\ensuremath{\mathbb{T}}.$
- $\mathcal{O}_{\mathcal{X}/W}$ structural sheaf,

 $H^{i}_{crys}(\mathcal{X}) := H^{i}(Crys(\mathcal{X}|W), \mathfrak{O}_{\mathcal{X}/W}) \otimes \mathbb{Q};$

• Cycle class map: $ch_{\mathfrak{X}}: Pic(\mathfrak{X}) \otimes \mathbb{Q} \to H^{i}_{crys}(\mathfrak{X});$

- $\mathfrak{f}: \mathfrak{Y} \to \mathfrak{X}$ smooth and proper:
 - Higher direct image:

 $R^{i}\mathfrak{f}_{crys,*}: Mod(\mathfrak{O}_{\mathfrak{Y}/W}) \rightarrow Mod(\mathfrak{O}_{\mathfrak{X}/W});$

Crystalline site

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • \mathfrak{X} smooth variety over \mathbb{F}_q , $W = W(\mathbb{F}_q)$ Witt Ring,

K = Frac(W), *F* the *s*-power Frobenius with $q = p^s$;

• Crys($\mathcal{X}|W$), crystalline site:

- Objects: (U → T, γ), U ⊆ X Zariski open, U → T nilpotent immersion of W schemes, γ P.D. structure on Ker(O_T → O_U);
 - \blacksquare Covering induced by the Zariski topology on $\ensuremath{\mathbb{T}}.$
- $\mathcal{O}_{\mathcal{X}/W}$ structural sheaf,

 $H^{i}_{crys}(\mathfrak{X}) := H^{i}(Crys(\mathfrak{X}|W), \mathfrak{O}_{\mathfrak{X}/W}) \otimes \mathbb{Q};$

• Cycle class map: $ch_{\mathfrak{X}} : Pic(\mathfrak{X}) \otimes \mathbb{Q} \to H^{i}_{crys}(\mathfrak{X});$

- $\mathfrak{f}: \mathfrak{Y} \to \mathfrak{X}$ smooth and proper:
 - Higher direct image:
 - $R^{i}\mathfrak{f}_{crys,*}: Mod(\mathfrak{O}_{\mathcal{Y}/W}) \rightarrow Mod(\mathfrak{O}_{\mathfrak{X}/W});$
 - Leray spectral sequence:
 - $E_2^{i,j} := H^i(\mathfrak{X}, R^j \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathfrak{Y}/W}) \otimes \mathbb{Q} \Rightarrow H^i_{crys}(\mathfrak{Y}).$

Variational Tate conjecture in crystalline cohomology

Commutative diagram

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

For $\mathfrak{t} \in |\mathfrak{X}|$: $\begin{array}{c} H^{2}_{crys}(\mathfrak{Y}) \xleftarrow{ch_{\mathfrak{Y}}} Pic(\mathfrak{Y}) \otimes \mathbb{Q} \\ \downarrow Leray & \downarrow^{i_{\mathfrak{t}}^{*}} \end{array} \xrightarrow{f_{\mathfrak{t}}^{*}} H^{2}_{crys}(\mathfrak{Y}_{\mathfrak{t}}) \xleftarrow{i_{\mathfrak{t}}^{*}} Pic(\mathfrak{Y}_{\mathfrak{t}}) \otimes \mathbb{Q} \end{array}$

・ロット (雪) (日) (日)

Variational Tate conjecture in crystalline cohomology

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Commutative diagram

For $\mathfrak{t} \in |\mathfrak{X}|$:

$$H^{2}_{crys}(\mathcal{Y}) \xleftarrow{ch_{\mathcal{Y}}} Pic(\mathcal{Y}) \otimes \mathbb{Q}$$
$$\downarrow Leray \xrightarrow{i_{\mathfrak{t}}^{*}} H^{2}_{crys}(\mathcal{Y}_{\mathfrak{t}}) \xleftarrow{i_{\mathfrak{t}}^{*}} Pic(\mathcal{Y}_{\mathfrak{t}}) \otimes \mathbb{Q}$$
$$\overset{i_{\mathfrak{t}}^{*}}{\longleftrightarrow} Pic(\mathcal{Y}_{\mathfrak{t}}) \otimes \mathbb{Q}$$

Fact (M.Morrow '14)

If \mathfrak{f} is projective, for every $z\in \text{Pic}(\mathfrak{Y}_{\mathfrak{t}})\otimes \mathbb{Q}$ the following are equivalent:

 There exists *ž* ∈ Pic(𝔅) ⊗ ℚ such that ch_{𝔅t}(z) = i^{*}_t(ch_𝔅(*ž*));

Variational Tate conjecture in crystalline cohomology

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Commutative diagram For $\mathfrak{t} \in |\mathfrak{X}|$: $H^2_{crys}(\mathfrak{Y}) \xleftarrow{ch_{\mathfrak{Y}}}{i_{\mathfrak{t}}^*} Pic(\mathfrak{Y}) \otimes \mathbb{Q}$

$$\overset{\downarrow Leray}{\longleftarrow} H^{0}(\mathfrak{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/W}) \otimes \mathbb{Q} \xrightarrow{\smile} H^{2}_{crys}(\mathfrak{Y}_{\mathfrak{t}}) \xleftarrow{}_{ch_{\mathfrak{Y}_{\mathfrak{t}}}} Pic(\mathfrak{Y}_{\mathfrak{t}}) \otimes \mathbb{Q}$$

i*

Fact (M.Morrow '14)

If \mathfrak{f} is projective, for every $z \in Pic(\mathfrak{Y}_{\mathfrak{t}}) \otimes \mathbb{Q}$ the following are equivalent:

- 1 There exists $\tilde{z} \in Pic(\mathfrak{Y}) \otimes \mathbb{Q}$ such that $ch_{\mathfrak{Y}_{\mathfrak{t}}}(z) = i_{\mathfrak{t}}^*(ch_{\mathfrak{Y}}(\tilde{z}));$
- 2 $ch_{\mathfrak{Y}_{\mathfrak{t}}}(z)$ lies in $H^{0}(\mathfrak{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/W})^{F=q} \otimes \mathbb{Q}.$

Models	

Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Model over \mathbb{F}_q :

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Model over \mathbb{F}_q :

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Choose $\mathfrak{t} \in \mathfrak{K}(\mathbb{F}_q)$:

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Choose $\mathfrak{t} \in \mathfrak{K}(\mathbb{F}_q)$:

Remark:

t specialization of x, x specialization of η .

Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

・ロット (雪) (日) (日)

э

It is enough $Im(sp_{\eta,\mathfrak{t}}) = Im(sp_{x,\mathfrak{t}})$

I

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- It is enough $Im(sp_{\eta,\mathfrak{t}}) = Im(sp_{x,\mathfrak{t}})$
- *VTCC*+diagram chasing \Rightarrow enough to show

$$\mathcal{H}^{0}(\mathcal{K}, \mathcal{R}^{2}\mathfrak{f}_{\mathcal{K}, \mathit{crys}, *} \mathbb{O}_{\mathfrak{Y}_{\mathcal{K}}/K})^{\mathcal{F}=q} = \mathcal{H}^{0}(\mathcal{X}, \mathcal{R}^{2}\mathfrak{f}_{\mathit{crys}, *} \mathbb{O}_{\mathfrak{Y}/K})^{\mathcal{F}=q}$$

・ロット (雪) ・ (日) ・ (日)

3

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals ■ Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.
 F-Isoc(X) := {(ε, Φ) | ε ∈ Isoc(X), Φ : F_x^{*}ε ≃ ε}

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.
 F-Isoc(X) := {(ε, Φ) | ε ∈ Isoc(X), Φ : F_X*ε ≃ ε}
 Ex:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.
 F-Isoc(X) := {(ε, Φ) | ε ∈ Isoc(X), Φ : F_X*ε ≃ ε}
 Ex:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.
 F-Isoc(X) := {(ε, Φ) | ε ∈ Isoc(X), Φ : F_X*ε ≃ ε}
 Ex:

■ $R^{i} f_{crys,*} \mathfrak{O}_{\mathcal{Y}/K}$ (Coherence + Base change + ...).

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.
 F-Isoc(X) := {(ε, Φ) | ε ∈ Isoc(X), Φ : F_X^{*}ε ≃ ε}
 Ex:

■ $R^{i} f_{crys,*} \mathfrak{O}_{\mathcal{Y}/K}$ (Coherence + Base change + ...).

Pathologies

1 Different behaviour from *l*-adic representations;

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc(X): isogeny category of coherent O_{X/W}-modules such that all the transition morphisms are isomorphism.
 F-Isoc(X) := {(ε, Φ) | ε ∈ Isoc(X), Φ : F_X^{*}ε ≃ ε}
 Ex:

■ $R^{i} f_{crys,*} \mathfrak{O}_{\mathcal{Y}/K}$ (Coherence + Base change + ...).

Pathologies

Different behaviour from ℓ-adic representations;
 Infinite dimensional cohomology if X not proper.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals • $\mathfrak{f}: \mathfrak{Y} \to \mathfrak{X}$ non isotrivial family of elliptic curves;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals ■ $f: \mathcal{Y} \to \mathcal{X}$ non isotrivial family of elliptic curves; ■ $\mathcal{Z} \subseteq \mathcal{X}$ closed supersingular locus (assumed not

empty),
$$\mathcal{U} = \mathcal{X} - \mathcal{Z}$$
;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- $f: \mathcal{Y} \to \mathcal{X}$ non isotrivial family of elliptic curves;
- Z ⊆ X closed supersingular locus (assumed not empty), U = X − Z;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $\mathcal{E} := R^1 \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathcal{Y}/\mathcal{K}}$ is irreducible;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- $f: \mathcal{Y} \to \mathcal{X}$ non isotrivial family of elliptic curves;
- $\mathcal{Z} \subseteq \mathcal{X}$ closed supersingular locus (assumed not empty), $\mathcal{U} = \mathcal{X} \mathcal{Z}$;
- $\mathcal{E} := R^1 \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathcal{Y}/K}$ is irreducible;
- Its restriction $\mathcal{E}_{\mathcal{U}}$ fits in a exact sequence

$$\mathbf{0}
ightarrow \mathcal{E}_{\mathfrak{U}}^{et}
ightarrow \mathcal{E}_{\mathfrak{U}}
ightarrow \mathcal{E}_{\mathfrak{U}}^{\mathbf{0}}
ightarrow \mathbf{0};$$

coming from the decomposition of the p-divisible group $\mathcal{Y}_{\eta}[p^{\infty}]$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- $f: \mathcal{Y} \to \mathcal{X}$ non isotrivial family of elliptic curves;
- $\mathcal{Z} \subseteq \mathcal{X}$ closed supersingular locus (assumed not empty), $\mathcal{U} = \mathcal{X} \mathcal{Z}$;
- $\mathcal{E} := R^1 \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathcal{Y}/\mathcal{K}}$ is irreducible;
- Its restriction $\mathcal{E}_{\mathcal{U}}$ fits in a exact sequence

$$\mathbf{0}
ightarrow \mathcal{E}_{\mathfrak{U}}^{et}
ightarrow \mathcal{E}_{\mathfrak{U}}
ightarrow \mathcal{E}_{\mathfrak{U}}^{\mathbf{0}}
ightarrow \mathbf{0};$$

coming from the decomposition of the p-divisible group $\mathcal{Y}_{\eta}[p^{\infty}]$.

Pathology (1):

Restriction to an open of an irreducible is not irreducible;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- $f: \mathcal{Y} \to \mathcal{X}$ non isotrivial family of elliptic curves;
- $\mathcal{Z} \subseteq \mathcal{X}$ closed supersingular locus (assumed not empty), $\mathcal{U} = \mathcal{X} \mathcal{Z}$;
- $\mathcal{E} := R^1 \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathcal{Y}/K}$ is irreducible;
- Its restriction $\mathcal{E}_{\mathcal{U}}$ fits in a exact sequence

$$\mathbf{0}
ightarrow \mathcal{E}_{\mathcal{U}}^{et}
ightarrow \mathcal{E}_{\mathcal{U}}
ightarrow \mathcal{E}_{\mathcal{U}}^{\mathbf{0}}
ightarrow \mathbf{0};$$

coming from the decomposition of the p-divisible group $\mathcal{Y}_{\eta}[p^{\infty}]$.

Pathology (1):

- Restriction to an open of an irreducible is not irreducible;
- $R^1 \mathfrak{f}_{\mathfrak{U},*} \mathbb{Q}_{\ell}$ is irreducible, while $\mathcal{E}_{\mathfrak{U}}$ is not.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

If
$$\mathfrak{X} := \mathbb{A}^{1}_{\mathbb{F}_{q}}$$
 then $H^{1}_{crys}(\mathfrak{X})$ is of infinite dimension.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ●

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

If
$$\mathfrak{X} := \mathbb{A}^{1}_{\mathbb{F}_{q}}$$
 then $H^{1}_{crys}(\mathfrak{X})$ is of infinite dimension.

$$\mathcal{K}{T} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

If
$$\mathfrak{X} := \mathbb{A}^{1}_{\mathbb{F}_{q}}$$
 then $H^{1}_{crys}(\mathfrak{X})$ is of infinite dimension.

$$\mathcal{K}{T} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $K{T} =$

{convergent functions of the analytic closed disc}

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

If
$$\mathfrak{X} := \mathbb{A}^{1}_{\mathbb{F}_{q}}$$
 then $H^{1}_{crys}(\mathfrak{X})$ is of infinite dimension.

$$\mathcal{K}{T} := \{\sum_{n \ge 0} a_n T^n \text{ such that } \lim_{n \to +\infty} |a_n| \to 0\}$$

 $K{T} = {$ convergent functions of the analytic closed disc $}$

$$d: K\{T\}
ightarrow K\{T\} dT$$
 and $H^1_{crys}(\mathfrak{X}) \simeq Coker(d)$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

If
$$\mathfrak{X} := \mathbb{A}^{1}_{\mathbb{F}_{q}}$$
 then $H^{1}_{crys}(\mathfrak{X})$ is of infinite dimension.

$$K\{T\} := \{\sum_{n\geq 0} a_n T^n \text{ such that } \lim_{n\to +\infty} |a_n| \to 0\}$$

 $K{T} = {$ convergent functions of the analytic closed disc $}$

$$d: K\{T\} \to K\{T\}dT$$
 and $H^1_{crys}(\mathfrak{X}) \simeq Coker(d)$

$$f = \sum_{n \ge 0} a_n T^n$$
 and so $\int f = \sum_{n \ge 1} \frac{a_{n-1}}{n} T^n$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Pathology (2):

 $\lim_{n\to+\infty} |\frac{a_{n-1}}{n}|$ is in general different from zero, hence coker(d) is huge!

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Pathology (2):

 $\lim_{n\to+\infty} |\frac{a_{n-1}}{n}|$ is in general different from zero, hence coker(d) is huge!

Solution (Monsky–Washnitzer, Berthelot)

Replace $K{T}$ with

$$K\{T\}^{\dagger} := \{\sum_{n \ge 0} a_n T^n \text{ exists } c > 1 \text{ with } \lim_{n \to +\infty} |a_n| c^n \to 0\}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Pathology (2):

 $\lim_{n\to+\infty} |\frac{a_{n-1}}{n}|$ is in general different from zero, hence coker(d) is huge!

Solution (Monsky–Washnitzer, Berthelot)

Replace $K{T}$ with

$$\mathcal{K}{T}^{\dagger} := \{\sum_{n \ge 0} a_n T^n \text{ exists } c > 1 \text{ with } \lim_{n \to +\infty} |a_n| c^n \to 0\}$$

functions on some analytic open neighbourhood of the disc

F-overconvergent isocrystals

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals **Isoc**[†](\mathcal{X}): Category of overconvergent isocrystals;

F-overconvergent isocrystals

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals Isoc[†](X): Category of overconvergent isocrystals;
 F-Isoc[†](X): F-overconvergent isocrystals;
Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals ■ **Isoc**[†](𝔅): Category of overconvergent isocrystals;

- **F**-**Isoc**[†](\mathfrak{X}): F-overconvergent isocrystals;
- F-Isoc[†](𝔅) behaves like the category of ℓ-adic representations:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- **Isoc**[†](*X*): Category of overconvergent isocrystals;
- **F**-**Isoc**[†](\mathcal{X}): F-overconvergent isocrystals;
- F-Isoc[†](𝔅) behaves like the category of ℓ-adic representations:
 - finite dimensional cohomology (Kedlaya);

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- **Isoc**[†](\mathcal{X}): Category of overconvergent isocrystals;
- **F**-**Isoc**[†](\mathcal{X}): F-overconvergent isocrystals;
- F-Isoc[†](𝔅) behaves like the category of ℓ-adic representations:
 - finite dimensional cohomology (Kedlaya);

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

theory of weights (Kedlaya, Abe-Caro);

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- **Isoc**[†](*X*): Category of overconvergent isocrystals;
- **F**-**Isoc**[†](\mathcal{X}): F-overconvergent isocrystals;
- F-Isoc[†](𝔅) behaves like the category of ℓ-adic representations:
 - finite dimensional cohomology (Kedlaya);

- theory of weights (Kedlaya, Abe-Caro);
- trace formula (Etesse, Le Stum);

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- **Isoc**[†](\mathcal{X}): Category of overconvergent isocrystals;
- **F**-**Isoc**[†](\mathcal{X}): F-overconvergent isocrystals;
- F-Isoc[†](𝔅) behaves like the category of ℓ-adic representations:
 - finite dimensional cohomology (Kedlaya);
 - theory of weights (Kedlaya, Abe-Caro);
 - trace formula (Etesse, Le Stum);
 - global monodromy theorem (Crew, Kedlaya).

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Fact

There is a functor Forg : F-lsoc[†](𝔅) → F-lsoc(𝔅) (Berthelot-Ogus);

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Fact

There is a functor Forg : F-Isoc[†](𝔅) → F-Isoc(𝔅) (Berthelot-Ogus);

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Forg is fully faithful (Kedlaya);

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Fact

- There is a functor Forg : F-lsoc[†](𝔅) → F-lsoc(𝔅) (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);
- $f: \mathcal{Y} \to \mathcal{X}$ smooth and proper, $R^i \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathcal{Y}/K}$ is the image of a $R^i \mathfrak{f}_* \mathfrak{O}^{\dagger}_{\mathcal{Y}/K} \in \mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(X)$ (Shiho + ϵ).

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Fact

- There is a functor Forg : F-Isoc[†](𝔅) → F-Isoc(𝔅) (Berthelot-Ogus);
- Forg is fully faithful (Kedlaya);
- $\mathfrak{f} : \mathfrak{Y} \to \mathfrak{X}$ smooth and proper, $R^i \mathfrak{f}_{crys,*} \mathfrak{O}_{\mathfrak{Y}/K}$ is the image of a $R^i \mathfrak{f}_* \mathfrak{O}^{\dagger}_{\mathfrak{Y}/K} \in \mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(X)$ (Shiho + ϵ).

Back to our situation:

We want to show:

$$H^{0}(\mathcal{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/K})^{F=q} = H^{0}(\mathcal{K}, R^{2}\mathfrak{f}_{\mathcal{K}, crys,*}\mathfrak{O}_{\mathfrak{Y}_{\mathcal{K}}/K})^{F=q}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

 $H^0(\mathfrak{X}, R^2\mathfrak{f}_{crvs,*}\mathfrak{O}_{\mathfrak{Y}/K})^{F=q} =$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

 $H^0(\mathfrak{X}, R^2\mathfrak{f}_{crvs,*}\mathfrak{O}_{\mathfrak{Y}/K})^{F=q} =$ $Hom_{\mathbf{F}-\mathbf{Isoc}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}, R^2\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/K}(1)) =$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

 $H^0(\mathfrak{X}, R^2\mathfrak{f}_{crvs,*}\mathfrak{O}_{\mathfrak{Y}/K})^{F=q} =$ $Hom_{\mathbf{F}-\mathbf{Isoc}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}, R^2\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/K}(1)) =$ $Hom_{\mathbf{F}-\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathbb{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathbb{O}_{\mathfrak{Y}/K}^{\dagger}(1))$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & H^{0}(\mathfrak{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/K})^{F=q} = \\ & Hom_{\mathsf{F-Isoc}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathfrak{Y}/K}(1)) = \\ & Hom_{\mathsf{F-Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) \end{split}$$

It is enough to show:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & H^{0}(\mathcal{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathcal{Y}/K})^{F=q} = \\ & Hom_{\mathsf{F}\text{-lsoc}(\mathcal{X})}(\mathfrak{O}_{\mathcal{X}/K}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathcal{Y}/K}(1)) = \\ & Hom_{\mathsf{F}\text{-lsoc}^{\dagger}(\mathcal{X})}(\mathfrak{O}_{\mathcal{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathcal{Y}/K}^{\dagger}(1)) \end{split}$$

It is enough to show: $Hom_{\mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = Hom_{\mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(\mathfrak{K})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{\mathfrak{K},*}\mathfrak{O}_{\mathfrak{Y}_{\mathfrak{K}}/K}^{\dagger}(1))$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & H^{0}(\mathcal{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathcal{Y}/K})^{F=q} = \\ & Hom_{\mathsf{F}\text{-lsoc}(\mathcal{X})}(\mathfrak{O}_{\mathcal{X}/K}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathcal{Y}/K}(1)) = \\ & Hom_{\mathsf{F}\text{-lsoc}^{\dagger}(\mathcal{X})}(\mathfrak{O}_{\mathcal{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathcal{Y}/K}^{\dagger}(1)) \end{split}$$

It is enough to show: $Hom_{\mathbf{F}-\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = Hom_{\mathbf{F}-\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{\mathfrak{X},*}\mathfrak{O}_{\mathfrak{Y}_{\mathfrak{X}}/K}^{\dagger}(1))$

Summary:

VTCC: relation between algebraic cycles and isocrystals;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & H^{0}(\mathcal{X}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathcal{Y}/K})^{F=q} = \\ & Hom_{\mathsf{F}\text{-lsoc}(\mathcal{X})}(\mathfrak{O}_{\mathcal{X}/K}, R^{2}\mathfrak{f}_{crys,*}\mathfrak{O}_{\mathcal{Y}/K}(1)) = \\ & Hom_{\mathsf{F}\text{-lsoc}^{\dagger}(\mathcal{X})}(\mathfrak{O}_{\mathcal{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathcal{Y}/K}^{\dagger}(1)) \end{split}$$

It is enough to show: $Hom_{\mathbf{F}-\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = Hom_{\mathbf{F}-\mathbf{Isoc}^{\dagger}(\mathfrak{K})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{\mathfrak{K},*}\mathfrak{O}_{\mathfrak{Y}_{\mathfrak{K}}/K}^{\dagger}(1))$

Summary:

- VTCC: relation between algebraic cycles and isocrystals;
- Berthelot, Ogus, Kedlaya, Shiho: relation between isocrystals and overconvergent isocrystals.

From representations to overconvergent isocrystals

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

To do:

From ℓ -adic representations to overconvergent isocrystals.

From representations to overconvergent isocrystals

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

To do:

From ℓ -adic representations to overconvergent isocrystals.

Problem:

No direct relation between \mathbf{F} -**Isoc**[†](\mathfrak{X}) and representations

From representations to overconvergent isocrystals

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

To do:

From ℓ -adic representations to overconvergent isocrystals.

Problem:

No direct relation between **F**-**Isoc**^{\dagger}(\mathfrak{X}) and representations

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solution:

Tannakian formalism.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Assume $\mathfrak{t} \in \mathfrak{X}(\mathbb{F}_q)$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Assume
$$\mathfrak{t} \in \mathfrak{X}(\mathbb{F}_q)$$
;

■ Isoc[†](*Spec*(k(t))) \simeq *Vect*_K;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

- Assume $\mathfrak{t} \in \mathfrak{X}(\mathbb{F}_q)$;
- **Isoc**[†](*Spec*($k(\mathfrak{t})$)) \simeq *Vect*_K;
- $\mathfrak{t}^* : \mathbf{F}\operatorname{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X}) \to \operatorname{Vect}_{\mathcal{K}};$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- Assume $\mathfrak{t} \in \mathfrak{X}(\mathbb{F}_q)$;
- **Isoc**[†](*Spec*(k(t))) \simeq *Vect*_K;
- $\mathfrak{t}^* : \mathbf{F}\operatorname{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X}) \to \operatorname{Vect}_{\mathcal{K}};$
- F-Isoc[†](X) neutral Tannakian category with fibre functor t*;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- Assume $\mathfrak{t} \in \mathfrak{X}(\mathbb{F}_q)$;
- **Isoc**[†](*Spec*(k(t))) \simeq *Vect*_K;
- $\mathfrak{t}^* : \mathbf{F}\operatorname{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X}) \to \operatorname{Vect}_K;$
- F-Isoc[†](X) neutral Tannakian category with fibre functor t*;
- F-Isoc[†](𝔅) ≃ Rep_K(π[†]₁(𝔅)), with π[†]₁(𝔅) pro-algebraic group over K.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- Assume $\mathfrak{t} \in \mathfrak{X}(\mathbb{F}_q)$;
- Isoc[†](Spec($k(\mathfrak{t})$)) \simeq Vect_K;
- $\mathfrak{t}^* : \mathbf{F}\operatorname{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X}) \to \operatorname{Vect}_{K};$
- F-Isoc[†](X) neutral Tannakian category with fibre functor t*;
- F-Isoc[†](𝔅) ≃ Rep_K(π[†]₁(𝔅)), with π[†]₁(𝔅) pro-algebraic group over K.

Back to our situation:

We want to show: $Hom_{\mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = Hom_{\mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(\mathfrak{K})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}, R^{2}\mathfrak{f}_{\mathfrak{K},*}\mathfrak{O}_{\mathfrak{Y}_{\mathfrak{K}}/K}^{\dagger}(1))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

 $Hom_{\mathbf{F}-\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathbb{O}_{\mathfrak{X}/K}^{\dagger}R^{2}\mathfrak{f}_{*}\mathbb{O}_{\mathfrak{Y}/K}^{\dagger}(1)) =$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & \textit{Hom}_{\mathbf{F}\text{-lsoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = \\ & \textit{Hom}_{\textit{Rep}_{K}(\pi_{1}^{\dagger}(\mathfrak{X}))}(K, (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}) = \end{split}$$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & \textit{Hom}_{\textbf{F-lsoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = \\ & \textit{Hom}_{\textit{Rep}_{K}(\pi_{1}^{\dagger}(\mathfrak{X}))}(K, (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}) = \\ & (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{X})} \end{split}$$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & Hom_{\mathbf{F}\text{-}\mathbf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = \\ & Hom_{Rep_{K}(\pi_{1}^{\dagger}(\mathfrak{X}))}(K, (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}) = \\ & (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{X})} \end{split}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

It is enough to show:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & \textit{Hom}_{\textbf{F-Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = \\ & \textit{Hom}_{\textit{Rep}_{K}(\pi_{1}^{\dagger}(\mathfrak{X}))}(K, (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}) = \\ & (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{X})} \end{split}$$

It is enough to show:

$$(R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{X})} = (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}_{\mathcal{K}}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{K})}$$

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

= 900

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\begin{split} & \textit{Hom}_{\mathsf{F}\text{-}\mathsf{Isoc}^{\dagger}(\mathfrak{X})}(\mathfrak{O}_{\mathfrak{X}/K}^{\dagger}R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1)) = \\ & \textit{Hom}_{\textit{Rep}_{K}(\pi_{1}^{\dagger}(\mathfrak{X}))}(K, (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}) = \\ & (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{X})} \end{split}$$

It is enough to show:

$$(R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{X})} = (R^{2}\mathfrak{f}_{*}\mathfrak{O}_{\mathfrak{Y}_{\mathcal{K}}/K}^{\dagger}(1))_{\mathfrak{t}}^{\pi_{1}^{\dagger}(\mathfrak{K})}$$

OK if the actions of π[†]₁(𝔅) and π[†]₁(𝔅) on R² f_{*}O[†]_{𝔅𝔅/𝔅}(1)_t have the same image.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

 $\blacksquare R^2 \mathfrak{f}_* \mathfrak{O}_{\mathcal{Y}/\mathcal{K}}^{\dagger}(1) := \mathfrak{M}$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\blacksquare R^2 \mathfrak{f}_* \mathfrak{O}_{\mathfrak{Y}/K}^{\dagger}(1) := \mathfrak{M}$$

 \blacksquare < M > smallest Tannakian category containing M.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\blacksquare R^2 \mathfrak{f}_* \mathfrak{O}^{\dagger}_{\mathcal{Y}/K}(1) := \mathfrak{M}$$

- $\blacksquare < \mathcal{M} > \text{smallest Tannakian category containing } \mathcal{M}.$
 - $G(\mathcal{M})$ Tannakian group, image of

$$\pi_1^{\dagger}(\mathfrak{X}) \to GL(\mathfrak{M}_{\mathfrak{t}})$$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\blacksquare R^2 \mathfrak{f}_* \mathfrak{O}^{\dagger}_{\mathcal{Y}/K}(1) := \mathfrak{M}$$

- $\mathbf{I} < \mathcal{M} >$ smallest Tannakian category containing \mathcal{M} .
- $\mathbf{G}(\mathcal{M})$ Tannakian group, image of

$$\pi_1^{\dagger}(\mathfrak{X}) \to GL(\mathfrak{M}_{\mathfrak{t}})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\blacksquare \ G(\mathcal{M}_{\mathcal{K}}) \subseteq G(\mathcal{M})$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

$$\blacksquare R^2 \mathfrak{f}_* \mathfrak{O}^{\dagger}_{\mathfrak{Y}/K}(1) := \mathfrak{M}$$

- $\mathbf{I} < \mathcal{M} >$ smallest Tannakian category containing \mathcal{M} .
- $G(\mathcal{M})$ Tannakian group, image of

$$\pi_1^{\dagger}(\mathfrak{X}) \to \textit{GL}(\mathfrak{M}_{\mathfrak{t}})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\blacksquare \ G(\mathcal{M}_{\mathcal{K}}) \subseteq G(\mathcal{M})$

• Enough to show: $G(\mathcal{M}_{\mathcal{K}}) = G(\mathcal{M})$
Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

 $\blacksquare \mathcal{F} := R^2 \mathfrak{f}_* \mathbb{Q}_{\ell}(1)$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals $\blacksquare \ \mathcal{F} := R^2 \mathfrak{f}_* \mathbb{Q}_{\ell}(1)$

 \blacksquare < \mathfrak{F} > Tannakian category with Tannakian group $G(\mathfrak{F})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals $\blacksquare \ \mathcal{F} := R^2 \mathfrak{f}_* \mathbb{Q}_{\ell}(1)$

G(𝔅) = Π_ℓ, G(𝔅_𝔅) = Π_{ℓ,𝔅}

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- $\mathcal{F} := R^2 \mathfrak{f}_* \mathbb{Q}_{\ell}(1)$
- \blacksquare < \Im > Tannakian category with Tannakian group $G(\Im)$

- $G(\mathcal{F}) = \overline{\Pi}_{\ell}, \ G(\mathcal{F}_{\mathcal{K}}) = \overline{\Pi}_{\ell,x}$
- By assumption $G(\mathcal{F}) = G(\mathcal{F}_{\mathcal{K}})$.

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

- $\blacksquare \ \mathcal{F} := R^2 \mathfrak{f}_* \mathbb{Q}_{\ell}(1)$
- $\blacksquare < \mathfrak{F} > \mathsf{Tannakian category with Tannakian group } G(\mathfrak{F})$
- By assumption $G(\mathcal{F}) = G(\mathcal{F}_{\mathcal{K}})$.

Proposition

$$G(\mathfrak{F}_{\mathcal{K}}) = G(\mathfrak{F})$$
 if and only if $G(\mathfrak{M}_{\mathcal{K}}) = G(\mathfrak{M})$

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Main ingredients

Global monodromy theorem, theory of weights, Larsen and Pink arguments:

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Main ingredients

- Global monodromy theorem, theory of weights, Larsen and Pink arguments:
 - Global monodromy theorem: reduction to the semi simple situation;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Main ingredients

- Global monodromy theorem, theory of weights, Larsen and Pink arguments:
 - Global monodromy theorem: reduction to the semi simple situation;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 Larsen and Pink: semi simple algebraic groups determined by their invariants on all the representations;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Main ingredients

- Global monodromy theorem, theory of weights, Larsen and Pink arguments:
 - Global monodromy theorem: reduction to the semi simple situation;
 - Larsen and Pink: semi simple algebraic groups determined by their invariants on all the representations;
 - Theory of weights: invariants determined by L functions;

Specialization of Néron-Severi group in positive characteristic

> Emiliano Ambrosi

Statements and applications

From crystalline cohomology to algebraic cycles

From isocrystals to overconvergent isocrystals

From representations to overconvergent isocrystals

Main ingredients

- Global monodromy theorem, theory of weights, Larsen and Pink arguments:
 - Global monodromy theorem: reduction to the semi simple situation;
 - Larsen and Pink: semi simple algebraic groups determined by their invariants on all the representations;
 - Theory of weights: invariants determined by L functions;

▲□▶▲□▶▲□▶▲□▶ □ のQ@

L functions do not depend on ℓ or p.