Algebraic number theory

Problem sheet 1

January 25, 2011

1. (i) Let $\alpha=\sqrt[3]{5} \in \mathbb{R}$. Work out a system of generators of the \mathbb{Z}-module $\mathbb{Z}[\alpha]$, hence check that it is a free \mathbb{Z}-module of rank 3 . Working as in the proof of Thm. 3.2 find a monic polynomial $f(x)$ with coefficients in \mathbb{Z} such that $f\left(\alpha+\alpha^{2}\right)=0$.
(ii) The same question as in (i) for $\alpha=\sqrt[4]{5}$.
2. Let d be a square-free integer congruent to 1 modulo 4 . Prove that $\mathbb{Z}[\sqrt{d}]$ is not integrally closed by exhibiting an element of $\mathbb{Q}[\sqrt{d}]$ not in $\mathbb{Z}[\sqrt{d}]$, which is integral over \mathbb{Z}.
3. Let $A \subset R$ be rings (as always, commutative, with 1) such that R is integral over A. Prove that if R is a field, then so is A.

Let F be a field, and $F[x]$ the ring of polynomials with coefficients in F.
4. Prove that $F[x]$ is integrally closed. (Hint: imitate the proof that \mathbb{Z} is integrally closed which was given in class. You can use the theorem that every polynomial is uniquely written as a product of irreducibles, up to re-ordering of factors and multiplication by non-zero constants.)
5. Consider the extension of rings $F\left[x^{2}\right] \subset F[x]$.
(i) Prove that $F[x]$ is integral over $F\left[x^{2}\right]$.
(ii) Let $f(x) \in F[x]$. Find an integral dependence relation for $f(x)$ over $F\left[x^{2}\right]$.
6. Let $A \subset F[x]$ be the set of polynomials without linear term, i.e., of the form $a_{n} x^{n}+\ldots+a_{2} x^{2}+a_{0}, a_{i} \in F$. Prove that A is a subring of $F[x]$, then prove that A is not integrally closed. Using Q4, prove that $F[x]$ is the integral closure of A.
7. Let $F \subset K$ be fields. In this case the integral closure \tilde{F} of F in K is also called the algebraic closure of F in K. Prove that \tilde{F} is a field.

