Contents

1 Finite-difference scheme for the one-dimensional heat equation 2

2 Explicit scheme in time 3
 2.1 No vector notation ... 3
 2.2 Vector notations ... 4
 2.3 Matrix notations, using sparse matrices 5

3 Example from the Lecture Notes 8
 3.0.1 Convergence of the scheme .. 8
 3.0.2 Comparison with the true solution 10
 3.0.3 Explosive scheme ... 11
1 Finite-difference scheme for the one-dimensional heat equation

In [3]: from time import time
 # For sparse matrices
 from scipy.sparse import dia_matrix
 from scipy.sparse.linalg.dsolve import spsolve

We consider here the heat equation on $[0, \infty) \times [0, \infty)$:

$$\frac{\partial u}{\partial t} = \frac{\sigma^2}{2} \frac{\partial^2 u}{\partial x^2}$$

with boundary conditions $u(x, 0) = \sin(2\pi x)$ for all $x \in [0, \infty]$ and $u(0, t) = u(\infty, t) = 0$ for all $t \geq 0$. We apply a finite difference scheme, explicit in time and with central difference in space.
2 Explicit scheme in time

2.1 No vector notation

In [4]: sigma, barX, T = 0.2, 1., 1.
 nx = 100 # Number of grid points
 nt = 5000 # Number of time steps

In [5]: start_time = time()
 dx = barX / (nx - 1) # Grid step in space
 dt = T / nt # Grid step in time
 print 'Ratio $\frac{\Delta_T \sigma^2}{\Delta_x^2}$ = ', (sigma * sigma * dt / (dx * dx))

Boundary conditions
 x = linspace(0.0, barX, nx)
 u = sin(2.0 * pi * x)

for n in range(0, nt):
 for j in range(1, nx - 1):
 u[j] += dt * (0.5 * sigma * sigma) *
 (u[j - 1] - 2 * u[j] + u[j + 1]) / (dx ** 2)

 # Plot every pp time steps
 pp = 100
 if (n % pp == 0):
 if (n % (10 * pp) == 0):
 plotlabel = "t = %.1f" % (n * dt)
 plot(x, u, label=plotlabel, color=get_cmap('copper')(float(n) / nt))

xlabel(u'x', fontsize=20)
title(u'One-dimensional heat equation')
legend()
show()
 temp = time() - start_time
 print("--- Computation time: %s seconds ---" % temp)

Ratio $\frac{\Delta_T \sigma^2}{\Delta_x^2} = 0.078408$
2.2 Vector notations

In [6]: start_time = time()

\[dx = \frac{\text{barX}}{\text{nx} - 1} \] # Grid step in space
\[dt = \frac{T}{nt} \] # Grid step in time

Boundary conditions
\[x = \text{linspace}(0.0, \text{barX}, \text{nx}) \]
\[u = \sin(2.0 \ast \pi \ast x) \]
\[\text{rhs} = \text{zeros}(\text{nx}) \]

for n in range(0, nt):
 \[\text{rhs}[1:-1] = dt \ast \left(0.5 \ast \sigma \ast \sigma\right) \ast \left(u[2:] - 2.0 \ast u[1:-1] + u[2:]) \right) / (dx \ast dx) \]
 u += rhs

Plot every pp time steps
\[pp = 100 \]
if (n % pp == 0):
if (n % (10 * pp) == 0):
 plotlabel = "t = %1.2f" % (n * dt)
 plot(x, u, label=plotlabel, color=get_cmap('copper')(float(n) / nt))

xlabel(u'$$x$$', fontsize=14)
title(u'One-dimensional heat equation')
legend()
show()
temp = time() - start_time
print("--- Computation time: %s seconds ---" % temp)

--- Computation time: 0.532827854156 seconds ---

2.3 Matrix notations, using sparse matrices

We are interested here in solving the matrix system in \mathbb{R}^N:

$$\operatorname{Diag}(-2, 1, 1) u = (dx)^2 (1, \ldots, 1)'$$.

In [8]: N = 1000
dx = 1. / (N - 1) # Space step size

--- Computation time: 0.532827854156 seconds ---
x = linspace(0.0, 1.0, N)

Definition of the tridiagonal matrix
Tmatrix = [ones(N), -2.0 * ones(N), ones(N)]
nonzeropositions = array([-1, 0, 1])
iterationMatrix = dia_matrix((Tmatrix, nonzeropositions), shape=(N, N))

Schematic representation of the diagonal matrix
figure()
spy(iterationMatrix)
title('Tridiagonal matrix')
draw()

rhs = -ones(N) * dx * dx # Right-hand side

Solving the linear system
spSolution = spsolve(iterationMatrix, rhs)
comptime = time() - t
print("Computation time using sparse library: %s seconds" % comptime)

In order to compare with the full resolution
fullIterMatrix = iterationMatrix.todense()
t = time()
linAlgSolution = linalg.solve(fullIterMatrix, rhs)
comptime = time() - t
print("Computation time using standard linear algebra: %s seconds" % comptime)

Solution plot
figure()
plot(x, spSolution, 'k-')
title('Solution of the matrix equation')
xlabel(u'x')
ylabel(u'u')
show()

Computation time using sparse library: 0.0011830329895 seconds
Computation time using standard linear algebra: 0.0667409896851 seconds
3 Example from the Lecture Notes

We consider here the example in the lecture notes, namely the heat equation $\partial_\tau u(\tau, x) = \frac{\sigma^2}{2} \partial_{xx} u(\tau, x)$ on $[0, \infty) \times [0, 1]$ with boundary condition $u(0, x) = 2x1_{x \in [0, \frac{1}{2}]} + 2(1 - x)1_{x \in [\frac{1}{2}, 1]}$.

We first rewrite the explicit scheme as a function, taking the boundary condition as argument.

As seen in the lecture notes, the CFL condition, ensuring convergence of the scheme, is $cfl \leq 1$, where $cfl := \delta_t / \delta_x^2$.

In [9]: def explicitSchemeHeatEquation(sigma, barX, T, m, n, BC, *extraArguments):
 dx = barX / (m - 1) # Grid step in space
 dt = T / n # Grid step in time

 # Boundary conditions
 xx = linspace(0., barX, m)
 uu = BC(xx)
 rhs = zeros(m)
 for l in range(0, n):
 rhs[1:-1] = dt * (0.5 * sigma * sigma) * \
 (uu[:-2] - 2.0 * uu[1:-1] + uu[2:]) / (dx * dx)
 uu += rhs
 return xx, uu

In [10]: # Boundary conditions in the example from the lecture note

 def boundaryConditionf(zz):
 uu = []
 for z in zz:
 if z < 0.5:
 uu.append(2. * z)
 else:
 uu.append(2. * (1. - z))
 return np.asarray(uu)

3.0.1 Convergence of the scheme

In [11]: sigma, barX, T = sqrt(2.), 1., 0.001
 nx = 100 # Number of grid points in space
 nt = 10000 # Number of time steps
In [12]: TT = arange(0.01, 0.5, 0.05)
 plt.figure(figsize=(8, 5))

 for T in TT:
 xx, uu = explicitSchemeHeatEquation(
 sigma, barX, T, nx, nt, boundaryConditionf)
 plt.plot(
 xx, uu, color=get_cmap('afmhot')(T), label="t = %1.2f" % T)
 plt.legend()

 dx = barX / (nx - 1)
 dt = T / nt
 cfl = sigma * sigma * dt / (dx * dx)

 plt.plot(xx, boundaryConditionf(xx))

 plt.title("Solutions of the heat equation. CFL= %s " % cfl)
 plt.xlabel(u'x', fontsize=12)
 plt.show()
3.0.2 Comparison with the true solution

The true solution has the explicit form:

\[u(\tau, x) = \frac{8}{\pi^2} \sum_{n \geq 1} \frac{\sin(n\pi x)}{n^2} \sin\left(\frac{n\pi}{2}\right) e^{-n^2\pi^2 \tau}. \]

In [13]: def TrueSolution(x, tau, nMax):

 temp = 0.
 for n in range(1, nMax + 1):
 temp = temp + sin(n * pi * x) * sin(0.5 * n * pi) * exp(-n * n * pi * pi * tau) / (n * n)
 return 8. * temp / (pi * pi)

In [14]: nx = 100 # Number of grid points in space
 nt = 10000 # Number of time steps

 plt.figure(figsize=(8, 5))
 tau = 0.1
 xx, uu = explicitSchemeHeatEquation(
 sigma, barX, tau, nx, nt, boundaryConditionf)
 trueSols = [TrueSolution(x, tau, 20) for x in xx]
 plt.plot(xx, uu, 'r+', markersize=10, label="FD solution")
 plt.plot(xx, trueSols, 'ro', mfc='none',
 markersize=10, label="True solution")
 plt.legend()
 plt.title("Solutions of the heat equation. \tau = %.2f\) \(\% \tau")
 plt.xlabel("x", fontsize=12)
 plt.show()
3.0.3 Explosive scheme

In [19]: sigma, barX, T = sqrt(2.), 1., 0.001

nx = 100 # Number of grid points in space
nt = 100 # Number of time steps

In [20]: TT = arange(0.1, 0.5, 0.1)
plt.figure(figsize=(8, 5))
for T in TT:
 xx, uu = explicitSchemeHeatEquation(
 sigma, barX, T, nx, nt, boundaryConditionf)
 plt.plot(
 xx, uu, color=get_cmap('afmhot')(T), label="t = %1.2f" % T)
plt.legend()

dx = barX / (nx - 1)
dt = T / nt
cfl = sigma * sigma * dt / (dx * dx)
plt.title("Solutions of the heat equation. CFL= %s " % cfl)
plt.show()