The Micro-Price

Sasha Stoikov

Cornell University

Jim Gatheral @ NYU
High frequency traders (HFT)

- HFTs are good:
 - Optimal order splitting
 - Pairs trading / statistical arbitrage
 - Market making / liquidity provision
 - Latency arbitrage
 - Sentiment analysis of news

- HFTs are evil:
 - The flash crash
 - Front running
 - Market manipulation and spoofing
HFTs care about the imbalance

Figure: Buy and sell volume conditional on (pre-trade) Imbalance
The mid-price

- The mid-price $M = \frac{P^b + P^a}{2}$
- P^b is the best bid price
- P^a is the best ask price
- Not a martingale (Bid-ask bounce)
- Low frequency signal
- Doesn’t use volume at the best bid and ask prices.
The weighted mid-price

- The weighted mid-price $M^w = IP^a + (1 - I)P^b$
- The imbalance $I = \frac{Q^b}{Q^b + Q^a}$
- Q^b is the bid size and Q^a is the ask size.
- Gatheral and Oomen (2009)
- Not a martingale
- Noisy
- Counter-intuitive examples
The weighted mid-price example

- Assume $P^b = 32.17, \ Q^b = 9, \ P^a = 31.18, \ Q^a = 1$
- Assume the second best ask is 31.19 and the second best ask size is 27
- $M^w = 32.179 = 0.1 \cdot 32.17 + 0.9 \cdot 32.18$
- Order of size 1 at $P^a = 31.18$ cancels
- New $M^w = 32.1725 = 0.25 \cdot 32.17 + 0.75 \cdot 32.19$
- The ‘fair’ price just moved down after an ask order canceled?
Features of the Micro-Price

- $P_{t}^{micro} = F(M_{t}, I_{t}, S_{t})$
- Markov
- Martingale
- Computationally fast
- Better short term price predictions
Outline

• General definition
• Toy models
 1. micro-price = mid price
 2. micro-price = weighted mid price
• A discrete Markov model
• Data analysis
• Conclusion
Micro-price definition

Define

\[P_{t}^{\text{micro}} = \lim_{i \to \infty} P_{t}^{i} \]

where the approximating sequence of martingale prices is given by

\[P_{t}^{i} = \mathbb{E} [M_{\tau_{i}} | \mathcal{F}_{t}] \]

- \mathcal{F}_{t} is the information contained in the order book at time t.
- $\tau_{1}, ..., \tau_{n}$ are (random) times when the mid-price M_{t} changes
Assumptions

Assumption

The information in the order book is given by the 3 dimensional Markov process $F_t = (M_t, I_t, S_t)$ where $M_t = \frac{1}{2}(P^b_t + P^a_t)$ is the mid-price $S_t = \frac{1}{2}(P^a_t - P^b_t)$ is the bid-ask spread $I_t = \frac{Q^b_t}{Q^b_t + Q^a_t}$ is the imbalance at the top of the order book.

Assumption

The dynamics of (M_t, I_t, S_t) is independent of the level M_t, i.e.

$$\mathbb{E}[M_{\tau_1} - M_t | M_t, I_t, S_t] \triangleq g^1(I_t, S_t)$$
Main result

Theorem

Given Assumptions 1 and Assumption 2, the \(i\)-th approximation to the micro-price can be written as

\[P_t^i = M_t + \sum_{k=1}^{i} g^k(I_t, S_t) \]

where

\[g^1(I_t, S_t) = \mathbb{E} [M_{\tau_1} - M_t | I_t, S_t] \]

and

\[g^{i+1}(I_t, S_t) = \mathbb{E} [g^i(I_{\tau_1}, S_{\tau_1}) | I_t, S_t], \forall j \geq 0 \]

can be computed recursively.
3 examples

1. Mid-price independent of imbalance
2. Brownian imbalance
3. Discrete-time, finite state space

Interesting questions:
- Does the micro-price converge?
- What does it converge to?
- Is the micro-price between the bid and the ask?
- Is it sensible for large tick and small tick stocks?
First example

If

- $M_s - M_t$ is independent of I_t for all $s > t$
- M_t is a continuous time random walk. The jumps are binomial and symmetric, i.e. $M_{\tau_{i+1}} - M_{\tau_i}$ takes values in $(-1, 1)$, have up and down probabilities of 0.5.
- The spread $S_t = 1$

then

$$P_t^{\text{micro}} = M_t$$
Second example

If

- The process I_t is a Brownian motion on the interval $[0, 1]$.
- Let $\tau_{\text{down}} = \inf\{s > t : I_s = 0\}$ and $\tau_{\text{up}} = \inf\{s > t : I_s = 1\}$ and $\tau_1 = \min(\tau_{\text{up}}, \tau_{\text{down}})$
- When I_t is absorbed to 1, the mid-price jumps up with probability 0.5 or bounces back with probability 0.5.
- When I_t is absorbed to 0, the mid-price jumps down with probability 0.5 or bounces back with probability 0.5.
- The spread $S_t = 1$

then

$$P_t^{\text{micro}} = M_t + I_t - \frac{1}{2}$$
Assumptions

- The time step is now discrete with $t \in \mathbb{Z}^+$,
- The imbalance I_t takes discrete values $1 \leq i_I \leq n$,
- The spread S_t takes discrete values $1 \leq i_S \leq m$
- The mid-price changes $M_{t+1} - M_t$ takes integer values in $K = \{ k \mid 0 < |k| \leq 2m \}$.
- Define the state $X_t = (I_t, S_t)$ with discrete values $1 \leq i \leq nm$
Computing g^1

The first step approximation to the micro-price

$$g^1(i) = \mathbb{E}[M_{\tau_1} - M_t | X_t = i]$$

$$= \sum_{k \in K} k \cdot \mathbb{P}(M_{\tau_1} - M_t = k | X_t = i)$$

$$= \sum_{k \in K} \sum_s k \cdot \mathbb{P}(M_{\tau_1} - M_t = k \land \tau_1 - t = s | X_t = i)$$
The transition probability matrix T_1

Then we define an *absorbing* Markov chain completely identified by the transition probability matrix T^1 in canonical form:

$$T^1 = \begin{pmatrix} Q & R^1 \\ 0 & I \end{pmatrix}$$

- Q is $nm \times nm$ matrix
- R^1 is $nm \times 4m$ matrix
- I is the $4m \times 4m$ matrix
Computing g^1

Absorbing states

$$R_{ik}^1 := \mathbb{P}(M_{t+1} - M_t = k | X_t = i)$$

Transient states

$$Q_{ij} := \mathbb{P}(M_{t+1} - M_t = 0 \land X_{t+1} = j | X_t = i)$$

Note that R^1 is an $nm \times 4m$ matrix and Q is an $nm \times nm$ matrix.

$$g^1(i) = \left(\sum_s Q^{s-1} R^1 \right) k = (1 - Q)^{-1} R^1 k$$

where $k = \left[-2m, -2m + 1, \ldots, -1, 1, \ldots, 2m - 1, 2m \right]^T$
Computing g^{i+1}

Define a new matrix of absorbing states

$$R_{ik}^2 := \mathbb{P}(M_{t+1} - M_t \neq 0 \land I_{t+1} = k | I_t = i)$$

Once again applying standard techniques for discrete time Markov processes with absorbing states

$$g^{i+1}(i) = \left(\sum_s Q^{s-1} R^2 \right) g^i = (1 - Q)^{-1} R^2 g^i$$
Checking that the micro-price converges

Define $B := (1 - Q)^{-1} R^2$.

Theorem

If B has strictly positive entries and $\lim_{k \to \infty} B^k = W$ where W is the unique stationary distribution and $W g_1 = 0$, then the limit $\lim_{i \to \infty} p_t^i = p_t^{micro}$ converges.
A spectral decomposition for the micro-price

Perron-Frobenius decomposition

\[p_t^{\text{micro}} = \lim_{i \to \infty} p_t^i = M_t + \sum_{i=2}^{nm} \exp(\lambda_i) B_i g^1 \]

where \(\lambda_i \) are the eigenvalues of \(B \) and \(B_i \) are matrices formed from normalized left and right eigenvectors of \(B \).
The data

Bid and ask quotes for Bank of America (BAC) and Chevron (CVX), for the month of March 2011.

Figure: Spread histograms for BAC and CVX. BAC is a typical large tick stock and CVX is a typical small tick stock.
The in-sample estimation

- Estimate transition probabilities Q, R^1 and R^2
- Compute $g^1 = (1 - Q)^{-1} R^1 k$. This function is symmetrized to ensure that $g^1(i_I, i_S) = 1 - g^1(n - i_I, i_S)$.
- Compute $B = (1 - Q)^{-1} R^2$. This function is symmetrized to ensure that $B(i_I, i_S), (j_I, j_S) = B(n - i_I, i_S), (n - j_I, j_S)$. Note that the symmetrizing procedure ensures that $B \dot{g}^1 = 0$ and that the micro-price converges as guaranteed by Theorem 2.
- Perform a spectral decomposition of B in terms of eigenvalues λ_i and matrices B_i
- Compute the micro-price adjustment:

$$G^* = p^{micro} - M = \sum_{i=2}^{nm} \exp(\lambda_i) B_i g^1$$
In-sample results

Figure: $G^* = p_t^{micro} - M_t$ as a function of I and S
Out of sample validation part 1

- Compute averages of $M_{t+60} - M_t$ grouped by I_t and S_t for 3 out of sample days
- Compare to G^* obtained from the first day or March.
Out of sample results part 1

Figure: G^* vs 1 min price predictions on three consecutive days
Out of sample validation part 2

- Compute averages of $M_{t+60} - M_t$, $M_{t+300} - M_t$ and $M_{t+600} - M_t$ grouped by I_t and S_t for the entire month of March.
- Compare to G^* obtained from the first day of March.
Out of sample results part 2

Figure: G^* vs 1min, 5min and 10min price predictions for March 2011
Summary

1. Have defined the micro-price as the expected mid-price in the distant future
2. When fitting a Markov model, we have conditions that ensures this micro-price converges
3. Micro-price is a good predictor of future mid prices
4. Micro-price can fit very different microstructures
5. Micro-price needs less data to converge than averaging mid price changes over fixed horizons
6. Micro-price is horizon independent
7. Micro-price seems to live between the bid and the ask
Future work

1. Including other factors than imbalance and spread
2. Continuous models for the micro-price
3. Connections to quantities such as volatility, volume and tick size
4. High frequency volatility and correlation estimation
5. Applications to HFT strategies

Download the paper HERE