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The Dartmouth Workshop

In summer 1956 a group of researchers gathered at a workshop organised by John
McCarthy, then a young Assistant Professor of Mathematics, at Dartmouth College in
Hanover, New Hampshire.
The attendees included:

Marvin Minsky (1927–2016)
Trenchard More
Nathaniel Rochester (1919–2001)
Oliver Selfridge (1926–2008)
Claude Shannon (1916–2001)
Herbert Simon (1916–2001)
Ray Solomonoff (1926–2009)

The stated goal was ambitious:

The study is to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can, in principle, be so precisely
described that a machine can be made to simulate it. An attempt will be
made to find how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and improve
themselves.

Thus the field of Artificial Intelligence (AI) was born.
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The term “Artificial Intelligence”

It was John McCarthy who coined the term Artificial Intelligence, which he defined as

the science and engineering of making intelligent machines, especially intelligent
computer programs.

Here we see him hosting a series of four simultaneous computer chess matches carried out
via telegraph against rivals in Russia ten years later, in 1966.
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The participants in 1956

Do you recognise them?

From left: Trenchard More, Nathaniel Rochester, Ray Solomonoff, Marvin Minsky, John
McCarthy, Oliver Selfridge, and Claude Shannon.
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The participants reunited at the July 2006 AI@50 conference

Do you recognise them?

From left: Trenchard More, John McCarthy, Marvin Minsky, Oliver Selfridge, and Ray
Solomonoff.
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Scruffy AI and blocks world

Marvin Minsky (1927–2016) was on the MIT faculty from 1958.

Seymour Papert (1928–2016) joined the faculty in 1963.

Minsky and Papert concentrated on

just getting systems to do interesting things — “scruffy AI”. [HP15]

Their students worked on problems in limited domains,

application areas not requiring a broad general knowledge. Successful
examples included the domains of integral calculus, geometry, and algebra
as well as a famous series of problems in the “blocks world”, a simplified
world consisting of some toy blocks sitting on a table. [HP15]
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SHRDLU

Terry Winograd (b. 1946) was at the time a PhD student of Seymour Papert.

In 1968–70 he wrote SHRDLU [Win71, Win72], a program for understanding natural
language.

It conducted a simple dialog (via teletype) with a user about a blocks world shown on
an early display screen (DEC-340 attached to a PDP-6 computer).

Ever wondered how SHRDLU got its name? The answer is here:
http://hci.stanford.edu/winograd/shrdlu/name.html
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The dialogue that was used as a SHRDLU demo

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE

↪→ BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM

↪→ HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH I TOLD YOU TO PICK UP?

Computer: YES, THE RED CUBE.

Person: IS IT SUPPORTED?

Computer: YES, BY THE TABLE.

Person: CAN THE TABLE PICK UP BLOCKS?

Computer: NO.

Person: CAN A PYRAMID BE SUPPORTED BY A BLOCK?

Computer: YES.

...
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Vision, mechanical manipulation, robotics

Their work was not all about simulation. Here Minsky is pictured with a physical
system consisting of a video camera and a robotic arm used to manipulate a physical
blocks world:

Further details of this work can be found in [MP71].
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Formal logic and LISP (i)

John McCarthy came to MIT around the same time as Minsky.

He advocated the use of formal logic in artificial intelligence.

He invented LISP, and co-developed it with R. Bray-
ton, D. Edwards, P. Fox, L. Hodes, D. Luckham, K. Maling, D. Park, S. Russell [McC60]:

A programming system called LISP (for LISt Processor) has been developed for the
IBM 704 computer by the Artificial Intelligence group at M.I.T. The system was
designed to facilitate experiments with a proposed system called the Advice Taker,
whereby a machine could be instructed to handle declarative as well as imperative
sentences and could exhibit “common sense” in carrying out its instructions. The
original proposal [McC58] for the Advice Taker was made in November 1958. The main
requirement was a programming system for manipulating expressions representing
formalized declarative and imperative sentences so that the Advice Taker system could
make deductions.

In the course of its development, the LISP system went through several stages of
simplification and eventually came to be based on a scheme for representing the partial
recursive functions of a certain class of symbolic expressions.

McCarthy’s work [McC60] was influenced by that of Allen Newell, J. Cliff Shaw and
Herbert A. Simon on Logic Theorist [NS57], “the first artificial intelligence
program” [Cre93], which would eventuall prove 38 of the first 52 theorems in
Alfred North Whitehead’s and Bertrand Russell’s Principia Mathematica [WR10].
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Formal logic and LISP (ii)

He made use of partial functions:

A partial function is a function that is defined only on part of its domain.
Partial functions necessarily arise when functions are defined by
computations because for some values of the arguments the computation
defining the value of the function may not terminate.

Propositional expressions and predicates:

A propositional expression is an expression whose possible values are T (for
truth) and F (for falsity). We shall assume that the reader is familiar with the
propositional connectives ∧ (“and”), ∨ (“or”), and ∼ (“not”)... A predicate is a
function whose range consists of the truth values T and F.

Conditional expressions, “a device for expressing the dependence of quantities on
propositional quantities”.

Recursive function definitions:
By using conditional expressions we can, without circularity, define functions
by formulas in which the defined function occurs. For example, we write

n! = (n = 0→ 1,T → n · (n− 1)!)
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Formal logic and LISP (iii)

Finally, McCarthy made extensive use of Alonzo Church’s λ-calculus, [McC60]:
It is usual in mathematics — outside of mathematical logic — to use the word “function”
imprecisely and to apply it to forms such as y2 + x. Because we shall later compute
with expressions for functions, we need a distinction between functions and forms and
a notation for expressing this distinction. This distinction and a notation for describing it,
from which we deviate trivially, is given by Church [Chu41].

Let f be an expression that stands for a function of two integer variables. It should
make sense to write f(3, 4) and the value of this expression should be determined. The
expression y2 + x does not meet this requirement; y2 + x(3, 4) is not a conventional
notation and if we attempted to define it we would be uncertain whether its value would
turn out to be 13 or 19. Church calls an expression like y2 + x a form. A form can be
converted into a function if we can determine the correspondence between the
variables occurring in the form and the ordered list of arguments of the desired
function. This is accomplished by Church’s λ-notation.

If E is a form in variables x1, . . . , xn , then λ((x1, . . . , xn), E) will be taken to be the
function of n variables whose value is determined by substituting the arguments for the
variables x1, . . . , xn in that order in E and evaluating the resulting expression. For
example, λ((x, y), y2 + x) is a function of two variables, and
λ((x, y), y2 + x)(3, 4) = 19.
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Criticism of the Logistic Approach

Minsky was critical of the use of logic for representing knowledge. In an appendix to a
widely disseminated preprint of [Min75], entitled Criticism
of the Logistic Approach, which was removed from the published version, Minsky wrote:

Because logicians are not concerned with systems that will later be
enlarged, they can design axioms that permit only the conclusions they
want. In the development of intelligence, the situation is different. One has
to learn which features of situations are important, and which kinds of
deductions are not to be regarded seriously.

Thus McCarthy’s approach diverged from Minsky’s and in 1963 McCarthy left MIT to
start the Stanford Artificial Intelligence Laboratory. [HP15]

As an alternative to formal logic, Minsky advocated an approach based on
frames [Min75].

Minsky’s approach wasn’t without its critics either, but...

Widely criticized as a trivial combination of semantic nets [Ric56] and
object-oriented programming [DMN70, BDMN73], Minsky’s frames paper
served to place knowledge representation as a central issue for AI. [MMH98,
p. 23]
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Early artificial neural networks
Artificial neural networks are not a new idea: they originate from earlier work [PK05,
Section 1.4]:

As early as 1873, researchers such as the logician Alexander Bain [Bai73] and
psychologist William James [Jam90] were imagining man-made systems based on
neuron models.
Warren McCulloch and Walter Pitt showed that neurons were Turing-capable and
developed a logical calculus of ideas immanent in nervous activity [MP43], which
Stephen Cole Kleene recognised as related to finite automata [Kle56].
Donald Olding Hebb considered the role of the neurons in learning and developed a
learning rule based on reinforcement to strengthen connections from important inputs
— Hebbian learning [Heb49]. Hebb stated what would become known as Hebb’s
postulate:

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

According to [Med98],

From a neurophysiological perspective, Hebbian learning can be described
as a time-dependent, local, highly interactive mechanism that increases
synaptic efficacy as a function of pre- and post-synaptic activity.
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Connectionist versus symbolic/structural AI

Belmont G. Farley and Wesley A. Clark [FC54] and Nathaniel Rochester,
John H. Holland, L. H. Haibt and W. L. Duda [RHHD56] simulated Hebbian networks
— interconnected networks of simple units — on computers.

Hebb also introduced the term connectionism, which would later be used to describe
the approaches to UI based on interconnected networks of simple units.

Other approaches to UI, such as those pioneered by Minsky, Papert and McCarthy
may be described as structural or symbolic.
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The perceptron

Working on pattern classification, Frank Rosenblatt (1928–1971) of the Cornell
Aeronautical Laboratory invented the perceptron [Ros57, Ros60].

It was first implemented on IBM 704 and then as a custom-built machine, the
Mark I Perceptron.

That machine had an array of 400 photoresistors, randomly connected to the
“neurons”. The weights were encoded in potentiometers and weight updates were
carried out by electric motors [Cor60, Bis07].

Around the same time another early feedforward neural network algorithm was
produced by Bernard Widrow and his first PhD student, Ted Hoff: the least mean
squares (LMS) algorithm, also known as the Widrow–Hoff rule [WH60].

In the next year, 1961, Widrow and his students developed the earliest learning rule for
feedforward networks with multiple adaptive elements: the
Madaline Rule I (MRI) [Wid62].

Applications of LMS and MRI were developed by Widrow and his students in fields
such as pattern recognition, weather forecasting, adaptive control, and signal
processing. The work by R. W. Lucky and others at Bell laboratories led to first
applications to adaptive equalisation in high-speed modems and adaptive echo
cancellers for long-distance telephone and satellite circuits.
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Mark I Perceptron (i)

The Mark I Perceptron on exhibition at the National Museum of History and Technology,
March 1968.
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Mark I Perceptron (ii)

According to the manual [Cor60],

The Mark I Perceptron is a pattern learning and recognition device. It can learn to
classify plane patterns into groups on the basis of certain geometric similarities
and differences. Among the properties which it may use in its discriminations and
generalizations are position in the retinal field of view, geometric form, occurrence
frequency, and size.

If, of the many possible bases of classification, a particular one is desired, it can
generally be transferred to the perceptron by a forced learning session or by an
error correction training process. If left to its own resources the perceptron can
still divide up into classes the patterns presented to it, on a classification basis of
its own forming. This formation process is commonly referred to as spontaneous
learning.

The Mark I is intended as an experimental tool for the direct study of a limited
class of perceptrons. It is sufficiently flexible in configuration and operation to
serve as a model for any of a large number of perceptrons possessing a single
layer of non-cross-coupled association units.
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The rise and fall of the perceptron (i)

During a 1958 press conference, Rosenblatt made rather strong statements that were
reported by The New York Times as follows:

WASHINGTON, July 7 (UPI) — The Navy revealed the embryo of an
electronic computer today that it expects will be able to walk, talk, see, write,
reproduce itself and be conscious of its existence.

These comments caused skepticism among some researchers.

In 1969, Minsky and Papert published Perceptrons: An introduction to computational
geometry [MP69]. The book used mathematics, notably topology and group theory, to
prove some results about the capabilities and limitations of simple networks of
perceptrons.
It contained some positive, but also negative results:

A single perceptron is incapable of implementing some predicates, such as the XOR logical
function.
Predicates such as parity and connectedness also cause serious difficulties for perceptrons.
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The rise and fall of the perceptron (ii)

The publication of the book led to the “XOR affair” [Dek13]:

the story that circulates goes like this: “Marvin Minsky, being a proponent of
structured AI, killed off the connectionism approach when he co-authored
the now classic tome, Perceptrons. This was accomplished by
mathematically proving that a single layer perceptron is so limited it cannot
even be used (or trained for that matter) to emulate an XOR gate. Although
this does not hold for multi-layer perceptrons, his word was taken as gospel,
and smothered this promising field in its infancy.”

Marvin Minsky begs to differ, and argues that he of course knew about the
capabilities of artificial neural networks with more than one layer, and that if
anything, only the proof that working with local neurons comes at the cost of
some universality should have any bearing.

Indeed, the earlier work of Warren McCulloch and Walter Pitts [MP43] had already
shown that neural networks were Turing capable.

Critics of the 1969 book posed other arguments that its publication, either intentionally
or unintentionally, led to a decline in neural networks research for a decade.

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

The rise and fall of the perceptron (iii)
In his review of the book’s 1988 expanded edition, Jordan B. Pollack, a proponent of
connectionism, writes [Pol89] that

Minsky and Papert surrounded their 1969 mathematical tract with fairly negative
judgements and loaded terms, such as the following quotes, which have been
used as evidence [DD88, RZ85] that they actually intended to stifle research on
perceptron-like models.

Perceptrons have been widely publicized as “pattern recognition” or
“learning” machines and as such have been discussed in a large number of
books, journal articles, and voluminous “reports”. Most of this writing... is
without scientific value. (p. 4)
We do not see that any good can come of experiments which pay no
attention to limiting factors that will assert themselves as soon as the small
model is scaled up to a usable size. (p. 18)
[We] became involved with a somewhat therapeutic compulsion: to dispel
what we feared to be the first shadows of a “holistic” or “Gestalt”
misconception that would threaten to haunt the fields of engineering and
artificial intelligence... (p. 20)
There is no reason to suppose that any of these virtues carry over to the
many layered version. Nevertheless, we consider it to be an important
research problem to elucidate (or reject) our intuitive judgement that the
extension is sterile. (p. 231)
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The rise and fall of the perceptron (iv)

Pollack continues:
Despite these pronouncements, in 1988, Minsky and Papert wish to deny their
responsibility, or, at least, their intentionality, in bringing about the decade-long
connectionist winter:

One popular version is that the publication of our book so discouraged
research on learning in network machines that a promising line or research
was interrupted. Our version is that progress had already come to a virtual
halt because of the lack of adequate basic theories. (p. xii)
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The rise and fall of the perceptron (v)

Pollack argues that

the real problem which terminated the research viability of perceptron-like models
was the problem of scaling. Minsky and Papert asserted that as such learning
models based on gradient descent in weight space were scaled up, they would be
impractical due to local minimal extremely large weights and a concurrent growth
in convergence time.

So, were they responsible for killing Snow White? No, since intention and action
are separable, they were no more responsible than Bill, who, intending to kill his
uncle, is “so nervous and excited [when driving] that he accidentally runs over
and kills a pedestrian, who happens to be his uncle” [Sea80] If Minsky and Papert
did not intend to stifle the field of neural networks, then, perhaps, they would act
in accordance with their new motto: “We see no reason to choose sides” (p. xiv).

but agrees that

Perceptrons, and its authors, certainly have their places assured in history.
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Connectionist winter

Whatever the reason, neural networks became unpopular in the 1970s and few
research groups continued research in this subject.

Stephen Grossberg developed a self-organising neural network model known as
Adaptive Resonance Theory (ART) [Gro76a, Gro76b].

Teuvo Kohonen worked on matrix-associative memories [Koh72] and self-organisation
of neurons into topological and tonotopical mappings of their perceived
environment [Koh82, Koh88].
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The discovery of backpropagation

In 1971 Paul John Werbos developed a method of training multilayer neural networks
through backpropagation of errors. It was described in his 1974 PhD thesis at Harvard
University Beyond Regression: New Tools for Prediction and Analysis in Behavioral
Sciences [Wer74]. This work later appeared in extended form in his book The Roots of
Backpropagation [Wer94]. See also [Wer90].

This was a major extension of feedforward neural networks beyond the MRI rule
of [Wid62].

The backpropagation technique was rediscovered by D. B. Parker in 1985 and
appeared in his technical report at MIT [Par85].

At around the same time, during his PhD, in 1985, Yann LeCun proposed and
published (at first, in French) a different version of the backpropagation
algorithm [LeC88].

This work received little attention until backpropagation was refined and popularised
by David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams [RHW86].

Backpropagation made it feasible to train multilevel neural networks with high degrees
of nonlinearity and with high precision. See [WL90] for a review and example
applications.
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The Hopfield network

In 1982 John Hopfield [Hop82] invented the associative neural network, now known as
the Hopfield network.

Hopfield’s focus was on the collective action of the network and not of the individual
neurons.

Hopfield networks serve as content-addressable (“associative”) memory systems with
binary threshold nodes.

They are guaranteed to converge to a local minimum, but may sometimes converge to
a false pattern (wrong local minimum) rather than the stored pattern (expected local
minimum).

Hopfield modeled the functioning of the neural network as an energy minimisation
process.

The discovery of backpropagation and the Hopfield network rekindled interest in neural
networks and revived this research area. For more detailed history, see [PK05, WL92].
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The resurgence of AI as ML, deep learning

The recent resurgence of Artificial Intelligence (AI) as Machine Learning (ML) was
facilitated by advances in artificial neural networks.

A deep neural network (DNN) [GBC17] is an artificial neural network (ANN) with
multiple hidden layers between the input and output layers. Such networks can model
complex nonlinear relationships.

Backpropagation is a major ingredient in making much work with deep neural networks
feasible.

Contributions by Geoffrey E. Hinton and others [Hin89, HS06, HOT06, Hin07] have
enabled the pre-training of multilayer feedforward neural networks one layer at a time,
treating each layer in turn as an unsupervised restricted Boltzmann machine, then
fine-tuning it using supervised backpropagation.

This — along with advances in software and hardware — has made it computationally
feasible to train and apply DNNs.

Applications of DNNs — deep learning — has been at the core of the renewed interest
in machine learning.
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AI versus ML

Nidhi Chappell, Intel

AI is basically the intelligence — how we make machines
intelligent, while machine learning is the implementation of
the compute methods that support it. The way I think of it
is: AI is the science and machine learning is the
algorithms that make the machines smarter. So the
enabler for AI is machine learning.

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

ML and probability theory
Modern books on machine learning [HTF11, GBC17] introduce probability theory as
one of its foundations.
In [GBC17], Section 3.1, Why Probability?, the following justification is given:

Many branches of computer science deal mostly with entities that are
entirely deterministic and certain. A programmer can usually safely assume
that a CPU will execute each machine instruction flawlessly. Errors in
hardware do occur but are rare enough that most software applications do
not need to be designed to account for them. Given that many computer
scientists and software engineers work in a relatively clean and certain
environment, it can be surprising that machine learning makes heavy use of
probability theory.

Machine learning must always deal with uncertain quantities and sometimes
stochastic (nondeterministic) quantities. Uncertainty and stochasticity can
arise from many sources. Researchers have made compelling arguments
for quantifying uncertainty using probability since at least the 1980s. Many of
the arguments presented here are summarized from or inspired by [Pea88].

Nearly all activities require some ability to reason in the presence of
uncertainty. In fact, beyond mathematical statements that are true by
definition, it is difficult to think of any proposition that is absolutely true or
any event that is absolutely guaranteed to occur.
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Random experiment and the sample space

A random experiment E is an experiment such that
1 all possible distinct outcomes of the experiment are known in advance;
2 the actual outcome of the experiment is not known in advance with certainty;
3 the experiment can be repeated under identical conditions.

The sample space, Ω, is the set of all possible outcomes of a random experiment.

A subset A ⊆ Ω of the sample space is referred to as an event.

The empty set ∅ ⊆ Ω is referred to as the impossible event.

The sample space itself, Ω ⊆ Ω, is referred to as the certain event.
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Example of a random experiment

The random experiment E consists in a single toss of an unbiased coin.
The possible outcomes of this experiment are:

ω1 = “heads”,
ω2 = “tails”.

The sample space is thus Ω = {ω1 = “heads”,ω2 = “tails”}.
There are exactly four events — 2|Ω| = 22 = 4 subsets of Ω:

H = {ω1} = “heads (obverse) comes up”;
T = {ω2} = “tails (reverse) comes up”;
∅ = {} = “nothing comes up” — if we do perform the experiment E , this will never occur, so
this is indeed the impossible event;
Ω = {ω1,ω2} = “either heads or tails comes up” — if we do perform the experiment E , this
is guaranteed to occur, so this is indeed the certain event (we disregard the possibility of the
coin landing on its edge — the third side of the coin; otherwise we’d need a separate
outcome in Ω to model this possibility).
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The classical interpretation of probability

Let A be an event associated with an experiment E so that A either occurs or does not
occur when E is performed.

Assume that Ω is finite.

Furthermore, assume that all outcomes in Ω are equally likely.

Denote by M(·) the number of outcomes in an event; thus M(A) is the number of
outcomes in A , M(Ω) the number of outcomes in Ω.

Then the probability of A is given by

P(A) =
M(A)

M(Ω)
.
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The classical interpretation of probability: an example

Let us continue our example where the random experiment E consists in a single toss
of an unbiased coin.

For the event H = {ω1}, according to the classical interpretation of probability,

P(H) =
M(H)

M(Ω)
=

1
2
.

But what if Ω is not finite?

And what if the coin is biased?
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The frequentist interpretation of probability

Let A be an event associated with an experiment E so that A either occurs or does not
occur when E is performed.

Consider a superexperiment E∞ consisting in an infinite number of independent
performances of E .

Let N(A , n) be the number of occurrences of A in the first n performances of E within
E∞.

Then the probability of A is given by

P [A ] = lim
n→∞

N(A , n)
n

.

This interpretation of probability is known as the long-term relative frequency (LTRF)
(or frequentist, or objectivist) [Wil01, page 5].

The claim is that, in the long term, as the number of trials approaches infinity, the
relative frequency will converge exactly to the true probability.

It requires that the probabilities be estimated from samples.

Unknown quantities, such as means, variances, etc., are considered to be fixed but
unknown.
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Question

Can you use the frequentist interpretation of probability to compute the probability of the
existence of extraterrestrial life?

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Bayesian interpretation of probability

In Bayesian (subjectivist, epistemic, evidential) interpretation, the probability of an
event is the degree of belief that that event will occur.
This degree of belief can be determined on the basis of

empirical data,
past experience, or
subjective plausibility.

Bayesian probability can be assigned to any statement, whether or not a random
experiment is performed.

Unknown quantities, such as means, variances, etc., are regarded to follow a
probability distribution, which expresses our degree of belief about that quantity at a
particular time.

On arrival of new information, the degree of belief can be updated.
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The axiomatic interpretation of probability

Andrey Nikolaevich Kolmogorov (1903–1987): “The theory of probability as a
mathematical discipline can and should be developed from axioms in exactly the same
way as Geometry and Algebra.” [Kol33]
Kolmogorov’s axioms of probability:

First axiom: For any event E, P [E] ∈ R, P [E] ≥ 0. (The assumption of finite measure.)
Second axiom: P [Ω] = 1. (The assumption of unit measure.)
Third axiom: For any countable collection of disjoint events E1,E2, . . .,
P [
⋃∞

i=1 Ei ] = ∑∞
i=1 P [Ei ]. (The assumption of σ-additivity.)

Consistency:
The LTRF and Bayesian interpretations motivated Kolmogorov’s axioms and are consistent
with them.
The LTRF interpretation reappears in the axiomatic interpretation as a theorem — the Strong
Law of Large Numbers.
The axioms describe how probability behaves, not what probability is... Or is Kolmogorov
saying that what probability is is defined by the way it behaves? (“When I see a bird that
walks like a duck and swims like a duck and quacks like a duck, I call that bird a duck.” —
Indiana poet James Whitcombe Riley, around 1916.)
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History: Andrey Nikolayevich Kolmogorov (1903–1987)

Andrey Nikolaevich Kolmogorov was one of the founders of modern (measure-theoretic)
probability theory. Its foundational axioms, often referred to as Kolmogorov axioms, first
appeared in a German monograph entitled Grundbegriffe der Wahrscheinlichkeitrechnung
in the Ergebnisse der Mathematik in 1933 [Kol33]. A Russian translation by G. M. Bavli was
published in 1936, which was used to produce an English translation [Kol56]
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Consequences of the axioms

Null empty set: P [∅] = 0.

Complement rule: for any event A , P [Ac] = 1−P [A ].

Difference rule: for any events A ,B, if A ⊆ B, P [B \ A ] = P [B ]−P [A ].

Monotonicity rule: for any events A ,B, if A ⊆ B, then P[A ] ≤ P[B ].

The upper bound on probability is 1: for all A , P [A ] ≤ 1.

Inclusion-exclusion rule: for any events A ,B,
P[A ∪ B ] = P [A ] + P [B ]−P [A ∩ B ].

Bonferroni inequality: for any events P [A ∪ B ] ≤ P[A ] + P[B ].

Continuity property: If the events A1,A2, . . . satisfy A1 ⊆ A2 ⊆ . . . and A =
⋃∞

i=1 Ai ,
then P [Ai ] is increasing and P [A ] = limi→∞ P [Ai ]. If the events B1,B2, . . . satisfy
B1 ⊇ B2 ⊇ . . . and B =

⋂∞
i=1 Bi , then P [Bi ] is decreasing and P [B ] = limi→∞ P [Bi ].

Borel–Cantelli Lemma: For any events A1,A2, . . ., if ∑∞
i=1 P [Ai ] < ∞, then

P
[⋂

i=1
⋃

j=i Aj
]
= 0.1

The rest of probability theory!

1The event P
[⋂

i=1
⋃

j=i Aj
]

is sometimes referred to as “Ai infinitely often” or as the limit superior of the Ai ,
lim supi→Ai

Ai .
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Frequentist vs Bayesian interpretation of probability

The frequentist approach is (arguably) objective.

The Bayesian approach is (arguably) subjective.

The frequentist approach uses only new data to draw conclusions.

The Bayesian approach uses both new and past data, and belief, to draw conclusions.
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Probability theorists or logicians?

On the face of it, probability theory developed independently of logic...

However, some of the great probability theorists of the 20th century either started off,
or became logicians!

Andrey Nikolayevich Kolmogorov wrote On the principle of the excluded middle in
1925 On the Interpretation of Intuitionistic Logic [Kol32] in 1931, before many of his
probability-theoretic papers, and around the same time as Grundbegriffe der
Wahrscheinlichkeitsrechnung [Kol33].

Kolmogorov would later — in 1953 — worked on the generalisation of the concept of
algorithm [Kol53].

He was Head of the Mathematical Logic Group (Kafedra) at Moscow State University
from 1980 until the end of his life in 1978.

Norbert Wiener’s PhD thesis completed at Harvard University in 1913 was entitled A
comparison Between the Treatment of the Algebra of Relatives by Schroeder and that
by Whitehead and Russell [Wie13] and his supervisors were the philosopher Karl
Schmidt and Josiah Royce, the latter being among the founding fathers of the Harvard
school of logic, Boolean algebra, and foundations of mathematics.
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Stochastic processes

Probability space: (Ω,F ,P), where Ω is a set, F is a σ-algebra of its subsets and P

is a measure on (Ω,F ) such that P(Ω) = 1

Real-valued random variable X : an (F ,BR)-measurable function X : Ω→ R

Law of the random variable X : the image measure of P under X , PX : R→ [0, 1],
PX (B) := P ◦ X−1(B)

Stochastic process X : a parametrised (by some indexing set T representing time)
collection of random variables, {Xt}t∈T , defined on (Ω,F ,P) and assuming values in
the same measurable space

Can also be viewed as a random variable on (Ω,F ,P) taking values in
(C(T ,S),BC(T ,S))

Law of the stochastic process X : the pushforward probability measure
P ◦ X−1 : B(C [T ,S])→ [0, 1]
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Brownian motion and Wiener measure

Brownian motion: the stochastic process W such that
W0 = 0
t 7→ Wt a.s. everywhere continuous
independent increments with Wt −Ws ∼ N(0, t − s)

Wiener measure is the law of W

The Wiener measure of a basic point-open set of continuous functions from [0, 1] to R,
i.e. a set of the form {f | ai < f(ti) < bi , 0 = t0 < t1 < . . . ,< tn = 1}, is given by

1√
πn ∏n

i=1(ti − ti−1)

∫ b1

a1

. . .
∫ bn

an
e

∑n
j=1

(xj−xj−1)
2

tj−tj−1 dxn . . . dx1,

where x0 := 0.

Brownian motion was studied extensively by Albert Einstein and its law was
constructed by Norbert Wiener [Wie23]

Probably the most important stochastic process, a paradigmatic martingale

Ubiquitous in stochastic analysis [Øks10, KS91] and mathematical finance [Shr04]
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History: Norbert Wiener (1894–1964)

Norbert Wiener produces the first construction of the law of the Brownian motion and
publishes it in 1923 [Wie23]
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The trajectories of the Brownian motion

The following graph shows three trajectories or realisations of W

Each trajectory corresponds to a particular ω ∈ Ω

We shall assume T = [0, 1]

0

R

T
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Brownian motion as the limit of the symmetric random walk
For n ∈N∗, let

Xn =

{
+1, with probability 1

2 ,
−1, with probability 1

2 ,

thus each Xn is a Bernoulli random variable
Let Y0 := 0 and, for n ∈N∗, let Yn := ∑n

i=1 Xi

We have thus constructed a real-valued discrete time stochastic process Yn . This
process is called a symmetric random walk
For a given N ∈N∗, define the stochastic process Z , which we shall refer to as the
scaled symmetric random walk: Z (N)

t = 1√
N

YNt for

all t ∈
{

0, 1
N , 2

N , . . . , N
N , N+1

N , . . .
}
=: T (N), i.e. such t that make Nt a nonnegative

integer, ensuring that YNt is well defined
We can turn Z (N) into a continuous time stochastic process by means of linear
interpolation: for t ∈ [0,+∞), define

Ŵ (N)
t := Z (N)

n
N

+
(

t − n
N

) [
Z (N)

n+1
N
− Z (N)

n
N

]
,

where n ∈N0 is such that n
N ≤ t < n+1

N (clearly it is unique, so Ŵ (N)
t is well defined).

One can prove, using the CLT, that, for s, t ∈ [0,+∞), s ≤ t , the distribution

of Ŵ (N)
t − Ŵ (N)

s approaches normal with mean 0 and variance t − s as N → +∞
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The trajectories of the symmetric random walk

Several sample paths of the scaled symmetric random walk process, Ŵ (N), generated
using different arrays of random variates (each sample path corresponds to a
different ω ∈ Ω) and different values of N. The time is restricted to [0, 1].

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Brownian motion and the heat equation (and other PDEs)

Let u(x, t) be the temperature at location x at time t .

The heat equation is given by

∂

∂t
u(x, t) =

1
2

∆x u(x, t).

It can be written in terms of Brownian motion using the Feynman-Kac formula:

u(x, t) = E [u(Wt + x, 0)] .
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Aleatory versus epistemic uncertainty

Let us start with a quote from a paper on reliability engineering by Der Kiureghian
and Ditelvsen [DKD07]:

While there can be many sources of uncertainty, in the context of modeling,
it is convenient to categorize the character of uncertainties as either aleatory
or epistemic. The word aleatory derives from the Latin “alea”, which means
the rolling of dice. Thus, an aleatoric uncertainty is one that is presumed to
be the intrinsic randomness of a phenomenon. Interestingly, the word is also
used in the context of music, film and other arts, where a randomness or
improvisation in the performance is implied. The word epistemic derives
from the Greek “episteme”, which means knowledge. Thus, an epistemic
uncertainty is one that is presumed as being caused by lack of knowledge
(or data)

Domain theorists are usually concerned with epistemic uncertainty: e.g. the
“approximate” or “partial” reals [a, b ] ∈ IR, a < b, represent the partial knowledge
about some perfect real r ∈ [a, b ] ⊆ R at a given stage of the computation
[Sco70a, AJ94, ES98]. However, the probabilistic power domain can handle both kinds
of uncertainty

Probability theorists, as we shall see, are concerned with both kinds of uncertainty.
How they handle them depends on their interpretation of probability
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Classical probability theory incorrectly propagates ignorance

If probability theory can express both aleatory and epistemic uncertainty, why bother
with domain theory?

Under Laplace’s Principle of Insufficient Reason, the uncertainty about a parameter
must be modelled with a uniform distribution, assigning equal probabilities to all
possibilities. Bayesians refer to these as uninformative priors, not very informative
priors, etc.

Surely the assertion “The value of X lies in the interval [a, b ] (but its probability
distribution is unknown)” contains strictly less information than “The value of X is
uniformly distributed on [a, b ]”?
Inability to distinguish between the two in classical probability theory leads to
problems, as described by Ferson and Ginzburg [FG96]:

Classical probability theory incorrectly propagates ignorance
Second-order Monte Carlo methods require unjustified assumptions
Probability theory and interval analysis can (and should) be combined

We employ domain theory to this end to construct partial stochastic processes. Partial
stochastic processes are to classical stochastic processes what partial reals are to
classical reals
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Domain theory

Dana Scott (b. 1932)

Domain theory was introduced by Dana Scott in the late
1960s and early 1970s as a mathe-
matical theory of computation. According to Scott [Sco70b],

the theory is based on the idea that data types
can be partially ordered by a relation similar to
that of approximation, and as a result can be
considered as complete lattices.

In the same work, Scott argues that the theory ought to be
mathematical rather than operational in its approach. The
mathematical meaning of a procedure ought to be the
function from elements of the data type of inputs to
elements of the data types of the outputs. The operational
meaning will generally provide a trace of the whole history
of its computation.

One of the first applications of the theory was the
construction of the first mathematical model for the
untyped λ-calculus [Sco70b].
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Domain theory

Yuri Leonidovich Ershov
(b. 1940)

In the USSR, Yuri Leonidovich Ershov carried out
extensive work on domain theory.

Part of it was independent of and contemporary with
Scott’s work.

Elsewhere Ershov answered many questions that were
posed by Scott but were left unaswered [GHK+03].

Therefore in the literature the Scott domains also
sometimes called Scott–Ershov domains, as in [Bla00], for
example.
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Computational models for classical spaces

Abbas Edalat

Abbas Edalat applied domain theory to produce
computational models of classical mathematical spaces.

This research project started in 1993 and is still ongoing.

The idea is to use domain theory to reconstruct some
basic mathematics.

This is achieved by embedding classical spaces into the
set of maximal elements of suitable domains.

Applications have included the dynamical systems,
measures and fractals [Eda95b] and integration [Eda95a].
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Elements of domain theory (i)

Poset (D,v): a set D with a binary relation v which is reflexive, anti-symmetric, and
transitive

Supremum x ∈ D of a subset A ⊆ D: an upper bound of A s.t. whenever y is any
other upper bound of A , x v y. We write x =

⊔
A

A nonempty A ⊆ D is directed if, for all a, b ∈ A , there exists c ∈ A with a v c and
b v c
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Elements of domain theory (ii)

A directed-complete poset (dcpo): each of its directed subsets has a supremum

A bounded-complete poset: each of its subsets that has an upper bound has a
supremum

D dcpo, x, y ∈ D. x approximates y (x � y) if ∀ directed A ⊆ D, y v ⊔A ⇒ x v a
for some a ∈ A

Bx a basis for D: ∀x ∈ D, Bx :=

�

x ∩ B contains directed subset with supremum x

(ω-) continuous dcpo: dcpo with a (countable) basis

Domain: ω-continuous dcpo

Scott domain: bounded complete domain
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Scott topology
We can define topologies on dcpos.
As Abramsky and Jung point out [AJ94], in domain theory we can tie up open sets with
the concrete idea of observable properties (see [Smy92]).
Let (D,v) be a dcpo. A subset G of D is said to be Scott open if it satisfies the
following two conditions:

1 the subset G is an upper set, i.e. ↑ G = G, and
2 if A ⊆ D is a directed subset with

⊔↑ A ∈ G, then there is some x ∈ A such that ↑ x ⊆ G.

Condition (2) is equivalent to saying that G has a non-empty intersection with A
whenever A is directed and its supremum is in G.
In words, Scott open sets can be described as upper (Condition (1)) and inaccessible
by directed suprema (Condition (2)).
The collection TS (D) of all Scott open sets of the dcpo (D,v) is a topology, so
(D, TS (D)) is a topological space.
We call the collection TS (D) of all Scott open sets of the dcpo (D,v) the Scott
topology of D.
Unlike the usual (Euclidean) topology, this topology is non-Hausdorff. Such topologies
are considered in great depth in Jean Goubault-Larrecq’s recent text [GL13].
M. B. Smyth [Smy92] explains that the Scott topology can be seen as a topology of
positive information, whereas the Lawson topology can be seen as a topology of
positive-and-negative information. The computational content of the Lawson topology
is further discussed in [JES06].
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Topology: intuition (i)

An open set containing a point x is called a neighbourhood of that point.

Thus an open set is a neighbourhood of each of its points.

A neighbourhood of a point x can be thought of a set of points that are “sufficiently
close” to x. Different neighbourhoods specify different degrees of closeness.

For example, if we take the real line, R, with its usual (Euclidean) topology, then the
intervals

(x − 1, x + 1) ,
(

x − 1
2
, x +

1
2

)
,

(
x − 1

3
, x +

1
3

)
, . . . ,

(
x − 1

i
, x +

1
i

)
, . . .

are all neighbourhoods of x ∈ R of increasing “degree of closeness”.

Remember that X itself is open, so a neighbourhood of all of its points. Somehow the
open set X encodes the “lowest” “degree of closeness”. In this loose sense, all the
points in X are “close”.
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Topology: intuition (ii)

Intuitively, “putting together” two neighbourhoods — two “degrees of closeness” —
also gives a “degree of closeness”.

Therefore the union of any (arbitrary) family of open sets is again an open set: for each
point belonging to the union, a neighbourhood of that point is a subset of the union, so
the union itself is a neighbourhood of that point.

What about the intersection?

Consider two open sets, O1,O2 ∈ T . Consider some x ∈ O1 ∩O2. The elements of
O1 are precisely all the points in X that are close to x to some “degree of closeness 1”.
The elements of O2 are precisely all the points in X that are close to x to some
“degree of closeness 2”. The elements of O1 ∩O2 are precisely all the points in X that
are close to x to both “degree of closeness 1” and “degree of closeness 2” — thus
O1 ∩O2 represents a stronger “degree of closeness” than either O1 or O2. It is natural
that O1 ∩O2 should also be an open set.

Inductively, any finite intersection of open sets should be an open set:
(. . . ((((O1 ∩O2) ∩O3) ∩O4) ∩O5) ∩ . . .) ∩On for some n ∈N∗.
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Topology: intuition (iii)

What about countable intersections?

Consider an example. Take x ∈ R. The intervals

(x − 1, x + 1) ,
(

x − 1
2
, x +

1
2

)
,

(
x − 1

3
, x +

1
3

)
, . . . ,

(
x − 1

i
, x +

1
i

)
, . . .

all contain x and consists of points that are “close” to x. Their countable, not finite,
intersection

∞⋂
i=1

(
x − 1

i
, x +

1
i

)
= {x}

is precisely the singleton {x}.
If we admit countable (let alone arbitrary!) intersections into a topology we end up with
too many sets, since any subset of X can be written as an arbitrary union of singleton
sets.

If all singleton sets were open, all sets would be open, all sets would be closed, only
finite sets would be compact, and each function f : R→ X would be continuous. This
isn’t particularly meaningful!
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Hausdorff topologies

R2

x1 x2
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Non-Hausdorff topologies

IR

⊥ = R
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Domain-theoretic computational models

A (domain-theoretic computational) model of a topological space X is a continuous
domain D together with a homeomorphism φ : X → S, where S ⊆ Max (D) is a Gδ

subset of the maximal elements Max (D) carrying its relative Scott topology inherited
from D

Introduced by Abbas Edalat in [Eda97]
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Interval domain

Interval domain: IR := {[a, b ] | a, b ∈ R∧ a ≤ b}
Ordered by reverse subset inclusion

For directed A ⊆ IR,
⊔

A =
⋂

A

I � J ⇔ J ⊆ I◦

{[p, q] | p, q ∈ Q∧ p ≤ q} a countable basis for IR

x
s {x}

R

IR

⊥ = R
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Overview of the domain-theoretic framework

[BE17, BE14] introduces a domain-theoretic framework for continuous time,
continuous state stochastic processes

Their laws are embedded into the space of maximal elements of a normalised
probabilistic power domain on the space of continuous interval-valued functions
endowed with the relative Scott topology

The resulting ω-continuous bounded complete dcpo is used to define partial
stochastic processes and characterise their computability

For a given stochastic process, finitary approximations are constructed. Their lub is
the process’s law

Applying this to Brownian motion and its law, the Wiener measure, a partial Wiener
measure is constructed, giving a proof of the computability of the Wiener measure,
alternative to the one by Willem L. Fouché [Fou00, DF13])
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Domain-theoretic function spaces

Investigated by Thomas Erker, Martı́n Escardó and Klaus Keimel [EEK98]

X : locally compact Hausdorff space, O(X): its lattice of open subsets, L : bounded
complete domain

For O ∈ O(X), s ∈ L , a single-step function is the continuous map

aχO (x) =
{

a, if x ∈ O ;
⊥, otherwise

Step function: join of a bounded finite collection of single-step functions

[X → L ]: set of all continuous functions g : X → L ; a bounded complete domain w.r.t.
pointwise order induced by L

Basis: step functions
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Single-step function→ subbasic compact-open set

0

R

T

(
)

[ ]

S1

S2

T1 T2
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Step function→ basic compact-open set

0

R

TT1 T2 T3 T4 T5 T6 T7
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Topology: definition

Let X be a set and T a collection of subsets of X . Then T is a topology on X iff:

1 both the empty set ∅ and X are elements of T ;

2 arbitary unions of elements of T are also elements of T ;

3 finite intersections of elements of T are also elements of T .

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Valuations

Valuation on top. space (X , T ): map ν : T → [0,∞) s.t.
Modularity: ν(G) + ν(H) = ν(G ∪ H) + ν(G ∩ H)
Strictness: ν(∅) = 0
Monotonicity: G ⊆ H ⇒ ν(G) ≤ ν(H) for all G,H ∈ T

It is probabilistic if ν(X) = 1 and continuous if, for directed A ⊆ T ,
ν (
⋃

G∈A G) =
⊔

G∈A ν(G)

Unlike measures, valuations are defined on open, rather than measurable, sets.
Favoured in computable analysis

Nice properties and extension results. See Mauricio Alvarez-Manilla et al
[AMESD00] and Jean Goubault-Larrecq [GL05]
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Probabilistic power domain

(Normalised) probabilistic power domain P (X): set of continuous valuations (with
ν(X) = 1) ordered pointwise: for ν, ν′ ∈ P (X), ν v ν′ iff for all open sets G ∈ T ,
ν(G) ≤ ν′(G)

Introduced by Nasser Saheb-Djahromi [SD80] and studied extensively by Claire
Jones and Gordon Plotkin [JP89, Jon90]

For any b ∈ X , the point valuation δb : O(X)→ [0,∞) defined by

δb (O) =

{
1, if b ∈ O ;
0, otherwise.

Any finite linear combination ∑n
i=1 ri δbi with ri ∈ [0,∞), 1 ≤ i ≤ n, is a continuous

valuation on X (called a simple valuation).

If X is an ω-continuous dcpo with ⊥, then P1 (X) is also an ω-continuous dcpo with
bottom element δ⊥ and has a basis consisting of simple valuations
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Probabilistic power domain: an important result

Let D be an ω-continuous domain. A valuation ν in P (D) is maximal in P (D) (i.e.
ν ∈ Max (P (D))) iff ν is supported in the set Max (D) of maximal elements of D

The “if” direction of this result was proved by Abbas Edalat [Eda95b, Proposition 5.18]

The “only if” direction by Jimmie D. Lawson [Law98, Theorem 8.6]
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Domain-theoretic model for stochastic processes

PC(T ,R): the space of probability measures on C(T ,R) endowed with the weak
topology

e : PC(T ,R)→ P ([T → IR]), e(µ) = µ ◦ s−1, embeds PC(T ,R) onto the set of
maximal elements of P1 ([T → IR])

For a simple valuation ν := ∑n
j=1 rj δgj , n ∈N∗, and l ∈ R+ define the l-mass of ν by

ml(ν) := ∑n
j=1{rj | |gj | < l}

Let ν1 v ν2 v ν3 v . . . be an increasing chain of simple valuations in P ([T → IR])
with νi := ∑ni

j=1 rij δgij , ni ∈N∗

Define ν :=
⊔

n∈N∗ νn

Then the support of ν is in the subspace of the embedded classical functions iff, for all
n ∈N∗, there exists N ∈N∗ such that

m1/n(νN) > 1− 1/n (1)
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The new picture

µ e
µ ◦ s−1

PC(T ,R)

P ([T → IR])

⊥
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Finitary approximation of a valuation

D is a bounded complete domain with a countable basis B := (b1, b2, . . .) closed
under finite suprema

Let ν be any valuation on D and ν∗ its canonical extension to a measure on D. In
particular, ν∗ could be the law of the stochastic process of interest

We will show how to obtain ν as a supremum of an increasing chain of simple
valuations on D

Recursively define a sequence of finite lists of subsets of B: define A0 := [a0
1 := ⊥];

for n ∈N0,
An+1 = [bn+1 t an

l1 , . . . , bn+1 t an
lLn

, an
1 , . . . , an

Kn ],

where an
1 , . . . , an

Kn
are the elements of An in order, and an

l1
, . . . , an

lLn
is the sublist of An

consisting of those elements that have an upper bound with bn+1. (Ln ≤ Kn)

For example,
A1 = [b1,⊥];

A2 =

{
[b2 t b1, b2, b1,⊥] if b2 t b1 exists,
[b2, b1,⊥] otherwise
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Finitary approximation of a valuation

Further, for n ∈N0, νn := ∑Kn
i=1 rn

i δan
i
, where

rn
i := ν∗

(

�a
n
i \

i−1⋃
k=1

�a
n
k

)
(2)

The sequence of simple valuations (νn)n∈N is an increasing chain, i.e., for all n ∈N,
νn v νn+1

The supremum of the approximating chain (νn)n∈N of simple valuations gives the
approximated valuation: ⊔

n∈N

νn = ν
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Some details of the proof: monotonicity (i)

To prove that the sequence is increasing, we use the modification [Eda95a] of the
splitting lemma [JP89] for the normalised probabilistic power domain: we need to show
the existence of the nonnegative numbers (called transport numbers) tn

i,j for

i = 1, . . . ,Kn, j = 1, . . . ,Kn+1,

such that, for a fixed i, ∑
Kn+1
j=1 tn

i,j = rn
i ; for a fixed j, ∑Kn

i=1 tn
i,j = rn+1

j ; and tn
i,j , 0

implies an
i v an+1

j .

We claim that these requirements are satisfied by defining the transport numbers as
follows. If bn+1 t an

i exists, then i = lji for a unique ji ∈ {1, . . . , Ln}, and we define

tn
i,ji := rn+1

ji
, tn

i,Ln+i := rn+1
Ln+i , tn

i,j := 0

for all j < {ji , Ln + i}. If bn+1 t an
i does not exist, then we define

tn
i,Ln+i := rn+1

Ln+i , tn
i,j := 0

for all j , Ln + i
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Some details of the proof: monotonicity (ii)

The intuition behind the above proof is as follows. In νn , the weight of an
i is rn

i , which in νn+1
is “distributed” in the weight of an

i and possibly the weight of bn+1
⊔

an
i . If the

supremum bn+1
⊔

an
i does not exist, the the weight of an

i in νn+1 is the same as in νn
(because removing the set above bn+1 does not change the set); if bn+1

⊔
an

i does exist,
then �a

n
i = ( �a

n
i \ �(bn+1

⊔
an

i )) ∪ ( �(bn+1
⊔

an
i )), which implies that the two weights

in νn+1 sum to rn
i .

rn+1
j1

. . . rn+1
ji

. . . rn+1
Ln

rn+1
Ln+1

. . . rn+1
Ln+i

. . . rn+1
Kn+1

rn
1

. . . rn
i

. . . rn
Kn

tn
i,ji tn

i,Ln+i

νn+1

νn

Figure: Transport numbers
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Some details of the proof: convergence (i)

[Eda97, Lemma 3.1] Let ν1 and ν2 be continuous valuations on a topological space X .
Suppose B ⊆ O(X), where O(X) is the topology of X , is a base which is closed under
finite intersections. If ν1(O) = ν2(O) for all O ∈ B, then ν1 = ν2.
The countable basis B for our domain D gives rise to the topological base for its Scott
topology, consisting of the sets �bk for each bk ∈ B, k ∈N∗. Since B is closed under finite
suprema, the topological base is closed under finite intersections. It suffices to ascertain
that

⊔
n∈N∗ νn( �bk ) = ν∗( �bk ) for each bk ∈ B.

For each n ∈N∗,

νn( �bk ) =
Kn

∑
i=1

ν∗
(
�a

n
i \

i−1⋃
l=1

( �a
n
l )

)
δan

i
( �bk ) = ∑

i:bk�an
i

ν∗
(

�a
n
i \

i−1⋃
l=1

( �a
n
l )

)

countable
=

additivity
ν∗

 ⋃
i:bk�an

i

[
�a

n
i \

i−1⋃
l=1

( �a
n
l )

] = ν∗(Bn),

where Bn =
⋃ {

�bi | i ∈N0, bi =
⊔

j∈J bj for some J ⊆ {1, . . . , n}, bk � bi
}

, since,
for n ∈N∗, an

i , . . . , an
Kn

are defined as the finite suprema of b1, . . . , bn .
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Some details of the proof: convergence (ii)

Then ( ⊔
n∈N∗

νn

)
( �bk ) = lim

n→∞
ν∗(Bn) = ν∗

(
∞⋃

n=1

Bn

)
,

the last equality following from the continuity of measures from below.
By the interpolation property of continuous dcpos,

∞⋃
n=1

Bn =
∞⋃

i=1,
bk�bi

�bi = �bk ,

so (
⊔

n∈N∗ νn) ( �bk ) = ν∗( �bk ), and the result follows.
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Finitary approximation of a given stochastic process

We can think of the approximation of measures at the top (including the laws of stochastic
processes) as a special case of this construction. Note that the bounded complete
domain [T → IS], with T = [0, 1], S = R, has a countable basis closed under finite
suprema. It is given by the step functions obtained from rational-valued intervals. We can
therefore think about the valuations vn as partial stochastic processes, which approximate
and generate the law of the stochastic process, µ, in the limit. Also, by choosing T to be a
finite or countable set, we can treat the discrete time partial stochastic processes as a
special case of the present construction.
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Computable stochastic processes

An increasing chain of simple valuations ν0 v ν1 v ν2 v . . ., where, for each i ∈N,
νi = ∑ni

i=1 rij δgij , is effective if for each i, ni ∈N is recursively given, ri1, . . . , rini are
computable, and gi1, . . . , gini are effectively given

A stochastic process is (domain-theoretically) computable if there exists a total
recursive function φ : N→N such that, for each i ∈N, gives N := φ(i) in (1)
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Some closure properties of sets with computable measure

Given a measure µ, let A be a collection of µ-measurable sets that is closed under finite
intersections and such that the measure µ(A) of each A ∈ A is a computable real number.
Then the following are also computable real numbers:

µ (
⋃n

i=1 Ai) for each n ∈N∗, A1, . . . ,An ∈ A
µ (A1 \ A2) for A1,A2 ∈ A
µ (A \ (⋃n

i=1 Ai)) for each n ∈N∗, A1, . . . ,An ∈ A
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History: Paul Pierre Lévy (1886–1971)

Remarkably, Paul Pierre Lévy (who is known for, among many other things, one of the
constructions of the Brownian motion) has contributed to domain theory — back in 1965
[Lév65] — even though he wasn’t aware of its existence!
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Paul Lévy’s formula (i)

Let T = [0, 1], t ∈ T , mt := min0≤s≤t Wt , Mt := max0≤s≤t Wt

The joint distribution of the processes Wt ,mt ,Mt is given by

P [a < mt ≤ Mt < b and Wt ∈ A ] =
∫

A
k (y) dy

Here A ⊆ R is a measurable set,

k (y) :=
∞

∑
n=−∞

pt (2n(b − a), y)− pt (2a, 2n(b − a) + y), (3)

and

pt (x, y) :=
1√
2πt

e−(y−x)2/(2t)
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Paul Lévy’s formula (ii)

It is convenient to regard this equation as a special case of the following function of
two variables, x ∈ (a, b) and y ∈ (a − x, b − x) ⊆ (a − b, b − a):

k (x, y) :=
∞

∑
n=−∞

pt (2n(b − a), y)− pt (2(a − x), 2n(b − a) + y)

In (3), x is 0

By introducing x we are effectively allowing the Brownian motion an intercept from the
origin

To make the dependence on a, b, and t explicit, we shall write k (x, y; a, b; t)

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Domain-theoretic approximation of Wiener measure (i)

Let V := V(K1, . . . ,Kn;U1, . . . ,Un), n ∈N∗ be a basic open set

In our context, where X will be a nonempty compact interval, X ⊆ R, the basic open
set V ⊆ C(X ,Y) induces a partition of X :

T (V) := {minX ,maxX} ∪
n⋃

i=1

{minKi ,maxKi}

Regard it as a naturally ordered (in ascending order) tuple containing
|T (V)| ≤ 2(n + 1) (distinct) elements and refer to its elements as T1, . . . ,T|T |, where
the dependence on V is implicit
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Illustration of a basic open set

0

R

TT1 T2 T3 T4 T5 T6 T7 Tj Tj+1

Ki

Ui

x4
x5
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Domain-theoretic approximation of Wiener measure (ii)

For i = 1, . . . , |T | − 1, define

fi(x, y) :=

{
k (x, y; Li ,Ri ;∆ti) if [Ti ,Ti+1] ⊆

⋃n
j=1 Kj ,

1√
∆ti

φ
(

y−x√
∆ti

)
otherwise,

where φ is the standard normal density function, ∆ti = Ti+1 − Ti ,
[Li ,Ri ] :=

⋂n
j=1{Uj | [Ti ,Ti+1] ⊆ Kj}.

Using the properties of conditional probability,

µW (V) =
∫

A1

∫
A2

. . .
∫

A|T |−1

f1(x0, x1)f2(x1, x2) · · ·

f|T |−1(x|T |−2, x|T |−1) dx1 dx2 . . . dx|T |−1

where x0 = 0, and, for i = 1, . . . , |T | − 1,

Ai :=
n⋂

j=1

{Uj | Ti+1 ∈ Kj} − xi−1
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Càdlàg processes
While many (most?) processes studied in mathematical finance and other applied
fields are continuous, some aren’t. Of particular interest are càdlàg processes
(“continue à droite, limite à gauche”), which admit jumps [CT03]. The behaviour of the
markets on Monday (“Mad market Monday” according to Reuters) is a good example!
A function f : [0, 1]→ R is called a càdlàg function if, for every t ∈ [0, 1], the left limit
f(t−) := lims↑t f(s) exists; and the right limit f(t+) := lims↓t f(s) exists and equals
f(t)
Anatoliy Volodymyrovych Skorokhod (1930–2011) introduced a topology — the
Skorokhod topology — on the space, D([0, 1],R), of càdlàg functions to study the
convergence in distribution of stochastic processes with jumps as an alternative to the
compact-open topology. It is induced [Bil99] by the following metric, which makes
D([0, 1],R) a complete separable metric space. Let Λ be the class of strictly
increasing continuous mappings of [0, 1] onto itself. For λ ∈ Λ one defines

‖λ‖ = sup
s,t

∣∣∣∣ln λ(t)− λ(s)
t − s

∣∣∣∣ .
We can then define the metric as

d(f , g) = inf
λ∈Λ

{
sup |f(t)− g(λ(t))|+ ‖λ‖

}
.

How can one relate this to the Scott topology or other domain-theoretic topologies?
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History: Anatoliy Volodymyrovich Skorokhod (1930–2011)

Among Anatoliy Volodymyrovich Skorokhod’s contributions to the theory of stochastic
and Markov processes, his topologies have been instrumental in the study of jump
behaviour
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Computational considerations

What is the best order of enumeration of B := (b1, b2, . . .) to obtain a good rate of
convergence?
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Stochastic integration

A generalisation of the Riemann-Stieltjes integral. The integrands and the intagrators
are stochastic processes, as are the integrals themselves:

Yt =
∫ t

0
Hs dXs ,

where H is a locally square-integrable process adapted to the filtration generated by
the semimartingale X

More often than not, X is W

Ito integral: ∫ t

0
Hs dX s = lim

n→∞

nt

∑
k=0

Hk/n(X(k+1)/n − Xk/n)

Stratonovich integral:

∫ t

0
Hs dX s = lim

n→∞

nt

∑
k=0

H(k+1)/n(X(k+1)/n − Xk/n)
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The Wiener integral

The Wiener integral is a Lebesgue integral over sets in an inifinite-dimensional function
space, such as C := C(T ,R), of functionals defined on these sets. Let F be a
functional defined on C that is measurable with respect to the Wiener measure, µW .
Then the Wiener integral is the Lebesgue integral∫

C
F(x) dµW (x)

Let x = x(t) ∈ C, n ∈N∗, and t1, . . . , tn ∈ T . Denote by x(n) the broken line with
vertices at the points (t1, x(t1)), . . . (tn, x(tn)). Let F be a functional on C. For n → ∞,
F(x(n))→ F(x) in the sense of strong convergence

[Kov63] If F is a continuous bounded functional,∫
C

F(x) dµW (x) = lim
n→∞

1
πn t1(t2 − t1) . . . (tn − tn−1)

×

∫
Rn

Fn(x1, . . . , xn) exp

[
− x2

1
t1
−

n−1

∑
j=1

(xj+1 − xj)
2

tj+1 − tj

]
dx1 . . . dxn,

where Fn(x1, . . . , xn) := F(x(n))
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The Wiener integral and the Feynman path integrals

Analytical continuation: Consider the Wiener measure with covariance λ ∈ R+, a
functional F on C([0, 1],R). The following holds:∫

C([0,1],R)
F(ω) dWλ(ω) =

∫
C([0,1],R)

F(
√

λω) dW(ω).

What if λ is complex? The left-hand side is meaningless, whereas the right-hand side
is OK is F is suitably analytical and measurable. When λ = i, we get the
analytically-continued Wiener integral.

In particular, we can apply this to the Feynman path integral representation of the
Schrödinger equation. Consider the heat equation with potential V

− ∂

∂t
u(t, x) = − 1

2
∆x u(t, x) + V(x)u(t, x), x ∈ Rd .

The solution in terms of a Wiener integral is given by the Feynman-Kac formula:

u(t, x) =
∫

C([0,1],R)
e−

∫ t
0 V(ω(s)+x) dsu(0,w(t) + x) dW(ω)

This formula works for many V of interest
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Edalat integration

Edalat integration was introduced in [Eda95a] for bounded real-valued functions on
compact metric spaces embedded into continuous domains (i.e. spaces of maximal
points), and bounded Borel measures on those compact metric spaces

Extended to locally compact spaces by Edalat and Sara Negri [EN98]

Extended to bounded real-valued functions on Hausdorff spaces embedded into
continuous domains by John D. Howroyd [How00]. This extension is applicable in our
setting, as C is a Hausdorff space
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Howroyd’s extension of Edalat integration (i)

Let X ↔ Max (D) ↪→ D be a dense embedding of X into the maximal points of a
continuous domain D equipped with the Scott topology

Let f : X → R be a bounded function

Let µ be a Borel probability measure on X such that µ(U) := µ(U ∩ X) defines a
continuous valuation on the Scott open sets of D
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Howroyd’s extension of Edalat integration (ii)

[LL03] Let ν = ∑b∈|ν| rb µb ∈ P1 (D) be a simple valuation where |ν| is the support of
ν and µb is a point valuation for b ∈ D

Then the lower sum and upper sum of f w.r.t. ν are defined as

S l(f , ν) = ∑
b∈|ν|

= ∑
b∈|ν|

rb inf f(↑ b ∩ X),

and
Su(f , ν) = ∑

b∈|ν|
= ∑

b∈|ν|
rb sup f(↑ b ∩ X),

respectively
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Howroyd’s extension of Edalat integration (iii)

The lower E-integral and upper E-integral of f w.r.t. µ are defined as

E-
∫
∗

f dµ = sup{S l(f , ν) : ν� µ, ν simple},

and
E-
∫ ∗

f dµ = inf{Su(f , ν) : ν� µ, ν simple},

respectively

The bounded function f : X → R is said to be E-integrable w.r.t. µ if

E-
∫ ∗

f dµ = E-
∫
∗

f dµ

If f is E-integrable, the E-integral of f is denoted by E-
∫

f dµ and is defined to be the
value of the lower or upper integral:

E-
∫

f dµ = E-
∫ ∗

f dµ = E-
∫
∗

f dµ
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The case of the (partial) Wiener measure

In our case:
X = C = C(T ,R)
D = [T → IR]
µ = µW
f = F , a bounded functional on C

[How00, Theorem 13] If a function is E-integrable then it is Lebesgue integrable, and
the values of the integrals agree
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A word to Ray Solomonoff

Ray Solomonoff (1926–2009)

A very conventional scientist understands his science
using a single ‘current paradigm’ — the way of
understanding that is most in vogue at the present
time. A more creative scientist understands his
science in very many ways, and can more easily
create new theories, new ways of understanding,
when the ‘current paradigm’ no longer fits the current
data. [Sol09]
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The way-below relation of function spaces over semantic domains.
Topology and its Applications, 89(1–2):61–74, November 1998.

Abbas Edalat and Sara Negri.
The generalized Riemann integral on locally compact spaces.
Topology and Its Applications, 89(1–2):121–150, November 1998.

Abbas Edalat and Philipp Sünderhauf.
A domain-theoretic approach to computability on the real line.
Theoretical Computer Science, 210(1):73–98, January 1998.

Belmont G. Farley and Wesley A. Clark.
Simulation of self-organizing systems by digital computer.
IRE Transactions on Information Theory, 4(4):76–84, 1954.

Scott Ferson and Lev R. Ginzburg.
Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Different methods are needed to propagate ignorance and variability.
Reliability, 54:133–144, 1996.

Willem L. Fouché.
Arithmetical representations of Brownian motion I.
The Journal of Symbolic Logic, 65(1):421–442, March 2000.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning.
Adaptive Computation and Machine Learning. MIT Press, 2017.

Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael
Mislove, and Dana Stewart Scott.
Continuous Lattices and Domains.
Number 93 in Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2003.

Jean Goubault-Larrecq.
Extensions of valuations.
Mathematical Structures in Computer Science, 15(2):271–297, 2005.

Jean Goubault-Larrecq.
Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology,
volume 22 of New Mathematical Monographs.
Cambridge University Press, 2013.

Stephen Grossberg.

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Adaptive pattern classification and universal recording, i: Parallel development and
coding of neural feature detectors.
Biological Cybernetics, 23:121–134, 1976.

Stephen Grossberg.
Adaptive pattern classification and universal recording, ii: Feedback, expectation,
olfaction, and illusions.
Biological Cybernetics, 23:187–202, 1976.

Donald Olding Hebb.
The Organization of Behavior: A Neuropsychological Theory.
Wiley and Sons, 1949.

Geoffrey E. Hinton.
Deterministic Boltzmann learning performs steepest descent in weight-space.
Neural computation, 1(1):143–150, 1989.

Geoffrey E. Hinton.
Learning multiple layers of representation.
Trends in Cognitive Sciences, 11(10):428–434, October 2007.

John J. Hopfield.
Neural networks and physical systems with emergent collective computational
abilities.
Proceedings of the National Academy of Sciences of the United States of America:
Biophysics, 79:2554–2558, April 1982.

Paul Bilokon Imperial College, Thalesians

FIPS 2018: From AI to ML, from Logic to Probability



AI Scruffy Logic ML Probability BM Domains Connection Further Q&A

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.
A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

J. D. Howroyd.
A domain-theoretic approach to integration in Hausdorff spaces.
London Mathematical Society Journal of Computation and Mathematics, 3:229–273,
August 2000.

Tony Hey and Gyuri Pápay.
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