Optimal portfolio choice with path dependent labor income

Enrico Biffis
(Imperial College Business School)

Joint work with
Fausto Gozzi and Cecilia Prosdocimi
(LUISS Rome).

IMS-FIPS Workshop, London
September 10, 2018
Outline

1 Overview and motivation

2 Benchmark model (no path dependency)

3 Path-dependent wages

4 Conclusion
Lifecycle portfolio choice problem with borrowing (state) constraints where an agent receives labor income.

Novelty: path-dependency of the wage income process (“slow” adjustment to financial market shocks; “learning” your income) which leads to an infinite dimensional stochastic optimal control problem.

We solve completely the problem, and find explicitly the optimal controls in feedback form. Tool: explicit solution to the associated infinite dimensional Hamilton-Jacobi-Bellman (HJB) equation.

First step towards more general and interesting problems and more general solution methods.
Motivation: Portfolio choice

- **Merton (1971):** lifetime investment in risky stocks and riskless asset. Optimal for agents to allocate a *constant fraction of wealth in the risky asset* throughout their lives.

- Importance of labor income in shaping portfolio choice: e.g., Bodie et al. (1992), Campbell-Viceira (2002), Fahri-Panageas (2007), Dybvig-Liu (2010). The **total wealth** of an agent is given by both financial wealth and **human capital**, i.e., the market value of future labor income.

- **Key finding I:** investors should allocate a constant fraction of their **total wealth** to the risky asset.

- **Key finding II:** negative **hedging demand** for risky assets arises from the implicit holding of the risky assets in human capital.
Labour income dynamics

- ARMA processes commonly used to model the stochastic component of wages (e.g., MaCurdy, 1982; Abowd-Card, 1989; Meghir-Pistaferri, 2004; Storesletten et al., 2004).

Sticky wages

- Empirical evidence on wage rigidity suggests that labor income adjusts slowly to financial market shocks (e.g., Khan, 1997; Dickens et al., 2007; LeBihan et al., 2012).

- Delayed labor income dynamics as a tractable model to capture this feature.
Motivation: Human Capital II

Learning your income

- Shocks in labor income have modest persistency when heterogeneity in income growth rates is taken into account.
- Allowing agents to learn in (say) a Bayesian way about income growth can match several empirical features of consumption data (e.g., Guvenen, 2007, 2009).
- Bounded rationality and rational inattention can support the use of moving averages instead of optimal filters (e.g., Zhu and Zhou, 2009).
- Path dependent labor income retains tractability and delivers explicit solutions.
Outline

1. Overview and motivation
2. Benchmark model (no path dependency)
3. Path-dependent wages
4. Conclusion
Financial market of Black & Scholes type:

\[
dS_0(t) = rS_0(t)dt \\
\frac{dS_1(t)}{S_1(t)} = \mu dt + \sigma dZ(t),
\]

with \(0 < r < \mu, \sigma > 0\).

- \(Z\) is a Wiener process on a given filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\).

- We consider one risky asset for illustration only, the case of \(n > 1\) risky assets working in a similar way.
Consider the state equation (budget constraint and wage process)

\[
\begin{align*}
 dW(t) &= \left[W(t)r + \theta(t)(\mu - r) - c(t) - \delta(B(t) - W(t)) \right] dt \\
 &\quad + (1 - R(t))y(t)dt + \theta(t)\sigma dZ(t), \quad W(0) = W_0 \\
 dy(t) &= y(t)(\mu_y dt + \sigma_y dZ(t)), \quad y(0) = y_0
\end{align*}
\]

- \(W(t) \) wealth process (state)
- \(y(t) \) labor income process (state)
- \(\theta(t) \) investment in the risky asset (control)
- \(c(t) \) consumption (control)
- \(B(t) \) bequest (control)
- \(R(t) := \mathbb{I}_{\{T \leq t\}} \) and \(T \) is the retirement date (control)
- \(\delta > 0 \) constant rate of mortality
- \(\mu_y, \sigma_y > 0. \)
The agent’s death time τ_δ is modeled as a Poisson arrival time (with parameter $\delta > 0$) independent of the Wiener process Z.

We should consider as reference filtration the one generated by τ_δ and Z, but we will actually work on $\{\tau_\delta > t\}$.

$B(t)$ is the bequest the agent targets for his/her beneficiaries:

- for $W(t) - B(t) < 0$, the agent purchases continuously life insurance with premium flow $\delta(B(t) - W(t))$;
- for $W(t) - B(t) > 0$, the agent is essentially receiving a life annuity flow $\delta(B(t) - W(t))$, as (s)he trades wealth in the event of death for a cash inflow while living.
Goal: maximize over \((c(\cdot), B(\cdot), \theta(\cdot), T)\) the objective

\[
\mathbb{E} \left\{ \int_0^{T(\delta)} e^{-\rho t} \left((1 - R(t)) \frac{c(t)^{1-\gamma}}{1-\gamma} + R(t) \frac{(Kc(t))^{1-\gamma}}{1-\gamma} \right) dt
\right. \\
+ e^{-\rho T(\delta)} \frac{(kB(T(\delta)))^{1-\gamma}}{1-\gamma} dt \right\},
\]

where \(K > 1\) allows the utility from consumption to differ before and after \(T\), and \(k > 0\) measures the intensity of preference for leaving a bequest.

The expectation above can be written as follows:

\[
J(W_0, y_0; c, B, \theta, T) := \mathbb{E} \left\{ \int_0^{+\infty} e^{-(\rho+\delta)t} \left(\frac{(K^{R(t)}c(t))^{1-\gamma}}{1-\gamma}
\right. \\
+ \delta \frac{(kB(t))^{1-\gamma}}{1-\gamma} \left. \right) dt \right\}
\]
The state constraint

Dybvig-Liu (2010), Problem 1

For fixed retirement date $T \leq +\infty$, consider the following no-borrowing-without-repayment constraint:

$$ W(t) \geq -g(t)y(t), $$

with

$$ g(t) := \left(\frac{1 - e^{-\beta_1 (T-t)}}{\beta_1} \right)^+, $$

where we assume $\beta_1 > 0$, with $\beta_1 := r + \delta - \mu_y + \frac{(\mu-r)}{\sigma} \sigma_y$.
Meaning of the constraint

Let $\xi(t)$ be the mortality risk adjusted state price density:

$$
\xi(t) := e^{-(r+\delta+\frac{1}{2} \frac{(\mu-r)^2}{\sigma^2})t - \frac{\mu-r}{\sigma} Z(t)},
$$

i.e., the solution of

$$
\begin{align*}
\left\{
\begin{array}{l}
 d\xi(t) = -\xi(t)(r + \delta)dt - \xi(t)\frac{\mu-r}{\sigma} dZ(t), \\
 \xi(0) = 1.
\end{array}
\right.
\end{align*}
$$

Then

$$
g(t)y(t) = \xi(t)^{-1} \mathbb{E} \left(\int_t^T y(s)\xi(s)ds \bigg| \mathcal{F}_t \right),
$$

which is nothing else than the human capital at time t.
Outline

1. Overview and motivation
2. Benchmark model (no path dependency)
3. Path-dependent wages
4. Conclusion
Overview and motivation

Benchmark model (no path dependency)

Path-dependent wages

Conclusion

Our model

For simplicity we focus on the infinite horizon case \(T = +\infty \).

State equation:

\[
dW(t) = \left[W(t)r + \theta(t)(\mu - r) - c(t) - \delta(B(t) - W(t)) \right] dt \\
+ y(t)dt + \theta(t)\sigma dZ(t), \quad W(0) = W_0
\]

\[
dy(t) = \left(y(t)\mu_y + \int_{-d}^{0} \alpha(\eta)y(t + \eta)d\eta \right) dt + y(t)\sigma_y dZ(t),
\]

\[
y(0) = y_0, \quad y(\eta) = y_1(\eta) \quad \forall \eta \in [-d, 0).
\]

\(W(t), y(t), \theta(t), c(t), B(t) \), as before.

\(\alpha(\cdot) \) square integrable function.
$J_1(W_0, y_0, y_1; c, B, \theta) :=$

$$
\mathbb{E} \left\{ \int_{0}^{+\infty} e^{-(\rho + \delta)t} \left(\frac{c(t)^{1-\gamma}}{1-\gamma} + \delta \frac{(kB(t))^{1-\gamma}}{1-\gamma} \right) dt \right\}.
$$

(1)

Problem

Given $T = +\infty$, choose $c(\cdot)$, $\theta(\cdot)$, $B(\cdot)$ to maximize (1), with the following no-borrowing-without-repayment constraint:

$$W(t) \geq - \left(Gy(t) + \int_{-d}^{0} H(\eta)y(t + \eta)d\eta \right).$$
After some work we can write (Biffis-Prodocimi-Goldys, 2015):

\[
\xi(t)^{-1} E \left(\int_{t}^{+\infty} y(s) \xi(s) ds \bigg| \mathcal{F}_t \right) = G y(t) + \int_{-\infty}^{0} H(\eta) y(t + \eta) d\eta.
\]

The constant \(G \) and the function \(H \) are given by

\[
G := (\beta_1 - \beta_{\infty})^{-1},
\]

\[
H(\eta) := \int_{-\infty}^{\eta} e^{-(r + \delta)(\eta - s)} \alpha(s) ds,
\]

with \(\beta_{\infty} := \int_{-\infty}^{0} e^{-(r + \delta)s} \alpha(s) ds \).

For \(\alpha = 0 \) we have \(H = 0 \) and \(G \) coincides with \(g \).

The above shows that human capital is now shaped by two components:

- Current market value of the past trajectory of labor income,
 \(\int_{-\infty}^{0} H(\eta) y(t + \eta) d\eta \).
- Current market value of the future labor income stream, \(G y(t) \).
Stochastic control problem, infinite horizon I

- State space H, Hilbert space. Control space C complete metric space.

- State equation

$$\begin{cases}
 dx(t) = b(x(t), c(t)) \, dt + \sigma(x(t), c(t)) \, dZ(t) \\
 x(s) = y, \quad s \geq 0, \; y \in H
\end{cases}$$

- Set of admissible controls (here when C is bounded, if not integrability properties are needed)

$$\mathcal{U} := \{ c : [0, +\infty) \times \Omega \longrightarrow C \mid c \text{ is } \mathcal{F}_t\text{-adapted} \}.$$

- Objective functional

$$J(s, y; c(\cdot)) := \mathbb{E} \left\{ \int_s^{+\infty} e^{-\rho t} f(x^{(s,y)}(t), c(t)) \, dt \right\},$$
Stochastic control problem, infinite horizon 2

- value function

\[V(s, y) := \sup_{c(\cdot) \in U^s} J(s, y; c(\cdot)), \text{ for any } (s, y) \in [0, +\infty) \times \mathbb{R} \]

we have

\[V(s, y) = e^{-\rho s} V(0, y) = e^{-\rho s} V_0(y). \]

- Hamilton-Jacobi-Bellman equation for \(V_0 \)

\[\rho v = \mathcal{H}(x, v_x, v_{xx}) \text{ for any } y \in \mathbb{R} \]

where

\[\mathcal{H}(x, p, P) = \sup_{c \in C} \{ f(x, c) + b(x, c)p + \frac{1}{2}\sigma^2(x, c)P \} \]
Delay equations as ODEs in infinite dimensional spaces

- The state equation of $y(\cdot)$ is a stochastic delay differential equation.
- Classical theory works for Markovian state equations.
- We reformulate the problem in an infinite dimensional Hilbert space (e.g., Vinter, 1975; Chojnowska-Michalik, 1978; Da Prato-Zabczyk, 2014; Fabbri-Gozzi-Swiech, 2017).
- Consider the Hilbert space

$$\mathcal{H} := \mathbb{R} \times L^2([-d, 0]; \mathbb{R}),$$

with inner product for $x = (x_0, x_1), z = (z_0, z_1) \in \mathcal{H}$

$$\langle x, z \rangle_{\mathcal{H}} := x_0 z_0 + \int_{-d}^{0} x_1(\xi) z_1(\xi) d\xi$$

$$= x_0 z_0 + \langle x_1, z_1 \rangle_{L^2}$$
Set
\[X(t) = (X_0(t), X_1(t)) := (y(t), y(t + \xi)|_{\xi \in [-d, 0]}), \]

- \(X(t) \) is an element of \(\mathcal{H} \) for all \(t \in [0, +\infty) \).
- Let \(X \) satisfy
\[
dX(t) = AX(t)dt + CX(t)dZ(t), \quad X(0) = (y_0, y_1) \in \mathcal{H}
\]

with
\[
A(x_0, x_1) := (\mu_y x_0 + \langle \alpha(\cdot), x_1(\cdot) \rangle_{L^2}, x_1'(\cdot)),
C(x_0, x_1) := (x_0 \sigma_y, 0)
\]

Then, the original problem is equivalent to the control problem with state \(X \) in the infinite dimensional space \(\mathcal{H} \) (e.g., Chojnowska 1989, Gozzi-Marinelli, 2004).
The value function V_0 is

$$V_0(W, x_0, x_1) := f_\gamma \frac{\Gamma^{1-\gamma}}{1-\gamma},$$

where

$$f_\infty := (1 + \delta k^{\frac{1}{1-\gamma}} - 1)\nu,$$

$$\nu := \frac{\gamma}{\rho + \delta - (1 - \gamma)(r + \delta + \frac{k^T \kappa}{2\gamma})} > 0,$$

$$\Gamma := W_0 + Gx_0 + \langle H, x_1 \rangle_{L^2} \geq 0,$$
The optimal strategies are given by:

\[c^*(t) := f_{\infty}^{-1} \Gamma^*(t) \]

\[B^*(t) := k^{-b} f_{\infty}^{-1} \Gamma^*(t) \]

\[\theta^*(t) := \frac{(\mu - r) \Gamma^*(t)}{\gamma \sigma^2} - \frac{\sigma y}{\sigma} G y(t), \]

where \(\Gamma^*(t) := W^*(t) + G X_0(t) + \langle H, X_1(t, \cdot) \rangle_{L^2}. \)

We have

\[\frac{d\Gamma^*(t)}{\Gamma^*(t)} = \left[r + \delta + \frac{1}{\gamma} \left(\frac{\mu - r}{\sigma} \right)^2 - f_{\infty}^{-1} (1 + \delta k^{-b}) \right] dt \]

\[+ \frac{\mu - r}{\gamma \sigma} dZ(t). \]
Discussion

- With no labor income risk ($\sigma_y = 0$), the optimal ratios $\frac{\theta^*}{\Gamma^*}$ and $\frac{c^*}{\Gamma^*}$ are constant, as in the Merton model.

- Taking $\alpha = 0$, we recover the results of Dybvig-Liu.

- With $\alpha \neq 0$, the same logic as in Dybvig-Liu applies, but optimal total wealth (financial wealth + human capital) is now given by Γ^*:

 $$\Gamma^*(t) = W^*(t) + GX_0(t) + \langle H(t, \cdot), X_1(t, \cdot) \rangle_{L^2}.$$

- The ratio $\frac{\theta^*}{\Gamma^*}$ is no longer constant and the negative hedging demand term $\frac{\sigma_y}{\sigma} G y(t)$ only takes into account the ‘future component’ of human capital.

- Richer empirical predictions than in the standard case: portfolio choice (e.g., stock market participation) depends on the relative importance of the past vs. future component of human capital.
Sketch of the proof

- Guess the value function to be
 \[V(W_0, x_0, x_1) := f_\gamma \left(\frac{W_0 + Gx_0 + \langle H, x_1 \rangle_{L^2}}{1 - \gamma} \right)^{1-\gamma}. \]

- Putting \(V \) in the HJB equation, gives equations for \(f, G, H \).

- Solving these equations, we get that \(f, G, H \) are the constant as defined before.

- \(V \) is \(C^{1,2} \).

- Verification Theorem holds and the optimal feedback strategies are admissible.
Remarks I

Total wealth zero boundary:

- The **borrowing constraint** is not always slack.
- The case of binding constraint is reduced to a problem of viability.
- As opposed to Merton-type problems, the agent is not fully invested in the riskless asset along the boundary.
- At the zero boundary we have $c = 0$, $B = 0$, and $\theta = -\frac{\sigma_y}{\sigma} Gy(t)$.
- The agent is still invested in the risky asset, as (s)he needs to fully hedge his/her labor income risk.
Verification and preference parameter $\gamma > 0$:

- We cover in detail both the case of $\gamma \in (0, 1)$ and $\gamma > 1$.
- The first case is standard.
- The second case is not: it is at best neglected in the literature. We address this case and prove it explicitly.
Outline

1. Overview and motivation
2. Benchmark model (no path dependency)
3. Path-dependent wages
4. Conclusion
Conclusion and further/future research

Summary

- Extension of Merton’s problem to the case of realistic labor income dynamics and constraints.
- Explicit solutions can better match empirical data (e.g., hump shaped risky asset allocations, cross-sectional heterogeneity of portfolio choices, etc.).

Extensions

- The case with given retirement date (finite horizon) or with linear path dependent diffusion coefficient can be solved in a similar way.
- More general problems (e.g. non linear equation for \(y \)) call for new theoretical results on HJB equations or on the use of alternative methods (BSDEs through randomization, Maximum Principle, etc.).

[Lines of research: regularization of viscosity solutions using the classical definition (Fabbri-Gozzi-Swiech), or the PPDE definition (Ekren-Touzi-Zhang) in the finite dimensional case, and CossoFedericoGozziRosestolato-Touzi in the infinite dimensional case.]
THANK YOU